Search results for: optimum parameters
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4340

Search results for: optimum parameters

4310 Determination of the Proper Quality Costs Parameters via Variable Step Size Steepest Descent Algorithm

Authors: Danupun Visuwan, Pongchanun Luangpaiboon

Abstract:

This paper presents the determination of the proper quality costs parameters which provide the optimum return. The system dynamics simulation was applied. The simulation model was constructed by the real data from a case of the electronic devices manufacturer in Thailand. The Steepest Descent algorithm was employed to optimise. The experimental results show that the company should spend on prevention and appraisal activities for 850 and 10 Baht/day respectively. It provides minimum cumulative total quality cost, which is 258,000 Baht in twelve months. The effect of the step size in the stage of improving the variables to the optimum was also investigated. It can be stated that the smaller step size provided a better result with more experimental runs. However, the different yield in this case is not significant in practice. Therefore, the greater step size is recommended because the region of optima could be reached more easily and rapidly.

Keywords: Quality costs, Steepest Descent Algorithm, StepSize, System Dynamics Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
4309 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
4308 Optimum Control Strategy of Three-Phase Shunt Active Filter System

Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu, Vlad Suru

Abstract:

The aim of this paper is to identify an optimum control strategy of three-phase shunt active filters to minimize the total harmonic distortion factor of the supply current. A classical PIPI cascade control solution of the output current of the active filterand the voltage across the DC capacitor based on Modulus–Optimum criterion is taken into consideration. The control system operation has been simulated using Matlab-Simulink environment and the results agree with the theoretical expectation. It is shown that there is an optimum value of the DC-bus voltage which minimizes the supply current harmonic distortion factor. It corresponds to the equality of the apparent power at the output of the active filter and the apparent power across the capacitor. Finally, predicted results are verified experimentally on a MaxSine active power filter.

Keywords: Active filtering, Controller tuning, Modulus Optimum criterion, Optimum control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
4307 Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System

Authors: Ghazi Al Sukkar, Yazid Khattabi, Shifen Zhong

Abstract:

Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters.

Keywords: OFDM, Mach Zehnder Bias Voltage, switching voltage, radio-over-fiber, RF gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
4306 Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA

Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil

Abstract:

A modified Genetic Algorithm (GA) based optimal selection of parameters for Automatic Generation Control (AGC) of multi-area electric energy systems is proposed in this paper. Simulations on multi-area reheat thermal system with and without consideration of nonlinearity like governor dead band followed by 1% step load perturbation is performed to exemplify the optimum parameter search. In this proposed method, a modified Genetic Algorithm is proposed where one point crossover with modification is employed. Positional dependency in respect of crossing site helps to maintain diversity of search point as well as exploitation of already known optimum value. This makes a trade-off between exploration and exploitation of search space to find global optimum in less number of generations. The proposed GA along with decomposition technique as developed has been used to obtain the optimum megawatt frequency control of multi-area electric energy systems. Time-domain simulations are conducted with trapezoidal integration along with decomposition technique. The superiority of the proposed method over existing one is verified from simulations and comparisons.

Keywords: Automatic Generation Control (AGC), Reheat, Proportional Integral (PI) controller, Dead Band, Genetic Algorithm(GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
4305 Optimum Design of Pressure Vessel Subjected to Autofrettage Process

Authors: Abu Rayhan Md. Ali, Nidul Ch. Ghosh, Tanvir-E-Alam

Abstract:

The effect of autofrettage process in strain hardened thick-walled pressure vessels has been investigated theoretically by finite element modeling. Equivalent von Mises stress is used as yield criterion to evaluate the optimum autofrettage pressure and the optimum radius of elastic-plastic junction. It has been observed that the optimum autofrettage pressure increases along with the working pressure. For two different working pressures, the effect of the ratio of outer to inner radius (b/a=k) value on the optimum autofrettage pressure is also noticed. The Optimum autofrettage pressure solely depends on K value rather than on the inner or outer radius. Furthermore, percentage reduction of von Mises stresses is compared for different working pressures and different k values. Maximum von Mises stress developed at different autofrettage pressure is equated for elastic perfectly plastic and elastic-plastic material with different slope of strain hardening segment. Cylinder material having higher slope of strain hardening segment provides better benedictions in the autofrettage process.

Keywords: Autofrettage, elastic plastic junction, pressure vessel, von Mises stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3765
4304 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration

Authors: Soltani Amir, Hu Jiaxin

Abstract:

Determination of optimal parameters of a passive  control system device is the primary objective of this study.  Expanding upon the use of control devices in wind and earthquake  hazard reduction has led to development of various control systems.  The advantage of non-linearity characteristics in a passive control  device and the optimal control method using LQR algorithm are  explained in this study. Finally, this paper introduces a simple  approach to determine optimum parameters of a nonlinear viscous  damper for vibration control of structures. A MATLAB program is  used to produce the dynamic motion of the structure considering the  stiffness matrix of the SDOF frame and the non-linear damping  effect. This study concluded that the proposed system (variable  damping system) has better performance in system response control  than a linear damping system. Also, according to the energy  dissipation graph, the total energy loss is greater in non-linear  damping system than other systems.

 

Keywords: Passive Control System, Damping Devices, Viscous Dampers, Control Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542
4303 PID Parameter Optimization of an UAV Longitudinal Flight Control System

Authors: Kamran Turkoglu, Ugur Ozdemir, Melike Nikbay, Elbrous M. Jafarov

Abstract:

In this paper, an automatic control system design based on Integral Squared Error (ISE) parameter optimization technique has been implemented on longitudinal flight dynamics of an UAV. It has been aimed to minimize the error function between the reference signal and the output of the plant. In the following parts, objective function has been defined with respect to error dynamics. An unconstrained optimization problem has been solved analytically by using necessary and sufficient conditions of optimality, optimum PID parameters have been obtained and implemented in control system dynamics.

Keywords: Optimum Design, KKT Conditions, UAV, Longitudinal Flight Dynamics, ISE Parameter Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3696
4302 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
4301 Statistical Optimization of Process Conditions for Disinfection of Water Using Defatted Moringa oleifera Seed Extract

Authors: Suleyman A. Muyibi, Munirat, A. Idris, Saedi Jami, Parveen Jamal, Mohd Ismail Abdul Karim

Abstract:

In this study, statistical optimization design was used to study the optimum disinfection parameters using defatted crude Moringa oleifera seed extracts against Escherichia coli (E. coli) bacterial cells. The classical one-factor-at-a-time (OFAT) and response surface methodology (RSM) was used. The possible optimum range of dosage, contact time and mixing rate from the OFAT study were 25mg/l to 200mg/l, 30minutes to 240 minutes and 100rpm to 160rpm respectively. Analysis of variance (ANOVA) of the statistical optimization using faced centered central composite design showed that dosage, contact time and mixing rate were highly significant. The optimum disinfection range was 125mg/l, at contact time of 30 minutes with mixing rate of 120 rpm. 

Keywords: E.coli, disinfection, Moringa oleifera, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538
4300 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: Mechatronic systems, Matlab GUI, sensitivity, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
4299 Prediction of Optimum Cutting Parameters to obtain Desired Surface in Finish Pass end Milling of Aluminium Alloy with Carbide Tool using Artificial Neural Network

Authors: Anjan Kumar Kakati, M. Chandrasekaran, Amitava Mandal, Amit Kumar Singh

Abstract:

End milling process is one of the common metal cutting operations used for machining parts in manufacturing industry. It is usually performed at the final stage in manufacturing a product and surface roughness of the produced job plays an important role. In general, the surface roughness affects wear resistance, ductility, tensile, fatigue strength, etc., for machined parts and cannot be neglected in design. In the present work an experimental investigation of end milling of aluminium alloy with carbide tool is carried out and the effect of different cutting parameters on the response are studied with three-dimensional surface plots. An artificial neural network (ANN) is used to establish the relationship between the surface roughness and the input cutting parameters (i.e., spindle speed, feed, and depth of cut). The Matlab ANN toolbox works on feed forward back propagation algorithm is used for modeling purpose. 3-12-1 network structure having minimum average prediction error found as best network architecture for predicting surface roughness value. The network predicts surface roughness for unseen data and found that the result/prediction is better. For desired surface finish of the component to be produced there are many different combination of cutting parameters are available. The optimum cutting parameter for obtaining desired surface finish, to maximize tool life is predicted. The methodology is demonstrated, number of problems are solved and algorithm is coded in Matlab®.

Keywords: End milling, Surface roughness, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
4298 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams

Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis

Abstract:

This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.

Keywords: Earth dams, flow, moisture content, slope stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
4297 An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy

Authors: Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh

Abstract:

Tungsten Inert Gas (TIG) welding is a high quality welding process used to weld the thin metals and their alloy. 5083 Aluminium alloys play an important role in engineering and metallurgy field because of excellent corrosion properties, ease of fabrication and high specific strength coupled with best combination of toughness and formability.

TIG welding technique is one of the precise and fastest processes used in aerospace, ship and marine industries. TIG welding process is used to analyze the data and evaluate the influence of input parameters on tensile strength of 5083 Al-alloy specimens with dimensions of 100mm long x 15mm wide x 5mm thick. Welding current (I), gas flow rate (G) and welding speed (S) are the input parameters which effect tensile strength of 5083 Al-alloy welded joints. As welding speed increased, tensile strength increases first till optimum value and after that both decreases by increasing welding speed further. Results of the study show that maximum tensile strength of 129 MPa of weld joint are obtained at welding current of 240 Amps, gas flow rate of 7 Lt/min and welding speed of 98 mm/min. These values are the optimum values of input parameters which help to produce efficient weld joint that have good mechanical properties as a tensile strength.

Keywords: 5083 Aluminium alloy, Gas flow rate, TIG welding, Welding current, Welding speed and Tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4033
4296 Optimization of the Transfer Molding Process by Implementation of Online Monitoring Techniques for Electronic Packages

Authors: Burcu Kaya, Jan-Martin Kaiser, Karl-Friedrich Becker, Tanja Braun, Klaus-Dieter Lang

Abstract:

Quality of the molded packages is strongly influenced by the process parameters of the transfer molding. To achieve a better package quality and a stable transfer molding process, it is necessary to understand the influence of the process parameters on the package quality. This work aims to comprehend the relationship between the process parameters, and to identify the optimum process parameters for the transfer molding process in order to achieve less voids and wire sweep. To achieve this, a DoE is executed for process optimization and a regression analysis is carried out. A systematic approach is represented to generate models which enable an estimation of the number of voids and wire sweep. Validation experiments are conducted to verify the model and the results are presented.

Keywords: Epoxy molding compounds, optimization, regression analysis, transfer molding process, voids, wire sweep.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
4295 Evaluation of a PSO Approach for Optimum Design of a First-Order Controllers for TCP/AQM Systems

Authors: Sana Testouri, Karim Saadaoui, Mohamed Benrejeb

Abstract:

This paper presents a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a firstorder controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is implemented in the Network Simulator NS-2 and compared with the PI controller.

Keywords: AQM, first-order controller, time delay, stability, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
4294 A Novel Computer Vision Method for Evaluating Deformations of Fibers Cross Section in False Twist Textured Yarns

Authors: Dariush Semnani, Mehdi Ahangareianabhari, Hossein Ghayoor

Abstract:

In recent five decades, textured yarns of polyester fiber produced by false twist method are the most important and mass-produced manmade fibers. There are many parameters of cross section which affect the physical and mechanical properties of textured yarns. These parameters are surface area, perimeter, equivalent diameter, large diameter, small diameter, convexity, stiffness, eccentricity, and hydraulic diameter. These parameters were evaluated by digital image processing techniques. To find trends between production criteria and evaluated parameters of cross section, three criteria of production line have been adjusted and different types of yarns were produced. These criteria are temperature, drafting ratio, and D/Y ratio. Finally the relations between production criteria and cross section parameters were considered. The results showed that the presented technique can recognize and measure the parameters of fiber cross section in acceptable accuracy. Also, the optimum condition of adjustments has been estimated from results of image analysis evaluation.

Keywords: Computer Vision, Cross Section Analysis, Fibers Deformation, Textured Yarn

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
4293 Studies on Determination of the Optimum Distance Between the Tmotes for Optimum Data Transfer in a Network with WLL Capability

Authors: N C Santhosh Kumar, N K Kishore

Abstract:

Using mini modules of Tmotes, it is possible to automate a small personal area network. This idea can be extended to large networks too by implementing multi-hop routing. Linking the various Tmotes using Programming languages like Nesc, Java and having transmitter and receiver sections, a network can be monitored. It is foreseen that, depending on the application, a long range at a low data transfer rate or average throughput may be an acceptable trade-off. To reduce the overall costs involved, an optimum number of Tmotes to be used under various conditions (Indoor/Outdoor) is to be deduced. By analyzing the data rates or throughputs at various locations of Tmotes, it is possible to deduce an optimal number of Tmotes for a specific network. This paper deals with the determination of optimum distances to reduce the cost and increase the reliability of the entire sensor network with Wireless Local Loop (WLL) capability.

Keywords: Average throughput, data rate, multi-hop routing, optimum data transfer, throughput, Tmotes, wireless local loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
4292 Statistical Optimization of Process Variables for Direct Fermentation of 226 White Rose Tapioca Stem to Ethanol by Fusarium oxysporum

Authors: A. Magesh, B. Preetha, T. Viruthagiri

Abstract:

Direct fermentation of 226 white rose tapioca stem to ethanol by Fusarium oxysporum was studied in a batch reactor. Fermentation of ethanol can be achieved by sequential pretreatment using dilute acid and dilute alkali solutions using 100 mesh tapioca stem particles. The quantitative effects of substrate concentration, pH and temperature on ethanol concentration were optimized using a full factorial central composite design experiment. The optimum process conditions were then obtained using response surface methodology. The quadratic model indicated that substrate concentration of 33g/l, pH 5.52 and a temperature of 30.13oC were found to be optimum for maximum ethanol concentration of 8.64g/l. The predicted optimum process conditions obtained using response surface methodology was verified through confirmatory experiments. Leudeking-piret model was used to study the product formation kinetics for the production of ethanol and the model parameters were evaluated using experimental data.

Keywords: Fusarium oxysporum, Lignocellulosic biomass, Product formation kinetics, Statistical experimental design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
4291 An Experimental Study on the Effect of Premixed and Equivalence Ratios on CO and HC Emissions of Dual Fuel HCCI Engine

Authors: M. Ghazikhani, M. R. Kalateh, Y. K. Toroghi, M. Dehnavi

Abstract:

In this study, effects of premixed and equivalence ratios on CO and HC emissions of a dual fuel HCCI engine are investigated. Tests were conducted on a single-cylinder engine with compression ratio of 17.5. Premixed gasoline is provided by a carburetor connected to intake manifold and equipped with a screw to adjust premixed air-fuel ratio, and diesel fuel is injected directly into the cylinder through an injector at pressure of 250 bars. A heater placed at inlet manifold is used to control the intake charge temperature. Optimal intake charge temperature results in better HCCI combustion due to formation of a homogeneous mixture, therefore, all tests were carried out over the optimum intake temperature of 110-115 ºC. Timing of diesel fuel injection has a great effect on stratification of in-cylinder charge and plays an important role in HCCI combustion phasing. Experiments indicated 35 BTDC as the optimum injection timing. Varying the coolant temperature in a range of 40 to 70 ºC, better HCCI combustion was achieved at 50 ºC. Therefore, coolant temperature was maintained 50 ºC during all tests. Simultaneous investigation of effective parameters on HCCI combustion was conducted to determine optimum parameters resulting in fast transition to HCCI combustion. One of the advantages of the method studied in this study is feasibility of easy and fast transition of typical diesel engine to a dual fuel HCCI engine. Results show that increasing premixed ratio, while keeping EGR rate constant, increases unburned hydrocarbon (UHC) emissions due to quenching phenomena and trapping of premixed fuel in crevices, but CO emission decreases due to increase in CO to CO2 reactions.

Keywords: Dual fuel HCCI engine, premixed ratio, equivalenceratio, CO and UHC emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1862
4290 Photocatalytic Detoxification Method for Zero Effluent Discharge in Dairy Industry: Effect of Operational Parameters

Authors: Janhavi Inamdar, S.K. Singh

Abstract:

Laboratory experiments have been performed to investigate photocatalytic detoxification by using TiO2 photocatalyst for treating dairy effluent. Various operational parameters such as catalyst concentration, initial concentration, angle of tilt of solar flat plate reactor and flow rate were investigated. Results indicated that the photocatalytic detoxification process can efficiently treat dairy effluent. Experimental runs with dairy wastewater can be used to identify the optimum operational parameters to perform wastewater degradation on large scale for recycling purpose. Also effect of two different types of reactors on degradation process was analyzed.

Keywords: Photocatalytic detoxification, TiO2 photocatalyst, solar flat plate reactor, Zero effluent discharge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
4289 Performance Improvement of a Supersonic External Compression Inlet by Heat Source Addition

Authors: Mohammad Reza Soltani, Mohammad Farahani, Javad Sepahi Younsi

Abstract:

Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the effects of position, size, and shape on the inlet performance were studied. It is found that the thermal source deflects the flow streamlines. By improper location of the thermal source, the optimum condition has been obtained. For the optimum condition, the drag coefficient is considerably reduced and the inlet mass flow rate and its efficiency have been increased slightly. The optimum shape of the heat source is obtained too.

Keywords: Drag coefficient, heat source, performanceparameters, supersonic inlet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
4288 Design Optimization of Cutting Parameters when Turning Inconel 718 with Cermet Inserts

Authors: M. Aruna, V. Dhanalaksmi

Abstract:

Inconel 718, a nickel based super-alloy is an extensively used alloy, accounting for about 50% by weight of materials used in an aerospace engine, mainly in the gas turbine compartment. This is owing to their outstanding strength and oxidation resistance at elevated temperatures in excess of 5500 C. Machining is a requisite operation in the aircraft industries for the manufacture of the components especially for gas turbines. This paper is concerned with optimization of the surface roughness when turning Inconel 718 with cermet inserts. Optimization of turning operation is very useful to reduce cost and time for machining. The approach is based on Response Surface Method (RSM). In this work, second-order quadratic models are developed for surface roughness, considering the cutting speed, feed rate and depth of cut as the cutting parameters, using central composite design. The developed models are used to determine the optimum machining parameters. These optimized machining parameters are validated experimentally, and it is observed that the response values are in reasonable agreement with the predicted values.

Keywords: Inconel 718, Optimization, Response Surface Methodology (RSM), Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2799
4287 On Optimum Stratification

Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao

Abstract:

In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.

Keywords: Auxiliary variable, Dynamic programming technique, Nonlinear programming problem, Optimum stratification, Uniform distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
4286 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand occurs during summer months. Jordan can be regarded with a relatively high potential for wastewater recycling and reuse. The main purpose of this paper was to investigate the removal of total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill wastewater (OMW) by electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes, the optimum working pH was found to be around 6. Results indicated that the electrocoagulation process allowed removal of TSS and COD of about 82.5% and 47.5%, respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. It was demonstrated that the maximum TSS and COD removals were obtained at some optimum experimental parameters for current density, pH, and reaction time.

Keywords: Olive Mill Wastewater, Electrode, Electrocoagulation (EC), TSS, COD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2689
4285 A Chaotic Study on Tremor Behavior of Parkinsonian Patients under Deep Brain Stimulation

Authors: M. Sadeghi, A.H. Jafari, S.M.P. Firoozabadi

Abstract:

Deep Brain Stimulation or DBS is a surgical treatment for Parkinson-s Disease with three stimulation parameters: frequency, pulse width, and voltage. The parameters should be selected appropriately to achieve effective treatment. This selection now, performs clinically. The aim of this research is to study chaotic behavior of recorded tremor of patients under DBS in order to present a computational method to recognize stimulation optimum voltage. We obtained some chaotic features of tremor signal, and discovered embedding space of it has an attractor, and its largest Lyapunov exponent is positive, which show tremor signal has chaotic behavior, also we found out, in optimal voltage, entropy and embedding space variance of tremor signal have minimum values in comparison with other voltages. These differences can help neurologists recognize optimal voltage numerically, which leads to reduce patients' role and discomfort in optimizing stimulation parameters and to do treatment with high accuracy.

Keywords: Chaos, Deep Brain Stimulation, Parkinson's Disease, Stimulation Parameters, tremor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
4284 Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)

Authors: S. M. Ali, N. R. Dhar

Abstract:

Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network with twenty five hidden neurons has been selected as the optimum network. The co-efficient of determination (R2) between model predictions and experimental values are 0.9915, 0.9906, 0.9761 and 0.9627 in terms of VB, VM, VS and Ra respectively. The results imply that the model can be used easily to forecast tool wear and surface roughness in response to cutting parameters.

Keywords: ANN, MQL, Surface Roughness, Tool Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3820
4283 Application of 0-1 Fuzzy Programming in Optimum Project Selection

Authors: S. Sadi-Nezhad, K. Khalili Damghani, N. Pilevari

Abstract:

In this article, a mathematical programming model for choosing an optimum portfolio of investments is developed. The investments are considered as investment projects. The uncertainties of the real world are associated through fuzzy concepts for coefficients of the proposed model (i. e. initial investment costs, profits, resource requirement, and total available budget). Model has been coded by using LINGO 11.0 solver. The results of a full analysis of optimistic and pessimistic derivative models are promising for selecting an optimum portfolio of projects in presence of uncertainty.

Keywords: Fuzzy Programming, Fuzzy Knapsack, FuzzyCapital Budgeting, Fuzzy Project Selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
4282 A Study on the Quality of Hexapod Machine Tool's Workspace

Authors: D. Karimi, M.J. Nategh

Abstract:

One of the main concerns about parallel mechanisms is the presence of singular points within their workspaces. In singular positions the mechanism gains or loses one or several degrees of freedom. It is impossible to control the mechanism in singular positions. Therefore, these positions have to be avoided. This is a vital need especially in computer controlled machine tools designed and manufactured on the basis of parallel mechanisms. This need has to be taken into consideration when selecting design parameters. A prerequisite to this is a thorough knowledge about the effect of design parameters and constraints on singularity. In this paper, quality condition index was introduced as a criterion for evaluating singularities of different configurations of a hexapod mechanism obtainable by different design parameters. It was illustrated that this method can effectively be employed to obtain the optimum configuration of hexapod mechanism with the aim of avoiding singularity within the workspace. This method was then employed to design the hexapod table of a CNC milling machine.

Keywords: Hexapod, Machine Tool, Singularity, Workspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
4281 Process Parameters Optimization for Pulsed TIG Welding of 70/30 Cu-Ni Alloy Welds Using Taguchi Technique

Authors: M. P. Chakravarthy, N. Ramanaiah, B. S. K.Sundara Siva Rao

Abstract:

Taguchi approach was applied to determine the most influential control factors which will yield better tensile strength of the joints of pulse TIG welded 70/30 Cu-Ni alloy. In order to evaluate the effect of process parameters such as pulse frequency, peak current, base current and welding speed on tensile strength of Pulsed current TIG welded 70/30 Cu-Ni alloy of 5 mm thickness, Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined at 95% confidence level. The results indicate that the Pulse frequency, peak current, welding speed and base current are the significant parameters in deciding the tensile strength of the joint. The predicted optimal values of tensile strength of Pulsed current Gas tungsten arc welding (PC GTAW) of 70/30 Cu-Ni alloy welds are 368.8MPa.

Keywords: 70/30 Cu-Ni alloy, pulsed current GTAW, mechanical properties, Taguchi technique, analysis of variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3102