%0 Journal Article
	%A Tarunjit S. Butalia and  William E. Wolfe
	%D 2009
	%J International Journal of Structural and Construction Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 27, 2009
	%T Beneficial Use of Coal Combustion By-products in the Rehabilitation of Failed Asphalt Pavements
	%U https://publications.waset.org/pdf/491
	%V 27
	%X This study demonstrates the use of Class F fly ash in
combination with lime or lime kiln dust in the full depth reclamation
(FDR) of asphalt pavements. FDR, in the context of this paper, is a
process of pulverizing a predetermined amount of flexible pavement
that is structurally deficient, blending it with chemical additives and
water, and compacting it in place to construct a new stabilized base
course. Test sections of two structurally deficient asphalt pavements
were reclaimed using Class F fly ash in combination with lime and
lime kiln dust. In addition, control sections were constructed using
cement, cement and emulsion, lime kiln dust and emulsion, and mill
and fill. The service performance and structural behavior of the FDR
pavement test sections were monitored to determine how the fly ash
sections compared to other more traditional pavement rehabilitation
techniques. Service performance and structural behavior were
determined with the use of sensors embedded in the road and Falling
Weight Deflectometer (FWD) tests. Monitoring results of the FWD
tests conducted up to 2 years after reclamation show that the cement,
fly ash+LKD, and fly ash+lime sections exhibited two year resilient
modulus values comparable to open graded cement stabilized
aggregates (more than 750 ksi). The cement treatment resulted in a
significant increase in resilient modulus within 3 weeks of
construction and beyond this curing time, the stiffness increase was
slow. On the other hand, the fly ash+LKD and fly ash+lime test
sections indicated slower shorter-term increase in stiffness. The fly
ash+LKD and fly ash+lime section average resilient modulus values
at two years after construction were in excess of 800 ksi. Additional
longer-term testing data will be available from ongoing pavement
performance and environmental condition data collection at the two
pavement sites.
	%P 168 - 173