Search results for: micro emulsion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 687

Search results for: micro emulsion

567 Optimization of Propulsion in Flapping Micro Air Vehicles Using Genetic Algorithm Method

Authors: Mahdi Abolfazli, Ebrahim Barati, Hamid Reza Karbasian

Abstract:

In this paper the kinematic parameters of a regular Flapping Micro Air Vehicle (FMAV) is investigated. The optimization is done using multi-objective Genetic algorithm method. It is shown that the maximum propulsive efficiency is occurred on the Strouhal number of 0.2-0.3 and foil-pitch amplitude of 15°-30°. Furthermore, increasing pitch amplitude with respect to power optimization increases the thrust slightly until pitch amplitude around 30°, and then the trust is increased notably with increasing of pitch amplitude. Additionally, the maximum mean thrust coefficient is computed of 2.67 and propulsive efficiency for this value is 42%. Based on the thrust optimization, the maximum propulsive efficiency is acquired 54% while the mean thrust coefficient is 2.18 at the same propulsive efficiency. Consequently, the maximum propulsive efficiency is obtained 77% and the appropriate Strouhal number, pitch amplitude and phase difference between heaving and pitching are calculated of 0.27, 31° and 77°, respectively.

Keywords: Flapping foil propulsion, Genetic algorithm, Micro Air Vehicle (MAV), Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
566 Design of Compliant Mechanism Based Microgripper with Three Finger Using Topology Optimization

Authors: R. Bharanidaran, B. T. Ramesh

Abstract:

High precision in motion is required to manipulate the micro objects in precision industries for micro assembly, cell manipulation etc. Precision manipulation is achieved based on the appropriate mechanism design of micro devices such as microgrippers. Design of a compliant based mechanism is the better option to achieve a highly precised and controlled motion. This research article highlights the method of designing a compliant based three fingered microgripper suitable for holding asymmetric objects. Topological optimization technique, a systematic method is implemented in this research work to arrive a topologically optimized design of the mechanism needed to perform the required micro motion of the gripper. Optimization technique has a drawback of generating senseless regions such as node to node connectivity and staircase effect at the boundaries. Hence, it is required to have post processing of the design to make it manufacturable. To reduce the effect of post processing stage and to preserve the edges of the image, a cubic spline interpolation technique is introduced in the MATLAB program. Structural performance of the topologically developed mechanism design is tested using finite element method (FEM) software. Further the microgripper structure is examined to find its fatigue life and vibration characteristics.

Keywords: Compliant mechanism, Cubic spline interpolation, FEM, Topology optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3539
565 Effect of Different Types of Nano/Micro Fillers on the Interfacial Shear Properties of Polyamide 6 with De-Sized Carbon Fiber

Authors: Mohamed H. Gabr, Kiyoshi Uzawa

Abstract:

The current study aims to investigate the effect of fillers with different geometries and sizes on the interfacial shear properties of PA6 composites with de-sized carbon fiber. The fillers which have been investigated are namely; nano-layer silicates (nanoclay), sub-micro aluminum titanium (ALTi) particles, and multiwall carbon nanotube (MWCNT). By means of X-ray photoelectron spectroscopy (XPS), epoxide group which defined as a sizing agent, has been removed. Sizing removal can reduce the acid parameter of carbon fibers surface promoting bonding strength at the fiber/matrix interface which is a desirable property for the carbon fiber composites. Microdroplet test showed that the interfacial shear strength (IFSS) has been enhanced with the addition of 10wt% ALTi by about 23% comparing with neat PA6. However, with including other types of fillers into PA6, the results did not show enhancement of IFSS.

Keywords: Sub-micro-filler, nano-composites, interfacial shear strength, polyamide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
564 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel

Authors: M. I. Equbal, R.K. Ohdar, B. Singh, P. Talukdar

Abstract:

Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Microalloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.

Keywords: Cooling rate, Hot forging, Micro-alloyed, Ring compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3624
563 Experimental Investigation of Surface Roughness Effect on Single Phase Fluid Flow and Heat Transfer in Micro-Tube

Authors: Mesbah. M. Salem, Mohamed. H. Elhsnawi, Saleh B. Mohamed

Abstract:

An experimental investigation was conducted to study the effect of surface roughness on friction factor and heat transfer characteristics in single-phase fluid flow in a stainless steel micro-tube having diameter of 0.85 mm and average internal surface roughness of 1.7 μm with relative surface roughness of 0.002. Distilled water and R134a liquids were used as the working fluids and testing was conducted with Reynolds numbers ranging from 100 to 10,000 covering laminar, transition and turbulent flow conditions. The experiments were conducted with the micro-tube oriented horizontally with uniform heat fluxes applied at the test section. The results indicated that the friction factor of both water and R134a can be predicted by the Hagen-Poiseuille equation for laminar flow and the modified Miller correlation for turbulent flow and early transition from laminar to turbulent flows. The heat transfer results of water and R134a were in good agreement with the conventional theory in the laminar flow region and lower than the Adam’s correlation for turbulent flow region which deviates from conventional theory.

Keywords: Pressure drop, heat transfer, distilled water, R134a, micro-tube, laminar and turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3821
562 Machining of FRP Composites by Abrasive Jet Machining Optimization Using Taguchi

Authors: D. V. Srikanth, M. Sreenivasa Rao

Abstract:

Abrasive Jet Machining is an Unconventional machining process in which the metal is removed from brittle and hard material in the form of micro-chips. With increase in need of materials like ceramics, composites, in manufacturing of various Mechanical & Electronic components, AJM has become a useful technique for micro machining. The present study highlights the influence of different parameters like Pressure, SOD, Time, Abrasive grain size, nozzle diameter on the Metal removal of FRP (Fiber Reinforced Polymer) composite by Abrasive jet machining. The results of the Experiments conducted were analyzed and optimized with TAGUCHI method of Optimization and ANOVA for Optimal Value.

Keywords: ANOVA, FRP Composite, AJC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
561 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties

Authors: Petr Homola, Roman Růžek

Abstract:

Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.

Keywords: Fatigue, fracture surface, laser beam micro-drilling, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
560 Impact of Foliar Application of Zinc on Micro and Macro Elements Distribution in Phyllanthus amarus

Authors: Nguyen Cao Nguyen, Krasimir I. Ivanov, Penka S. Zapryanova

Abstract:

The present study was carried out to investigate the interaction of foliar applied zinc with other elements in Phyllanthus amarus plants. The plant samples for our experiment were collected from Lam Dong province, Vietnam. Seven suspension solutions of nanosized zinc hydroxide nitrate (Zn5(OH)8(NO3)2·2H2O) with different Zn concentration were used. Fertilization and irrigation were the same for all variants. The Zn content and the content of selected micro (Cu, Fe, Mn) and macro (Ca, Mg, P and K) nutrients in plant roots, and stems and leaves were determined. It was concluded that the zinc content of plant roots varies narrowly, with no significant impact of ZnHN fertilization. The same trend can be seen in the content of Cu, Mn, and macronutrients. The zinc content of plant stems and leaves varies within wide limits, with the significant impact of ZnHN fertilization. The trends in the content of Cu, Mn, and macronutrients are kept the same as in the root, whereas the iron trends to increase its content at increasing the zinc content.

Keywords: Zinc fertilizers, micro and macro elements, Phyllanthus amarus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 545
559 Correlation between Heat Treatment, Microstructure and Properties of Trip-Assisted Steels

Authors: A. Talapatra, N. R. Bandhyopadhyay, J. Datta

Abstract:

In the present study, two TRIP-assisted steels were designated as A (having no Cr and Cu content) and B (having higher Ni, Cr and Cu content) heat treated under different conditions, and the correlation between its heat treatment, microstructure and properties were investigated. Micro structural examination was carried out by optical microscope and scanning electron microscope after electrolytic etching. Non-destructive electrochemical and ultrasonic testing on two TRIP-assisted steels was used to find out corrosion and mechanical properties of different alter microstructure phase’s steels. Furthermore, micro structural studies accompanied by the evaluation of mechanical properties revealed that steels having martensite phases with higher corrosive and hardness value were less sound velocity and also steel’s microstructure having finer grains that was more grain boundary was less corrosion resistance. Steel containing more Cu, Ni and Cr was less corrosive compared to other steels having same processing or microstructure.

Keywords: TRIP-assisted steels, heat treatment, corrosion, electrochemical techniques, micro-structural characterization, non-destructive (ultrasonic) technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968
558 Factors Determining the Women Empowerment through Microfinance: An Empirical Study in Sri Lanka

Authors: Y. Rathiranee, D. M. Semasinghe

Abstract:

This study attempts to identify the factors influencing on women empowerment of rural area in Sri Lanka through micro finance services. Data were collected from one hundred (100) rural women involving self-employment activities through a questionnaire using direct personal interviews. Judgment and Convenience Random sampling technique was used to select the sample size from three Divisional Secretariat divisions of Kandawalai, Poonakari and Karachchi in Kilinochchi District. The factor analysis was performed on fourteen (14) variables for screening and reducing the variables to identify the influencing factors on empowerment. Multiple regression analysis was used to identify the relationship between the three empowerment factors and the impact of micro finance on overall empowerment of rural women. The result of this study summarized the variables into three factors namely decision making, freedom to mobility and family support and which are positively associated with empowerment. In addition to this the value of adjusted R2 is 0.248 indicates that all the variables extracted can be explained 24.8% of the variation in the women empowerment through microfinance. Independent variables of these three factors have positive correlation with women empowerment as well as significant values at 5 percent level.

Keywords: Influencing factors, Micro finance, rural women and women empowerment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3898
557 Design of Wireless Readout System for Resonant Gas Sensors

Authors: S. Mohamed Rabeek, Mi Kyoung Park, M. Annamalai Arasu

Abstract:

This paper presents a design of a wireless read out system for tracking the frequency shift of the polymer coated piezoelectric micro electromechanical resonator due to gas absorption. The measure of this frequency shift indicates the percentage of a particular gas the sensor is exposed to. It is measured using an oscillator and an FPGA based frequency counter by employing the resonator as a frequency determining element in the oscillator. This system consists of a Gas Sensing Wireless Readout (GSWR) and an USB Wireless Transceiver (UWT). GSWR consists of an oscillator based on a trans-impedance sustaining amplifier, an FPGA based frequency readout, a sub 1GHz wireless transceiver and a micro controller. UWT can be plugged into the computer via USB port and function as a wireless module to transfer gas sensor data from GSWR to the computer through its USB port. GUI program running on the computer periodically polls for sensor data through UWT - GSWR wireless link, the response from GSWR is logged in a file for post processing as well as displayed on screen.

Keywords: Gas sensor, GSWR, micro-mechanical system, UWT, volatile emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
556 Natural Radioactivity in Foods Consumed in Turkey

Authors: E. Kam, G. Karahan, H. Aslıyuksek, A. Bozkurt

Abstract:

This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides’ concentrations. The gross alpha radioactivities were measured as below 1 Bq kg-1 in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg-1 to 453 Bq kg-1, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of 40K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of 238U and 226Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides 226Ra, 238U, and 40K were calculated as 77.416 µSv y-1, 0.978 µSv y-1, and 140.55 µSv y-1, respectively.

Keywords: Foods, radioactivity, gross alpha, gross beta, annual equivalent dose, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
555 Effect of Composition on Work Hardening Coefficient of Bismuth-Lead Binary Alloy

Authors: K. A. Mistry, I. B. Patel, A. H. Prajapati

Abstract:

In the present work, the alloy of Bismuth-lead is prepared on the basis of percentage of molecular weight 9:1, 5:5 and 1:9 ratios and grown by Zone- Refining Technique under a vacuum atmosphere. The EDAX of these samples are done and the results are reported. Micro hardness test has been used as an alternative test for measuring material’s tensile properties. The effect of temperature and load on the hardness of the grown alloy has been studied. Further the comparative studies of work hardening coefficients are reported.

Keywords: EDAX, hardening coefficient, Micro hardness, Bi-Pb alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
554 An Active Mixer with Vertical Flow Placement via a Series of Inlets for Micromixing

Authors: Pil Woo Heo, In Sub Park

Abstract:

Flows in a microchannel are laminar, which means that mixing depends on only inter-diffusion. A micromixer plays an important role in obtaining fast diagnosis results in the fields of m-TAS (total analysis system), Bio-MEMS and LOC (lab-on-a-chip).

In this paper, we propose a new active mixer with vertical flow placement via a series of inlets for micromixing. This has two inlets on the same axis, one of which is located before the other. The sample input by the first inlet flows into the down-position, while the other sample by the second inlet flows into the up-position. In the experiment, the samples were located vertically in up-down positions in a micro chamber. PZT was attached below a chamber, and ultrasonic waves were radiated in the down to up direction towards the samples in the micro chamber in order to accelerate the mixing. The mixing process was measured by the change of color in a micro chamber using phenolphthalein and NaOH. The results of the experiment showed that the samples in the microchamber were efficiently mixed and that our new active mixer was superior to the horizontal type of active mixers in view of the grey levels and the standard deviation.

Keywords: Active mixer, vertical flow placement, microchannel, bio-MEMS, LOC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
553 Effect of Different pH on Canthaxanthin Degradation

Authors: N. Seyedrazi, S. H. Razavi, Z. Emam-Djomeh

Abstract:

In this research, natural canthaxanthin as one of the most important carotenoids was extracted from Dietzia natronolimnaea HS-1. The changes of canthaxanthin enriched in oilin- water emulsions with vegetable oil (5 mg/ 100 mL), Arabic gum (5 mg/100 mL), and potassium sorbate (0.5 g/100 mL) was investigated. The effects of different pH (3, 5 and 7), as well as, time treatment (3, 18 and 33 days) in the environmental temperature (24°C) on the degradation were studied by response surface methodology (RSM). The Hunter values (L*, a*, and b*) and the concentration of canthaxanthin (C, mg/L) illustrated more degradation of this pigment at low pHs (pH≤ 4) by passing the time (days≥10) with R² 97.00%, 91.31%, 97.60%, and 99.54% for C, L*, a*, and b* respectively. The predicted model were found to be significant (p<0.05).

Keywords: Degradation, Emulsion, Response SurfaceMethodology (RSM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
552 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micro-magnetic simulations, ferromagnetic nanowires, surface magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
551 Influence of Calcium Intake Level to Osteoporptic Vertebral bone and Degenerated Disc in Biomechanical Study

Authors: Dae Gon Woo, Ji Hyung Park, Chi Hoon Kim, Tae Woo Lee, Beob Yi Lee, Han Sung Kim

Abstract:

The aim of the present study is to analyze the generation of osteoporotic vertebral bone induced by lack of calcium during growth period and analyze its effects for disc degeneration, based on biomechanical and histomorphometrical study. Mechanical and histomorphological characteristics of lumbar vertebral bones and discs of rats with calcium free diet (CFD) were detected and tracked by using high resolution in-vivo micro-computed tomography (in-vivo micro-CT), finite element (FE) and histological analysis. Twenty female Sprague-Dawley rats (6 weeks old, approximate weight 170g) were randomly divided into two groups (CFD group: 10, NOR group: 10). The CFD group was maintained on a refmed calcium-controlled semisynthetic diet without added calcium, to induce osteoporosis. All lumbar (L 1-L6) were scanned by using in vivo micro-CT with 35i.un resolution at 0, 4, 8 weeks to track the effects of CFD on the generation of osteoporosis. The fmdings of the present study indicated that calcium insufficiency was the main factor in the generation of osteoporosis and it induced lumbar vertebral disc degeneration. This study is a valuable experiment to firstly evaluate osteoporotic vertebral bone and disc degeneration induced by lack of calcium during growth period from a biomechanical and histomorphometrical point of view.

Keywords: Calcium free diet, Disc degeneration, Osteoporosis, in-vivo micro-CT, Finite element analysis, Histology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
550 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications

Authors: B. G. Sheeparamatti, J. S. Kadadevarmath

Abstract:

Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics etc. This paper indicates the need of developing electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of microcantilever, equivalent electrical circuit is drawn and using force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to powerful set of intellectual tools that have been developed for understanding electrical circuits Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantlevers are in agreement with each other.

Keywords: Electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
549 An Investigation of Surface Texturing by Ultrasonic Impingement of Micro-Particles

Authors: Nagalingam Arun Prasanth, Ahmed Syed Adnan, S. H. Yeo

Abstract:

Surface topography plays a significant role in the functional performance of engineered parts. It is important to have a control on the surface geometry and understanding on the surface details to get the desired performance. Hence, in the current research contribution, a non-contact micro-texturing technique has been explored and developed. The technique involves ultrasonic excitation of a tool as a prime source of surface texturing for aluminum alloy workpieces. The specimen surface is polished first and is then immersed in a liquid bath containing 10% weight concentration of Ti6Al4V grade 5 spherical powders. A submerged slurry jet is used to recirculate the spherical powders under the ultrasonic horn which is excited at an ultrasonic frequency and amplitude of 40 kHz and 70 µm respectively. The distance between the horn and workpiece surface was remained fixed at 200 µm using a precision control stage. Texturing effects were investigated for different process timings of 1, 3 and 5 s. Thereafter, the specimens were cleaned in an ultrasonic bath for 5 mins to remove loose debris on the surface. The developed surfaces are characterized by optical and contact surface profiler. The optical microscopic images show a texture of circular spots on the workpiece surface indented by titanium spherical balls. Waviness patterns obtained from contact surface profiler supports the texturing effect produced from the proposed technique. Furthermore, water droplet tests were performed to show the efficacy of the proposed technique to develop hydrophilic surfaces and to quantify the texturing effect produced.

Keywords: Surface texturing, surface modification, topography, ultrasonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
548 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations

Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li

Abstract:

The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.

Keywords: CNC milling, CNC turning, surface roughness, Taguchi analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
547 Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines

Authors: M. A. At-Tasneem, N. T. Rao, T. M. Y. S. Tuan Ya, M. S. Idris, M. Ammar

Abstract:

River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation.

Keywords: Micro hydro power, CFD, arrays arrangement, spacing sizes, velocity profile, power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
546 Dripping Modes of Newtonian Liquids: The Effect of Nozzle Inclination

Authors: Amaraja Taur, Pankaj Doshi, Hak Koon Yeoh

Abstract:

The dripping modes for a Newtonian liquid of viscosity µ emanating from an inclined nozzle at flow rate Q is investigated experimentally. As the liquid flow rate Q increases, starting with period-1 with satellite drops, the system transitions to period-1 dripping without satellite, then to limit cycle before showing chaotic responses. Phase diagrams showing the changes in the transitions between the different dripping modes for different nozzle inclination angle q is constructed in the dimensionless (Q, µ) space.

Keywords: Dripping, inclined nozzle, phase diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
545 Design and Analysis of Annular Combustion Chamber for a Micro Turbojet Engine

Authors: Rashid Slaheldinn Elhaj Mohammed

Abstract:

The design of high performance combustion chambers for turbojet engines is considered as one of the most challenges that face gas turbine designers, since the design approach depends on empirical correlations of data derived from the previous design experiences. The objective of this paper is to design a combustion chamber that suits the requirements of a micro-turbojet engine with 400 N output thrust and operates with kerosene as fuel. In this paper, only preliminary calculations related to the annular type of combustion chamber are explained in details. These calculations will cover the evaluation of reference quantities, calculation of required dimensions, calculation of air distribution and pressure drop, estimation of number and diameters for air admission holes, as well as aerodynamic considerations. The design process is then accompanied by analytical procedure using commercial CFD ANALYSIS tool; ANSYS 16 CFX software. After conducting CFD analysis, the design process will be then iterated in order to gain satisfactory results. It should be noted that the design of the fuel preparation and installation systems is beyond the scope of this work, and it will be discussed separately in another work.  

Keywords: Annular combustion chamber, micro-turbojet engine, CFD ANALYSIS, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
544 Beneficial Use of Coal Combustion By-products in the Rehabilitation of Failed Asphalt Pavements

Authors: Tarunjit S. Butalia, William E. Wolfe

Abstract:

This study demonstrates the use of Class F fly ash in combination with lime or lime kiln dust in the full depth reclamation (FDR) of asphalt pavements. FDR, in the context of this paper, is a process of pulverizing a predetermined amount of flexible pavement that is structurally deficient, blending it with chemical additives and water, and compacting it in place to construct a new stabilized base course. Test sections of two structurally deficient asphalt pavements were reclaimed using Class F fly ash in combination with lime and lime kiln dust. In addition, control sections were constructed using cement, cement and emulsion, lime kiln dust and emulsion, and mill and fill. The service performance and structural behavior of the FDR pavement test sections were monitored to determine how the fly ash sections compared to other more traditional pavement rehabilitation techniques. Service performance and structural behavior were determined with the use of sensors embedded in the road and Falling Weight Deflectometer (FWD) tests. Monitoring results of the FWD tests conducted up to 2 years after reclamation show that the cement, fly ash+LKD, and fly ash+lime sections exhibited two year resilient modulus values comparable to open graded cement stabilized aggregates (more than 750 ksi). The cement treatment resulted in a significant increase in resilient modulus within 3 weeks of construction and beyond this curing time, the stiffness increase was slow. On the other hand, the fly ash+LKD and fly ash+lime test sections indicated slower shorter-term increase in stiffness. The fly ash+LKD and fly ash+lime section average resilient modulus values at two years after construction were in excess of 800 ksi. Additional longer-term testing data will be available from ongoing pavement performance and environmental condition data collection at the two pavement sites.

Keywords: Coal fly ash, full depth reclamation, FWD, pavement rehabilitation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
543 A DMB-TCA Simulation Method for On-Road Traffic Travel Demand Impact Analysis

Authors: Zundong Zhang, Limin Jia, Zhao Tian, Yanfang Yang

Abstract:

Travel Demands influence micro-level traffic behavior, furthermore traffic states. In order to evaluate the effect of travel demands on traffic states, this paper introduces the Demand- Motivation-Behaviors (DMB) micro traffic behavior analysis model which denotes that vehicles behaviors are determines by motivations that relies on traffic demands from the perspective of behavior science. For vehicles, there are two kinds of travel demands: reaching travel destinations from orientations and meeting expectations of travel speed. To satisfy travel demands, the micro traffic behaviors are delivered such as car following behavior, optional and mandatory lane changing behaviors. Especially, mandatory lane changing behaviors depending on travel demands take strong impact on traffic states. In this paper, we define the DMB-based cellular automate traffic simulation model to evaluate the effect of travel demands on traffic states under the different δ values that reflect the ratio of mandatory lane-change vehicles.

Keywords: Demand-Motivation-Behavior, Mandatory Lane Changing, Traffic Cellular Automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
542 Energy Consumption and Carbon Calculations of Microalgae Biodiesel

Authors: Tao Zhao, Zhao Liu, Changxin Zhao, Cui Mao

Abstract:

At present, the severe oil crisis and greenhouse effect are booming, which is a growing worry for China. Over a long period of study, choosing the development of biological diesel is a feasible way in the desertification region in China. With considering the adaptability of Micro-algae in desertification region and analyzing energy consumption and carbon calculations of Micro-algae biodiesel produced by JJ company , this paper, make the microalgae our optimal choice to develop biological diesel in china's desertification region.

Keywords: Biodiesel, Microalgae, Energy Consumption, CarbonCalculations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
541 Radon Concentration in the Water Samples of Hassan District, Karnataka, India

Authors: T. S. Shashikumar

Abstract:

Radon is a radioactive gas emitted from radium, a daughter product of uranium that occurs naturally in rocks and soil. Radon, together with its decay products, emits alpha particles that can damage lung tissue. The activity concentration of 222Ra has been analyzed in water samples collected from borewells and rivers in and around Hassan city, Karnataka State, India. The measurements were performed by Emanometry technique. The concentration of 222Rn in borewell waters varies from 18.49±1.89 to 397.26±12.3 Bql-1 with geometric mean 120.48±12.87 Bql-1 and in river waters it varies from 92.63±9.31 to 93.98±9.51 Bql-1 with geometric mean of 93.16±9.33 Bql-1. In the present study, the radon concentrations are higher in Adarshanagar and Viveka Nagar which are found to be 397.26±12.3 Bql-1 and 325.78±32.56 Bql-1. Most of the analysed samples show a 222Rn concentration more than 100 Bql-1 and this can be attributed to the geology of the area where the ground waters are located, which is predominantly of granitic characteristic. The average inhalation dose and ingestion dose in the borewell water are found to be 0.405 and 0.033 µSvy-1; and in river water it is found to be 0.234 and 0.019 µSvy-1, respectively. The average total effective dose rate in borewell waters and river waters are found to be 0.433 and 0.253 µSvy-1, which does not cause any health risk to the population of Hassan region.

Keywords: Borewell, effective dose, emanometry, 222Rn.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
540 Analog Front End Low Noise Amplifier in 0.18-µm CMOS for Ultrasound Imaging Applications

Authors: Haridas Kuruveettil, Dongning Zhao, Cheong Jia Hao, Minkyu Je

Abstract:

We present the design of Analog front end (AFE) low noise pre-amplifier implemented in a high voltage 0.18-µm CMOS technology for  a three dimensional ultrasound  bio microscope (3D UBM) application. The fabricated chip has 4X16 pre-amplifiers implemented to interface   a 2-D array of    high frequency capacitive micro-machined ultrasound transducers (CMUT). Core AFE cell consists of a high-voltage pulser in the transmit path, and a low-noise transimpedance amplifier in the receive path. Proposed system offers a high image resolution by the use of high frequency CMUTs with associated high performance imaging electronics integrated together.  Performance requirements and the design methods of the high bandwidth transimpedance amplifier are described in the paper. A single cell of transimpedance (TIA) amplifier and the bias circuit occupies a silicon area of 250X380 µm2 and the full chip occupies a total silicon area of 10x6.8 mm².

Keywords: Ultrasound, analog front end, medical imaging, beam forming, biomicroscope, transimpedance gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8128
539 Fabrication of High-Power AlGaN/GaN Schottky Barrier Diode with Field Plate Design

Authors: Chia-Jui Yu, Chien-Ju Chen, Jyun-Hao Liao, Chia-Ching Wu, Meng-Chyi Wu

Abstract:

In this letter, we demonstrate high-performance AlGaN/GaN planar Schottky barrier diodes (SBDs) on the silicon substrate with field plate structure for increasing breakdown voltage VB. A low turn-on resistance RON (3.55 mΩ-cm2), low reverse leakage current (< 0.1 µA) at -100 V, and high reverse breakdown voltage VB (> 1.1 kV) SBD has been fabricated. A virgin SBD exhibited a breakdown voltage (measured at 1 mA/mm) of 615 V, and with the field plate technology device exhibited a breakdown voltage (measured at 1 mA/mm) of 1525 V (the anode–cathode distance was LAC = 40 µm). Devices without the field plate design exhibit a Baliga’s figure of merit of VB2/ RON = 60.2 MW/cm2, whereas devices with the field plate design show a Baliga’s figure of merit of VB2/ RON = 340.9 MW/cm2 (the anode–cathode distance was LAC = 20 µm).

Keywords: AlGaN/GaN heterostructure, silicon substrate, Schottky barrier diode, high breakdown voltage, field plate, Baliga’s figure-of-merit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 985
538 Micro-Controller Based Oxy-Fuel Profile Cutting System

Authors: A. P. Kulkarni, P. Randive, A. R. Mache

Abstract:

In today-s era of plasma and laser cutting, machines using oxy-acetylene flame are also meritorious due to their simplicity and cost effectiveness. The objective to devise a Computer controlled Oxy-Fuel profile cutting machine arose from the increasing demand for metal cutting with respect to edge quality, circularity and lesser formation of redeposit material. The System has an 8 bit micro controller based embedded system, which assures stipulated time response. A new window based Application software was devised which takes a standard CAD file .DXF as input and converts it into numerical data required for the controller. It uses VB6 as a front end whereas MS-ACCESS and AutoCAD as back end. The system is designed around AT89C51RD2, powerful 8 bit, ISP micro controller from Atmel and is optimized to achieve cost effectiveness and also maintains the required accuracy and reliability for complex shapes. The backbone of the system is a cleverly designed mechanical assembly along with the embedded system resulting in an accuracy of about 10 microns while maintaining perfect linearity in the cut. This results in substantial increase in productivity. The observed results also indicate reduced inter laminar spacing of pearlite with an increase in the hardness of the edge region.

Keywords: Computer-Control, Profile, Oxy-Fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536