Search results for: phase induced intensity noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3350

Search results for: phase induced intensity noise

290 A Case Study of Mobile Game Based Learning Design for Gender Responsive STEM Education

Authors: Raluca Ionela Maxim

Abstract:

Designing a gender responsive Science, Technology, Engineering and Mathematics (STEM) mobile game based learning solution (mGBL) is a challenge in terms of content, gamification level and equal engagement of girls and boys. The goal of this case study was to research and create a high-fidelity prototype design of a mobile game that contains role-models as avatars that guide and expose girls and boys to STEM learning content. For this research purpose it was applied the methodology of design sprint with five-phase process that combines design thinking principles. The technique of this methodology comprises smart interviews with STEM experts, mind-map creation, sketching, prototyping and usability testing of the interactive prototype of the gender responsive STEM mGBL. The results have shown that the effect of the avatar/role model had a positive impact. Therefore, by exposing students (boys and girls) to STEM role models in an mGBL tool is helpful for the decreasing of the gender inequalities in STEM fields.

Keywords: Design thinking, design sprint, gender-responsive STEM education, mobile game based learning, role-models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
289 Design of Multiple Clouds Based Global Performance Evaluation Service Broker System

Authors: Dong-Jae Kang, Nam-Woo Kim, Duk-Joo Son, Sung-In Jung

Abstract:

According to dramatic growth of internet services, an easy and prompt service deployment has been important for internet service providers to successfully maintain time-to-market. Before global service deployment, they have to pay the big cost for service evaluation to make a decision of the proper system location, system scale, service delay and so on. But, intra-Lab evaluation tends to have big gaps in the measured data compared with the realistic situation, because it is very difficult to accurately expect the local service environment, network congestion, service delay, network bandwidth and other factors. Therefore, to resolve or ease the upper problems, we propose multiple cloud based GPES Broker system and use case that helps internet service providers to alleviate the above problems in beta release phase and to make a prompt decision for their service launching. By supporting more realistic and reliable evaluation information, the proposed GPES Broker system saves the service release cost and enables internet service provider to make a prompt decision about their service launching to various remote regions.

Keywords: GPES Broker system, Cloud Service Broker, Multiple Cloud, Global performance evaluation service (GPES), Service provisioning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
288 Diagnostic Investigation of Liftoff Time of Solid Propellant Rockets

Authors: Vignesh Rangaraj, Jerin John, N. Naveen, M. Karuppasamy Pandian, P. Sathyan, V. R. Sanal Kumar

Abstract:

In this paper parametric analytical studies have been carried out to examine the intrinsic flow physics pertaining to the liftoff time of solid propellant rockets. Idealized inert simulators of solid rockets are selected for numerical studies to examining the preignition chamber dynamics. Detailed diagnostic investigations have been carried out using an unsteady two-dimensional k-omega turbulence model. We conjectured from the numerical results that the altered variations of the igniter jet impingement angle, turbulence level, time and location of the first ignition, flame spread characteristics, the overall chamber dynamics including the boundary layer growth history are having bearing on the time for nozzle flow chocking for establishing the required thrust for the rocket liftoff. We concluded that the altered flow choking time of strap-on motors with the pre-determined identical ignition time at the lift off phase will lead to the malfunctioning of the rocket. We also concluded that, in the light of the space debris, an error in predicting the liftoff time can lead to an unfavorable launch window amounts the satellite injection errors and/or the mission failures.

Keywords: Liftoff, Nozzle Choking, Solid Rocket, Takeoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
287 Feasibility Studies through Quantitative Methods: The Revamping of a Tourist Railway Line in Italy

Authors: Armando Cartenì, Ilaria Henke

Abstract:

Recently, the Italian government has approved a new law for public contracts and has been laying the groundwork for restarting a planning phase. The government has adopted the indications given by the European Commission regarding the estimation of the external costs within the Cost-Benefit Analysis, and has been approved the ‘Guidelines for assessment of Investment Projects’. In compliance with the new Italian law, the aim of this research was to perform a feasibility study applying quantitative methods regarding the revamping of an Italian tourist railway line. A Cost-Benefit Analysis was performed starting from the quantification of the passengers’ demand potentially interested in using the revamped rail services. The benefits due to the external costs reduction were also estimated (quantified) in terms of variations (with respect to the not project scenario): climate change, air pollution, noises, congestion, and accidents. Estimations results have been proposed in terms of the Measure of Effectiveness underlying a positive Net Present Value equal to about 27 million of Euros, an Internal Rate of Return much greater the discount rate, a benefit/cost ratio equal to 2 and a PayBack Period of 15 years.

Keywords: Cost-benefit analysis, evaluation analysis, demand management, external cost, transport planning, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829
286 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach

Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi

Abstract:

Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.

Keywords: Co-current, counter current, Euler Lagrange model, heat transfer, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
285 A Post Keynesian Environmental Macroeconomic Model for Agricultural Water Sustainability under Climate Change in the Murray-Darling Basin, Australia

Authors: Ke Zhao, Ballarat Colin Richardson, Jerry Courvisanos, John Crawford

Abstract:

Climate change has profound consequences for the agriculture of south-eastern Australia and its climate-induced water shortage in the Murray-Darling Basin. Post Keynesian Economics (PKE) macro-dynamics, along with Kaleckian investment and growth theory, are used to develop an ecological-economic system dynamics model of this complex nonlinear river basin system. The Murray- Darling Basin Simulation Model (MDB-SM) uses the principles of PKE to incorporate the fundamental uncertainty of economic behaviors of farmers regarding the investments they make and the climate change they face, particularly as regards water ecosystem services. MDB-SM provides a framework for macroeconomic policies, especially for long-term fiscal policy and for policy directed at the sustainability of agricultural water, as measured by socio-economic well-being considerations, which include sustainable consumption and investment in the river basin. The model can also reproduce other ecological and economic aspects and, for certain parameters and initial values, exhibit endogenous business cycles and ecological sustainability with realistic characteristics. Most importantly, MDBSM provides a platform for the analysis of alternative economic policy scenarios. These results reveal the importance of understanding water ecosystem adaptation under climate change by integrating a PKE macroeconomic analytical framework with the system dynamics modelling approach. Once parameterised and supplied with historical initial values, MDB-SM should prove to be a practical tool to provide alternative long-term policy simulations of agricultural water and socio-economic well-being.

Keywords: Agricultural water, Macroeconomic dynamics, Modeling, Investment dynamics, Sustainability, Unemployment, Economics, Keynesian, Kaleckian.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
284 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions

Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren

Abstract:

Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.

Keywords: Fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
283 The Role of Velocity Map Quality in Estimation of Intravascular Pressure Distribution

Authors: Ali Pashaee, Parisa Shooshtari, Gholamreza Atae, Nasser Fatouraee

Abstract:

Phase-Contrast MR imaging methods are widely used for measurement of blood flow velocity components. Also there are some other tools such as CT and Ultrasound for velocity map detection in intravascular studies. These data are used in deriving flow characteristics. Some clinical applications are investigated which use pressure distribution in diagnosis of intravascular disorders such as vascular stenosis. In this paper an approach to the problem of measurement of intravascular pressure field by using velocity field obtained from flow images is proposed. The method presented in this paper uses an algorithm to calculate nonlinear equations of Navier- Stokes, assuming blood as an incompressible and Newtonian fluid. Flow images usually suffer the lack of spatial resolution. Our attempt is to consider the effect of spatial resolution on the pressure distribution estimated from this method. In order to achieve this aim, velocity map of a numerical phantom is derived at six different spatial resolutions. To determine the effects of vascular stenoses on pressure distribution, a stenotic phantom geometry is considered. A comparison between the pressure distribution obtained from the phantom and the pressure resulted from the algorithm is presented. In this regard we also compared the effects of collocated and staggered computational grids on the pressure distribution resulted from this algorithm.

Keywords: Flow imaging, pressure distribution estimation, phantom, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
282 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes

Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng

Abstract:

Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.

Keywords: Anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
281 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory

Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma

Abstract:

Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.

Keywords: Petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
280 Lateral and Longitudinal Vibration of a Rotating Flexible Beam Coupled with Torsional Vibration of a Flexible Shaft

Authors: Khaled Alnefaie

Abstract:

In this study, rotating flexible shaft-disk system having flexible beams is considered as a dynamic system. After neglecting nonlinear terms, torsional vibration of the shaft-disk system and lateral and longitudinal vibration of the flexible beam are still coupled through the motor speed. The system has three natural frequencies; the flexible shaft-disk system torsional natural frequency, the flexible beam lateral and longitudinal natural frequencies. Eigenvalue calculations show that while the shaft speed changes, torsional natural frequency of the shaft-disk system and the beam longitudinal natural frequency are not changing but the beam lateral natural frequency changes. Beam lateral natural frequency stays the same as the nonrotating beam lateral natural frequency ωb until the motor speed ωm is equal to ωb. After then ωb increases and remains equal to the motor speed ωm until the motor speed is equal to the shaft-disk system natural frequency ωT. Then the beam lateral natural frequency ωb becomes equal to the natural frequency ωT and stays same while the motor speed ωm is increased. Modal amplitudes and phase angles of the vibrations are also plotted against the motor speed ωm.

Keywords: Rotor dynamics, beam-shaft coupling, beam vibration, flexible shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3530
279 LFC Design of a Deregulated Power System with TCPS Using PSO

Authors: H. Shayeghi, H.A. Shayanfar, A. Jalili

Abstract:

In the LFC problem, the interconnections among some areas are the input of disturbances, and therefore, it is important to suppress the disturbances by the coordination of governor systems. In contrast, tie-line power flow control by TCPS located between two areas makes it possible to stabilize the system frequency oscillations positively through interconnection, which is also expected to provide a new ancillary service for the further power systems. Thus, a control strategy using controlling the phase angle of TCPS is proposed for provide active control facility of system frequency in this paper. Also, the optimum adjustment of PID controller's parameters in a robust way under bilateral contracted scenario following the large step load demands and disturbances with and without TCPS are investigated by Particle Swarm Optimization (PSO), that has a strong ability to find the most optimistic results. This newly developed control strategy combines the advantage of PSO and TCPS and has simple stricture that is easy to implement and tune. To demonstrate the effectiveness of the proposed control strategy a three-area restructured power system is considered as a test system under different operating conditions and system nonlinearities. Analysis reveals that the TCPS is quite capable of suppressing the frequency and tie-line power oscillations effectively as compared to that obtained without TCPS for a wide range of plant parameter changes, area load demands and disturbances even in the presence of system nonlinearities.

Keywords: LFC, TCPS, Dregulated Power System, PowerSystem Control, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
278 Effect of Relative Permeability on Well Testing Behavior of Naturally Fractured Lean Gas Condensate Reservoirs

Authors: G.H. Montazeri, Z. Dastkhan, H. Aliabadi

Abstract:

Gas condensate Reservoirs show complicated thermodynamic behavior when their pressure reduces to under dew point pressure. Condensate blockage around the producing well cause significant reduction of production rate as well bottom-hole pressure drops below saturation pressure. The main objective of this work was to examine the well test analysis of naturally fractured lean gas condensate reservoir and investigate the effect of condensate formed around the well-bore on behavior of single phase pseudo pressure and its derivative curves. In this work a naturally fractured lean gas condensate reservoir is simulated with compositional simulator. Different sensitivity analysis done on Corry parameters and result of simulator is feed to analytical well testing software. For consideration of these phenomena eighteen compositional models with Capillary number effect are constructed. Matrix relative permeability obeys Corry relative permeability and relative permeability in fracture is linear. Well testing behavior of these models are studied and interpreted. Results show different sensitivity analysis on relative permeability of matrix does not have strong effect on well testing behavior even most part of the matrix around the well is occupied with condensate.

Keywords: Lean gas, fractured condensate reservoir, capillary number, well testing analysis, relative permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
277 Bronchospasm Analysis Following the Implementation of a Program of Maximum Aerobic Exercise in Active Men

Authors: Sajjad Shojaeidoust, Mohsen Ghanbarzadeh, Abdolhamid Habibi

Abstract:

Exercise-induced bronchospasm (EIB) is a transitory condition of airflow obstruction that is associated with physical activities. It is noted that high ventilation can lead to an increase in the heat and reduce in the moisture in airways resistance of trachea. Also causes of pathophysiological mechanism are EIB. Accordingly, studying some parameters of pulmonary function (FVC, FEV1) among active people seems quintessential. The aim of this study was to analyze bronchospasm following the implementation of a program of maximum aerobic exercise in active men at Chamran University of Ahwaz. Method: In this quasi-experimental study, the population consisted of all students at Chamran University. Among from 55 participants, of which, 15 were randomly selected as the experimental group. In this study, the size of the maximum oxygen consumption was initially measured, and then, based on the maximum oxygen consumed, the active individuals were identified. After five minutes’ warm-up, Strand treadmill exercise test was taken (one session) and pulmonary parameters were measured at both pre- and post-tests (spirometer). After data normalization using KS and non-normality of the data, the Wilcoxon test was used to analyze the data. The significance level for all statistical surveys was considered p≤0/05. Results: The results showed that the ventilation factors and bronchospasm (FVC, FEV1) in the pre-test and post-test resulted in no significant difference among the active people (p≥0/05). Discussion and conclusion: Based on the results observed in this study, it appears that pulmonary indices in active individuals increased after aerobic test. The increase in this indicator in active people is due to increased volume and elasticity of the lungs as well. In other words, pulmonary index is affected by rib muscles. It is considered that progress over respiratory muscle strength and endurance has raised FEV1 in the active cases.

Keywords: Bronchospasm, aerobic active maximum, pulmonary function, spirometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
276 Partial Purification of Cytotoxic Peptides against Gastric Cancer Cells from Protein Hydrolysate of Euphorbia hirta Linn.

Authors: S. Yodyingyong, C. Chaichana, C. Nuchsuk, S. Roytrakul, N. P. T-Thienprasert, S. Ratanapo

Abstract:

Protein hydrolysates prepared from a number of medicinal plants are promising sources of various bioactive peptides. In this work, proteins from dried whole plant of Euphorbia hirta Linn. were extracted and digested with pepsin for 12h. The hydrolysates of lesser than 3 KDa were fractionated by a cut-off membrane. The peptide hydrolysate was then purified by an anion-exchange chromatography on DEAE-Sephacel™ column and reverse-phase chromatography on Sep-pak C18 column, respectively. The cytotoxic effect of each peptide fraction against a gastric carcinoma cell line (KATO-III, ATCC No. HTB103) was investigated using colorimetric MTT viability assay. A human liver cell line (Chang Liver, CLS No. 300139) was used as a control normal cell line. Two purified peptide peaks, peak l and peak ll at 100µg peptides mL-1 affected cell viability of the gastric cancer cell lines to 63.85±4.94 and 66.92±6.46%, respectively. Our result showed for the first time that the peptide fractions derived from protein hydrolysate of Euphorbia hirta Linn. have anti-gastric cancer activity, which offers a potential novel and natural anti-gastric cancer remedy.

Keywords: Cytotoxic, peptides, Euphorbia hirta Linn., gastric carcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
275 Evaluation of the Rheological Properties of Bituminous Binders Modified with Biochars Obtained from Various Biomasses by Pyrolysis Method

Authors: Muhammed Ertuğrul Çeloğlu, Mehmet Yılmaz

Abstract:

In this study, apricot seed shell, walnut shell, and sawdust were chosen as biomass sources. The materials were sorted by using a sieve No. 50 and the sieved materials were subjected to pyrolysis process at 400 °C, resulting in three different biochar products. The resulting biochar products were added to the bitumen at three different rates (5%, 10% and 15%), producing modified bitumen. Penetration, softening point, rotation viscometer and dynamic shear rheometer (DSR) tests were conducted on modified binders. Thus the modified bitumen, which was obtained by using additives at 3 different rates obtained from biochar produced at 400 °C temperatures of 3 different biomass sources were compared and the effects of pyrolysis temperature and additive rates were evaluated. As a result of the conducted tests, it was determined that the rheology of the pure bitumen improved significantly as a result of the modification of the bitumen with the biochar. Additionally, with biochar additive, it was determined that the rutting parameter values obtained from softening point, viscometer and DSR tests were increased while the values in terms of penetration and phase angle decreased. It was also observed that the most effective biomass is sawdust while the least effective was ground apricot seed shell.

Keywords: Rheology, biomass, pyrolysis, biochar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
274 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: Wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 866
273 Experimenting the Influence of Input Modality on Involvement Load Hypothesis

Authors: Mohammad Hassanzadeh

Abstract:

As far as incidental vocabulary learning is concerned, the basic contention of the Involvement Load Hypothesis (ILH) is that retention of unfamiliar words is, generally, conditional upon the degree of involvement in processing them. This study examined input modality and incidental vocabulary uptake in a task-induced setting whereby three variously loaded task types (marginal glosses, fill-in-task, and sentence-writing) were alternately assigned to one group of students at Allameh Tabataba’i University (n=2l) during six classroom sessions. While one round of exposure was comprised of the audiovisual medium (TV talk shows), the second round consisted of textual materials with approximately similar subject matter (reading texts). In both conditions, however, the tasks were equivalent to one another. Taken together, the study pursued the dual objectives of establishing a litmus test for the ILH and its proposed values of ‘need’, ‘search’ and ‘evaluation’ in the first place. Secondly, it sought to bring to light the superiority issue of exposure to audiovisual input versus the written input as far as the incorporation of tasks is concerned. At the end of each treatment session, a vocabulary active recall test was administered to measure their incidental gains. Running a one-way analysis of variance revealed that the audiovisual intervention yielded higher gains than the written version even when differing tasks were included. Meanwhile, task 'three' (sentence-writing) turned out the most efficient in tapping learners' active recall of the target vocabulary items. In addition to shedding light on the superiority of audiovisual input over the written input when circumstances are relatively held constant, this study for the most part, did support the underlying tenets of ILH.

Keywords: Evaluation, incidental vocabulary learning, input mode, involvement load hypothesis, need, search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
272 Optimization Based Tuning of Autopilot Gains for a Fixed Wing UAV

Authors: Mansoor Ahsan, Khalid Rafique, Farrukh Mazhar

Abstract:

Unmanned Aerial Vehicles (UAVs) have gained tremendous importance, in both Military and Civil, during first decade of this century. In a UAV, onboard computer (autopilot) autonomously controls the flight and navigation of the aircraft. Based on the aircraft role and flight envelope, basic to complex and sophisticated controllers are used to stabilize the aircraft flight parameters. These controllers constitute the autopilot system for UAVs. The autopilot systems, most commonly, provide lateral and longitudinal control through Proportional-Integral-Derivative (PID) controllers or Phase-lead or Lag Compensators. Various techniques are commonly used to ‘tune’ gains of these controllers. Some techniques used are, in-flight step-by-step tuning, software-in-loop or hardware-in-loop tuning methods. Subsequently, numerous in-flight tests are required to actually ‘fine-tune’ these gains. However, an optimization-based tuning of these PID controllers or compensators, as presented in this paper, can greatly minimize the requirement of in-flight ‘tuning’ and substantially reduce the risks and cost involved in flight-testing.

Keywords: Unmanned aerial vehicle (UAV), autopilot, autonomous controls, PID controler gains tuning, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3609
271 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: Medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
270 Simulation and Parameterization by the Finite Element Method of a C Shape Delectromagnet for Application in the Characterization of Magnetic Properties of Materials

Authors: A. A Velásquez, J.Baena

Abstract:

This article presents the simulation, parameterization and optimization of an electromagnet with the C–shaped configuration, intended for the study of magnetic properties of materials. The electromagnet studied consists of a C-shaped yoke, which provides self–shielding for minimizing losses of magnetic flux density, two poles of high magnetic permeability and power coils wound on the poles. The main physical variable studied was the static magnetic flux density in a column within the gap between the poles, with 4cm2 of square cross section and a length of 5cm, seeking a suitable set of parameters that allow us to achieve a uniform magnetic flux density of 1x104 Gaussor values above this in the column, when the system operates at room temperature and with a current consumption not exceeding 5A. By means of a magnetostatic analysis by the finite element method, the magnetic flux density and the distribution of the magnetic field lines were visualized and quantified. From the results obtained by simulating an initial configuration of electromagnet, a structural optimization of the geometry of the adjustable caps for the ends of the poles was performed. The magnetic permeability effect of the soft magnetic materials used in the poles system, such as low– carbon steel (0.08% C), Permalloy (45% Ni, 54.7% Fe) and Mumetal (21.2% Fe, 78.5% Ni), was also evaluated. The intensity and uniformity of the magnetic field in the gap showed a high dependence with the factors described above. The magnetic field achieved in the column was uniform and its magnitude ranged between 1.5x104 Gauss and 1.9x104 Gauss according to the material of the pole used, with the possibility of increasing the magnetic field by choosing a suitable geometry of the cap, introducing a cooling system for the coils and adjusting the spacing between the poles. This makes the device a versatile and scalable tool to generate the magnetic field necessary to perform magnetic characterization of materials by techniques such as vibrating sample magnetometry (VSM), Hall-effect, Kerr-effect magnetometry, among others. Additionally, a CAD design of the modules of the electromagnet is presented in order to facilitate the construction and scaling of the physical device.

Keywords: Electromagnet, Finite Elements Method, Magnetostatic, Magnetometry, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
269 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)

Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed

Abstract:

High Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20- 60 and 6-18 μg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 μg/ml and for 6S were 0.3672 and 1.2238 μg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.

Keywords: Ginger, 6-gingerol, HPLC, 6-shogaol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3374
268 Design of Direct Power Controller for a High Power Neutral Point Clamped Converter Using Real Time Simulator

Authors: Amin Zabihinejad, Philippe Viarouge

Abstract:

In this paper, a direct power control (DPC) strategies have been investigated in order to control a high power AC/DC converter with time variable load. This converter is composed of a three level three phase neutral point clamped (NPC) converter as rectifier and an H-bridge four quadrant current control converter. In the high power application, controller not only must adjust the desire outputs but also decrease the level of distortions which are injected to the network from the converter. Regarding to this reason and nonlinearity of the power electronic converter, the conventional controllers cannot achieve appropriate responses. In this research, the precise mathematical analysis has been employed to design the appropriate controller in order to control the time variable load. A DPC controller has been proposed and simulated using Matlab/ Simulink. In order to verify the simulation result, a real time simulator- OPAL-RT- has been employed. In this paper, the dynamic response and stability of the high power NPC with variable load has been investigated and compared with conventional types using a real time simulator. The results proved that the DPC controller is more stable and has more precise outputs in comparison with conventional controller.

Keywords: Direct Power Control, Three Level Rectifier, Real Time Simulator, High Power Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
267 A Study on the Effect of Design Factors of Slim Keyboard’s Tactile Feedback

Authors: Kai-Chieh Lin, Chih-Fu Wu, Hsiang Ling Hsu, Yung-Hsiang Tu, Chia-Chen Wu

Abstract:

With the rapid development of computer technology, the design of computers and keyboards moves towards a trend of slimness. The change of mobile input devices directly influences users’ behavior. Although multi-touch applications allow entering texts through a virtual keyboard, the performance, feedback, and comfortableness of the technology is inferior to traditional keyboard, and while manufacturers launch mobile touch keyboards and projection keyboards, the performance has not been satisfying. Therefore, this study discussed the design factors of slim pressure-sensitive keyboards. The factors were evaluated with an objective (accuracy and speed) and a subjective evaluation (operability, recognition, feedback, and difficulty) depending on the shape (circle, rectangle, and L-shaped), thickness (flat, 3mm, and 6mm), and force (35±10g, 60±10g, and 85±10g) of the keyboard. Moreover, MANOVA and Taguchi methods (regarding signal-to-noise ratios) were conducted to find the optimal level of each design factor. The research participants, by their typing speed (30 words/ minute), were divided in two groups. Considering the multitude of variables and levels, the experiments were implemented using the fractional factorial design. A representative model of the research samples were established for input task testing. The findings of this study showed that participants with low typing speed primarily relied on vision to recognize the keys, and those with high typing speed relied on tactile feedback that was affected by the thickness and force of the keys. In the objective and subjective evaluation, a combination of keyboard design factors that might result in higher performance and satisfaction was identified (L-shaped, 3mm, and 60±10g) as the optimal combination. The learning curve was analyzed to make a comparison with a traditional standard keyboard to investigate the influence of user experience on keyboard operation. The research results indicated the optimal combination provided input performance to inferior to a standard keyboard. The results could serve as a reference for the development of related products in industry and for applying comprehensively to touch devices and input interfaces which are interacted with people.

Keywords: Input performance, mobile device, slim keyboard, tactile feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
266 Influence of Gravity on the Performance of Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, H. B. Mehta

Abstract:

Closed Loop Pulsating Heat Pipe (CLPHP) is a passive two-phase heat transfer device having potential to achieve high heat transfer rates over conventional cooling techniques. It is found in electronics cooling due to its outstanding characteristics such as excellent heat transfer performance, simple, reliable, cost effective, compact structure and no external mechanical power requirement etc. Comprehensive understanding of the thermo-hydrodynamic mechanism of CLPHP is still lacking due to its contradictory results available in the literature. The present paper discusses the experimental study on 9 turn CLPHP. Inner and outer diameters of the copper tube are 2 mm and 4 mm respectively. The lengths of the evaporator, adiabatic and condenser sections are 40 mm, 100 mm and 50 mm respectively. Water is used as working fluid. The Filling Ratio (FR) is kept as 50% throughout the investigations. The gravitational effect is studied by placing the evaporator heater at different orientations such as horizontal (90 degree), vertical top (180 degree) and bottom (0 degree) as well as inclined top (135 degree) and bottom (45 degree). Heat input is supplied in the range of 10-50 Watt. Heat transfer mechanism is natural convection in the condenser section. Vacuum pump is used to evacuate the system up to 10-5 bar. The results demonstrate the influence of input heat flux and gravity on the thermal performance of the CLPHP.

Keywords: Closed loop pulsating heat pipe, gravity, heat input, orientation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
265 Modelling of Soil Erosion by Non Conventional Methods

Authors: Ganesh D. Kale, Sheela N. Vadsola

Abstract:

Soil erosion is the most serious problem faced at global and local level. So planning of soil conservation measures has become prominent agenda in the view of water basin managers. To plan for the soil conservation measures, the information on soil erosion is essential. Universal Soil Loss Equation (USLE), Revised Universal Soil Loss Equation 1 (RUSLE1or RUSLE) and Modified Universal Soil Loss Equation (MUSLE), RUSLE 1.06, RUSLE1.06c, RUSLE2 are most widely used conventional erosion estimation methods. The essential drawbacks of USLE, RUSLE1 equations are that they are based on average annual values of its parameters and so their applicability to small temporal scale is questionable. Also these equations do not estimate runoff generated soil erosion. So applicability of these equations to estimate runoff generated soil erosion is questionable. Data used in formation of USLE, RUSLE1 equations was plot data so its applicability at greater spatial scale needs some scale correction factors to be induced. On the other hand MUSLE is unsuitable for predicting sediment yield of small and large events. Although the new revised forms of USLE like RUSLE 1.06, RUSLE1.06c and RUSLE2 were land use independent and they have almost cleared all the drawbacks in earlier versions like USLE and RUSLE1, they are based on the regional data of specific area and their applicability to other areas having different climate, soil, land use is questionable. These conventional equations are applicable for sheet and rill erosion and unable to predict gully erosion and spatial pattern of rills. So the research was focused on development of nonconventional (other than conventional) methods of soil erosion estimation. When these non-conventional methods are combined with GIS and RS, gives spatial distribution of soil erosion. In the present paper the review of literature on non- conventional methods of soil erosion estimation supported by GIS and RS is presented.

Keywords: Conventional methods, GIS, non-conventionalmethods, remote sensing, soil erosion modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4234
264 Incorporation Mechanism of Stabilizing Simulated Lead-Laden Sludge in Aluminum-Rich Ceramics

Authors: Xingwen Lu, Kaimin Shih

Abstract:

This study investigated a strategy of blending lead-laden sludge and Al-rich precursors to reduce the release of metals from the stabilized products. Using PbO as the simulated lead-laden sludge to sinter with γ-Al2O3 by Pb:Al molar ratios of 1:2 and 1:12, PbAl2O4 and PbAl12O19 were formed as final products during the sintering process, respectively. By firing the PbO + γ-Al2O3 mixtures with different Pb/Al molar ratios at 600 to 1000 °C, the lead transformation was determined through X-ray diffraction (XRD) data. In Pb/Al molar ratio of 1/2 system, the formation of PbAl2O4 is initiated at 700 °C, but an effective formation was observed above 750 °C. An intermediate phase, Pb9Al8O21, was detected in the temperature range of 800-900 °C. However, different incorporation behavior for sintering PbO with Al-rich precursors at a Pb/Al molar ratio of 1/12 was observed during the formation of PbAl12O19 in this system. In the sintering process, both temperature and time effect on the formation of PbAl2O4 and PbAl12O19 phases were estimated. Finally, a prolonged leaching test modified from the U.S. Environmental Protection Agency-s toxicity characteristic leaching procedure (TCLP) was used to evaluate the durability of PbO, Pb9Al8O21, PbAl2O4 and PbAl12O19 phases. Comparison for the leaching results of the four phases demonstrated the higher intrinsic resistance of PbAl12O19 against acid attack.

Keywords: Sludge, Lead, Stabilization, Leaching behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
263 Characterization of Penicillin V Acid and Its Related Compounds by HPLC

Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul

Abstract:

Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.

Keywords: Penicillin V acid, characterization, related substances, HPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
262 Unsteady Natural Convection in a Square Cavity Partially Filled with Porous Media Using a Thermal Non-Equilibrium Model

Authors: Ammar Alsabery, Habibis Saleh, Norazam Arbin, Ishak Hashim

Abstract:

Unsteady natural convection and heat transfer in a square cavity partially filled with porous media using a thermal non-equilibrium model is studied in this paper. The left vertical wall is maintained at a constant hot temperature Th and the right vertical wall is maintained at a constant cold temperature Tc, while the horizontal walls are adiabatic. The governing equations are obtained by applying the Darcy model and Boussinesq approximation. COMSOL’s finite element method is used to solve the non-dimensional governing equations together with specified boundary conditions. The governing parameters of this study are the Rayleigh number (Ra = 10^5, and Ra = 10^6 ), Darcy namber (Da = 10^−2, and Da = 10^−3), the modified thermal conductivity ratio (10^−1 ≤ γ ≤ 10^4), the inter-phase heat transfer coefficien (10^−1 ≤ H ≤ 10^3) and the time dependent (0.001 ≤ τ ≤ 0.2). The results presented for values of the governing parameters in terms of streamlines in both fluid/porous-layer, isotherms of fluid in fluid/porous-layer, isotherms of solid in porous layer, and average Nusselt number.

Keywords: Unsteady natural convection, Thermal non-equilibrium model, Darcy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
261 PSS with Multiple FACTS Controllers Coordinated Design and Real-Time Implementation Using Advanced Adaptive PSO

Authors: Rajendraprasad Narne, P. C. Panda

Abstract:

In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.

Keywords: Advanced adaptive particle swarm optimization, Coordinated design, Power system stabilizer, Real-time implementation, static var compensator, Thyristor controlled series capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540