Search results for: hook geometry
513 Effect of Hooked-End Steel Fibres Geometry on Pull-Out Behaviour of Ultra-High Performance Concrete
Authors: Sadoon Abdallah, Mizi Fan, Xiangming Zhou
Abstract:
In this study, a comprehensive approach has been adopted to examine in detail the effect of various hook geometries on bond-slip characteristics. Extensive single fibre pull-out tests on ultra-high performance matrix with three different W/B ratios and embedded lengths have been carried out. Test results showed that the mechanical deformation of fibre hook is the main mechanism governing the pull-out behaviour. Furthermore, the quantitative analyses have been completed to compare the hook design contribution of 3D, 4D and 5D fibres to assess overall pull-out behaviour. It was also revealed that there is a strong relationship between the magnitude of hook contribution and W/B ratio (i.e. matrix strength). Reducing the W/B ratio from 0.20 to 0.11 greatly optimizes the interfacial transition zone (ITZ) and enables better mobilization, straightening of the hook and results in bond-slip-hardening behaviour.
Keywords: Bond mechanisms, fibre-matrix interface, hook geometry, pullout behaviour and water to binder ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691512 Metallurgical Analysis of Surface Defect in Telescopic Front Fork
Authors: Souvik Das, Janak Lal, Arthita Dey, Goutam Mukhopadhyay, Sandip Bhattacharya
Abstract:
Telescopic Front Fork (TFF) used in two wheelers, mainly motorcycle, is made from high strength steel, and is manufactured by high frequency induction welding process wherein hot rolled and pickled coils are used as input raw material for rolling of hollow tubes followed by heat treatment, surface treatment, cold drawing, tempering, etc. The final application demands superior quality TFF tubes w.r.t. surface finish and dimensional tolerances. This paper presents the investigation of two different types of failure of fork during operation. The investigation consists of visual inspection, chemical analysis, characterization of microstructure, and energy dispersive spectroscopy. In this paper, comprehensive investigations of two failed tube samples were investigated. In case of Sample #1, the result revealed that there was a pre-existing crack, known as hook crack, which leads to the cracking of the tube. Metallographic examination exhibited that during field operation the pre-existing hook crack was surfaced out leading to crack in the pipe. In case of Sample #2, presence of internal oxidation with decarburised grains inside the material indicates origin of the defect from slab stage.
Keywords: Telescopic front fork, induction welding, hook crack, internal oxidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827511 Numerical Analysis of Laminar Mixed Convection within a Complex Geometry
Authors: Y. Lasbet, A. L. Boukhalkhal, K. Loubar
Abstract:
The study of mixed convection is, usually, focused on the straight channels in which the onset of the mixed convection is well defined as function of the ratio between Grashof number and Reynolds number, Gr/Re. This is not the case for a complex channel wherein the mixed convection is not sufficiently examined in the literature. Our paper focuses on the study of the mixed convection in a complex geometry in which our main contribution reveals that the critical value of the ratio Gr/Re for the onset of the mixed convection increases highly in the type of geometry contrary to the straight channel. Furthermore, the accentuated secondary flow in this geometry prevents the thermal stratification in the flow and consequently the buoyancy driven becomes negligible. To perform these objectives, a numerical study in complex geometry for several values of the ratio Gr/Re with prescribed wall heat flux (H2), was realized by using the CFD code.Keywords: Complex geometry, heat transfer, laminar flow, mixed convection, Nusselt number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755510 Function of Fractals: Application of Non-linear Geometry in Continental Architecture
Authors: Mohammadsadegh Zanganehfar
Abstract:
Since the introduction of fractal geometry in 1970, numerous efforts have been made by architects and researchers to transfer this area of mathematical knowledge in the discipline of architecture and postmodernist discourse. The discourse of complexity and architecture is one of the most significant ongoing discourses in the discipline of architecture from the 70's until today and has generated significant styles such as deconstructivism and parametricism in architecture. During these years, several projects were designed and presented by designers and architects using fractal geometry, but due to the lack of sufficient knowledge and appropriate comprehension of the features and characteristics of this nonlinear geometry, none of the fractal-based designs have been successful and satisfying. Fractal geometry as a geometric technology has a long presence in the history of architecture. The current research attempts to identify and discover the characteristics, features, potentials and functionality of fractals despite their aesthetic aspect by examining case studies of pre-modern architecture in Asia and investigating the function of fractals.
Keywords: Asian architecture, fractal geometry, fractal technique, geometric properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770509 The Effects of System Change on Buildings Equipped with Structural Systems with the Sandwich Composite Wall with J-Hook Connectors and Reinforced Concrete Shear Walls
Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar
Abstract:
The sandwich composite walls (SCSSC) have more ductility and energy dissipation than conventional reinforced concrete shear walls. SCSSCs have acceptable compressive, shear, in-plane bending, and out-of-plane bending capacities. The use of sandwich-composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. In this paper, incremental dynamic analyses for 10- and 15-story steel structures were performed under seven far-faults by OpenSees. The demand values of 10- and 15-story models are reduced by up to 32% and 45%, respectively, while the structural system change from shear walls (SW) to SCSSC.
Keywords: Sandwich composite wall, SCSSC, fling step, fragility curve, IDA, inter story drift ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285508 Comparing the Performance of the Particle Swarm Optimization and the Genetic Algorithm on the Geometry Design of Longitudinal Fin
Authors: Hassan Azarkish, Said Farahat, S.Masoud H. Sarvari
Abstract:
In the present work, the performance of the particle swarm optimization and the genetic algorithm compared as a typical geometry design problem. The design maximizes the heat transfer rate from a given fin volume. The analysis presumes that a linear temperature distribution along the fin. The fin profile generated using the B-spline curves and controlled by the change of control point coordinates. An inverse method applied to find the appropriate fin geometry yield the linear temperature distribution along the fin corresponds to optimum design. The numbers of the populations, the count of iterations and time to convergence measure efficiency. Results show that the particle swarm optimization is most efficient for geometry optimization.Keywords: Genetic Algorithm, Geometry Optimization, longitudinal Fin, Particle Swarm Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637507 A Geometrical Perspective on the Insulin Evolution
Authors: Yuhei Kunihiro, Sorin V. Sabau, Kazuhiro Shibuya
Abstract:
We study the molecular evolution of insulin from metric geometry point of view. In mathematics, and in particular in geometry, distances and metrics between objects are of fundamental importance. Using a weaker notion than the classical distance, namely the weighted quasi-metrics, one can study the geometry of biological sequences (DNA, mRNA, or proteins) space. We analyze from geometrical point of view a family of 60 insulin homologous sequences ranging on a large variety of living organisms from human to the nematode C. elegans. We show that the distances between sequences provide important information about the evolution and function of insulin.
Keywords: Metric geometry, evolution, insulin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531506 Geometry Design Supported by Minimizing and Visualizing Collision in Dynamic Packing
Authors: Johan Segeborn, Johan S. Carlson, Robert Bohlin, Rikard Söderberg
Abstract:
This paper presents a method to support dynamic packing in cases when no collision-free path can be found. The method, which is primarily based on path planning and shrinking of geometries, suggests a minimal geometry design change that results in a collision-free assembly path. A supplementing approach to optimize geometry design change with respect to redesign cost is described. Supporting this dynamic packing method, a new method to shrink geometry based on vertex translation, interweaved with retriangulation, is suggested. The shrinking method requires neither tetrahedralization nor calculation of medial axis and it preserves the topology of the geometry, i.e. holes are neither lost nor introduced. The proposed methods are successfully applied on industrial geometries.Keywords: Dynamic packing, path planning, shrinking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388505 A New Vision of Fractal Geometry with Triangulati on Algorithm
Authors: Yasser M. Abd El-Latif, Fatma S.Abousaleh, Daoud S. S.
Abstract:
L-system is a tool commonly used for modeling and simulating the growth of fractal plants. The aim of this paper is to join some problems of the computational geometry with the fractal geometry by using the L-system technique to generate fractal plant in 3D. L-system constructs the fractal structure by applying rewriting rules sequentially and this technique depends on recursion process with large number of iterations to get different shapes of 3D fractal plants. Instead, it was reiterated a specific number of iterations up to three iterations. The vertices generated from the last stage of the Lsystem rewriting process are used as input to the triangulation algorithm to construct the triangulation shape of these vertices. The resulting shapes can be used as covers for the architectural objects and in different computer graphics fields. The paper presents a gallery of triangulation forms which application in architecture creates an alternative for domes and other traditional types of roofs.
Keywords: Computational geometry, fractal geometry, L-system, triangulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920504 Applications of Trigonometic Measures of Fuzzy Entropy to Geometry
Authors: Om Parkash, C.P.Gandhi
Abstract:
In the literature of fuzzy measures, there exist many well known parametric and non-parametric measures, each with its own merits and limitations. But our main emphasis is on applications of these measures to a variety of disciplines. To extend the scope of applications of these fuzzy measures to geometry, we need some special fuzzy measures. In this communication, we have introduced two new fuzzy measures involving trigonometric functions and simultaneously provided their applications to obtain the basic results already existing in the literature of geometry.Keywords: Entropy, Uncertainty, Fuzzy Entropy, Concavity, Symmetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533503 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture
Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho
Abstract:
Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.
Keywords: Bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331502 Evaluation of Nutritional Potential of Five Unexplored Wild Edible Food Plants from Eastern Himalayan Biodiversity Hotspot Region (India)
Authors: Pallabi Kalita, Hui Tag, H. N. Sarma, A. K. Das.
Abstract:
Wild edible food plants contain a number of organic phytochemical that have been linked to the promotion of good health. These plants used by the local people of Arunachal Pradesh (Northeast India) are found to have high nutritional potential to maintain general balance diet. A study was conducted to evaluate the nutritional potential of five commonly found, unexplored wild food plants namely, Piper pedicellatum C. DC (leaves), Gonostegia hirta (Blume ex Hassk.) Miq. (leaves), Mussaenda roxburghii Hook.f (leaves), Solanum spirale Roxb. (leaves and fruits) and Cyathea spinulosa Wall. ex Hook. (pith portion and tender rachis) from East Siang District of Arunachal Pradesh Northeast (India) for ascertaining their suitability for utilization as supplementary food. Results of study revealed that P. pedicellatum, C. spinulosa, and S. spirale (leaves) are the most promising species which have high nutritional content out of the five wild food plants investigated which is required for the normal growth and development of human.
Keywords: Wild edible plants, Gross energy, Gonostegia hirta, Cyathea spinulosa,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3265501 Jointly Learning Python Programming and Analytic Geometry
Authors: Cristina-Maria Păcurar
Abstract:
The paper presents an original Python-based application that outlines the advantages of combining some elementary notions of mathematics with the study of a programming language. The application support refers to some of the first lessons of analytic geometry, meaning conics and quadrics and their reduction to a standard form, as well as some related notions. The chosen programming language is Python, not only for its closer to an everyday language syntax – and therefore, enhanced readability – but also for its highly reusable code, which is of utmost importance for a mathematician that is accustomed to exploit already known and used problems to solve new ones. The purpose of this paper is, on one hand, to support the idea that one of the most appropriate means to initiate one into programming is throughout mathematics, and reciprocal, one of the most facile and handy ways to assimilate some basic knowledge in the study of mathematics is to apply them in a personal project. On the other hand, besides being a mean of learning both programming and analytic geometry, the application subject to this paper is itself a useful tool for it can be seen as an independent original Python package for analytic geometry.Keywords: Analytic geometry, conics, Python programming language, quadrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583500 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel
Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini
Abstract:
Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.
Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325499 Generalized Chaplygin Gas and Varying Bulk Viscosity in Lyra Geometry
Authors: A. K. Sethi, R. N. Patra, B. Nayak
Abstract:
In this paper, we have considered Friedmann-Robertson-Walker (FRW) metric with generalized Chaplygin gas which has viscosity in the context of Lyra geometry. The viscosity is considered in two different ways (i.e. zero viscosity, non-constant r (rho)-dependent bulk viscosity) using constant deceleration parameter which concluded that, for a special case, the viscous generalized Chaplygin gas reduces to modified Chaplygin gas. The represented model indicates on the presence of Chaplygin gas in the Universe. Observational constraints are applied and discussed on the physical and geometrical nature of the Universe.
Keywords: Bulk viscosity, Lyra geometry, generalized Chaplygin gas, cosmology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 797498 Optimization of GAMM Francis Turbine Runner
Authors: Sh. Derakhshan, A. Mostafavi
Abstract:
Nowadays, the challenge in hydraulic turbine design is the multi-objective design of turbine runner to reach higher efficiency. The hydraulic performance of a turbine is strictly depends on runner blades shape. The present paper focuses on the application of the multi-objective optimization algorithm to the design of a small Francis turbine runner. The optimization exercise focuses on the efficiency improvement at the best efficiency operating point (BEP) of the GAMM Francis turbine. A global optimization method based on artificial neural networks (ANN) and genetic algorithms (GA) coupled by 3D Navier-Stokes flow solver has been used to improve the performance of an initial geometry of a Francis runner. The results show the good ability of optimization algorithm and the final geometry has better efficiency with initial geometry. The goal was to optimize the geometry of the blades of GAMM turbine runner which leads to maximum total efficiency by changing the design parameters of camber line in at least 5 sections of a blade. The efficiency of the optimized geometry is improved from 90.7% to 92.5%. Finally, design parameters and the way of selection have been considered and discussed.Keywords: Francis Turbine, Runner, Optimization, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3343497 Strength Optimization of Induction Hardened Splined Shaft – Material and Geometric Aspects
Authors: I. Barsoum, F. Khan
Abstract:
the current study presents a modeling framework to determine the torsion strength of an induction hardened splined shaft by considering geometry and material aspects with the aim to optimize the static torsion strength by selection of spline geometry and hardness depth. Six different spline geometries and seven different hardness profiles including non-hardened and throughhardened shafts have been considered. The results reveal that the torque that causes initial yielding of the induction hardened splined shaft is strongly dependent on the hardness depth and the geometry of the spline teeth. Guidelines for selection of the appropriate hardness depth and spline geometry are given such that an optimum static torsion strength of the component can be achieved.
Keywords: Static strength, splined shaft, torsion, induction hardening, hardness profile, finite element, optimization, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4970496 Pressure Losses on Realistic Geometry of Tracheobronchial Tree
Authors: Michaela Chovancova, Jakub Elcner
Abstract:
Real bronchial tree is very complicated piping system. Analysis of flow and pressure losses in this system is very difficult. Due to the complex geometry and the very small size in the lower generations is examination by CFD possible only in the central part of bronchial tree. For specify the pressure losses of lower generations is necessary to provide a mathematical equation. Determination of mathematical formulas for calculation of pressure losses in the real lungs is time consuming and inefficient process due to its complexity and diversity. For these calculations is necessary to slightly simplify the geometry of lungs (same cross-section over the length of individual generation) or use one of the idealized models of lungs (Horsfield, Weibel). The article compares the values of pressure losses obtained from CFD simulation of air flow in the central part of the real bronchial tree with the values calculated in a slightly simplified real lungs by using a mathematical relationship derived from the Bernoulli and continuity equations. The aim of the article is to analyse the accuracy of the analytical method and its possibility of use for the calculation of pressure losses in lower generations, which is difficult to solve by numerical method due to the small geometry.
Keywords: Pressure gradient, airways resistance, real geometry of bronchial tree, breathing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878495 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency
Authors: Valeriya Tyo, Serikbolat Yessengabulov
Abstract:
Regions with extreme climate conditions such as Astana city require energy saving measures to increase energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of key factors to be considered. Architectural form of a building has impact on space heating and cooling energy use, however the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.Keywords: Building geometry, energy efficiency, heat gain, heat loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531494 Two Spatial Experiments based on Computational Geometry
Authors: Marco Hemmerling
Abstract:
The paper outlines the relevance of computational geometry within the design and production process of architecture. Based on two case studies, the digital chain - from the initial formfinding to the final realization of spatial concepts - is discussed in relation to geometric principles. The association with the fascinating complexity that can be found in nature and its underlying geometry was the starting point for both projects presented in the paper. The translation of abstract geometric principles into a three-dimensional digital design model – realized in Rhinoceros – was followed by a process of transformation and optimization of the initial shape that integrated aesthetic, spatial and structural qualities as well as aspects of material properties and conditions of production.Keywords: Architecture, Computer Aided Architectural Design, 3D-Modeling, Rapid Prototyping, CAD/CAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592493 Einstein’s General Equation of the Gravitational Field
Authors: A. Benzian
Abstract:
The generalization of relativistic theory of gravity based essentially on the principle of equivalence stipulates that for all bodies, the grave mass is equal to the inert mass which leads us to believe that gravitation is not a property of the bodies themselves, but of space, and the conclusion that the gravitational field must curved space-time what allows the abandonment of Minkowski space (because Minkowski space-time being nonetheless null curvature) to adopt Riemannian geometry as a mathematical framework in order to determine the curvature. Therefore the work presented in this paper begins with the evolution of the concept of gravity then tensor field which manifests by Riemannian geometry to formulate the general equation of the gravitational field.
Keywords: Inertia, principle of equivalence, tensors, Riemannian geometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764492 Identification of Configuration Space Singularities with Local Real Algebraic Geometry
Authors: Marc Diesse, Hochschule Heilbronn
Abstract:
We address the question of identifying the configuration space singularities of linkages, i.e., points where the configuration space is not locally a submanifold of Euclidean space. Because the configuration space cannot be smoothly parameterized at such points, these singularity types have a significantly negative impact on the kinematics of the linkage. It is known that Jacobian methods do not provide sufficient conditions for the existence of CS-singularities. Herein, we present several additional algebraic criteria that provide the sufficient conditions. Further, we use those criteria to analyze certain classes of planar linkages. These examples will also show how the presented criteria can be checked using algorithmic methods.Keywords: Linkages, configuration space singularities, real algebraic geometry, analytic geometry, computer algebra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515491 Investigation on Choosing the Suitable Geometry of the Solar Air Heater to Certain Conditions
Authors: Abdulrahman M. Homadi
Abstract:
This study focuses on how to control the outlet temperature of a solar air heater in a way simpler than the existing methods. In this work, five cases have been studied by using ANSYS Fluent based on a CFD numerical method. All the cases have been simulated by utilizing the same criteria and conditions like the temperature, materials, areas except the geometry. The case studies are conducted in Little Rock (LR), AR, USA during the winter time supposedly on 15th of December. A fresh air that is flowing with a velocity of 0.5 m/s and a flow rate of 0.009 m3/s. The results prove the possibility of achieving a controlled temperature just by changing the geometric shape of the heater. This geometry guarantees that the absorber plate always has a normal component of the solar radiation at any time during the day. The heater has a sectarian shape with a radius of 150 mm where the outlet temperature remains almost constant for six hours.Keywords: Solar energy, air heater, control of temperature, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1136490 Computational Conjugate Heat Transfer Analysis of HP Stage Turbine Blade Cooling: Effect of Turbulator Geometry in Helicoidal Cooling Duct
Authors: Chandrakant R Kini, Satish Shenoy B, Yagnesh Sharma N.
Abstract:
In a bid to improve turbine entry temperature for maximizing the thermal efficiency of the HP stage gas turbine blade, an attempt is made in this paper to compare the performance of helicoidal ducted blade cooling with turbulator of different geometric proportion. It is found from analysis that there is significant improvement in cooling characteristics for turbine blade with turbulator geometry having larger e/D ratio. Also it is found from analysis, performance is vastly improved for greater thickness of turbulator geometry.
Keywords: Conjugate heat transfer, turbine blade cooling, helicoidal cooling duct, turbulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2727489 On the Invariant Uniform Roe Algebra as Crossed Product
Authors: Kankeyanathan Kannan
Abstract:
The uniform Roe C*-algebra (also called uniform translation)C^*- algebra provides a link between coarse geometry and C^*- algebra theory. The uniform Roe algebra has a great importance in geometry, topology and analysis. We consider some of the elementary concepts associated with coarse spaces.
Keywords: Invariant Approximation Property, Uniform Roe algebras.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736488 Study of Flow Behavior of Aqueous Solution of Rhodamine B in Annular Reactor Using Computational Fluid Dynamics
Authors: Jatinder Kumar, Ajay Bansal
Abstract:
The present study deals with the modeling and simulation of flow through an annular reactor at different hydrodynamic conditions using computational fluid dynamics (CFD) to investigate the flow behavior. CFD modeling was utilized to predict velocity distribution and average velocity in the annular geometry. The results of CFD simulations were compared with the mathematically derived equations and already developed correlations for validation purposes. CFD modeling was found suitable for predicting the flow characteristics in annular geometry under laminar flow conditions. It was observed that CFD also provides local values of the parameters of interest in addition to the average values for the simulated geometry.
Keywords: Annular reactor, computational fluid dynamics (CFD), hydrodynamics, Rhodamine B
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913487 A Novel Tracking Method Using Filtering and Geometry
Authors: Sang Hoon Lee, Jong Sue Bae, Taewan Kim, Jin Mo Song, Jong Ju Kim
Abstract:
Image target detection and tracking methods based on target information such as intensity, shape model, histogram and target dynamics have been proven to be robust to target model variations and background clutters as shown by recent researches. However, no definitive answer has been given to occluded target by counter measure or limited field of view(FOV). In this paper, we will present a novel tracking method using filtering and computational geometry. This paper has two central goals: 1) to deal with vulnerable target measurements; and 2) to maintain target tracking out of FOV using non-target-originated information. The experimental results, obtained with airborne images, show a robust tracking ability with respect to the existing approaches. In exploring the questions of target tracking, this paper will be limited to consideration of airborne image.Keywords: Tracking, Computational geometry, Homography, Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786486 Experimental Investigation of Plane Jets Exiting Five Parallel Channels with Large Aspect Ratio
Authors: Laurentiu Moruz, Jens Kitzhofer, Mircea Dinulescu
Abstract:
The paper aims to extend the knowledge about jet behavior and jet interaction between five plane unventilated jets with large aspect ratio (AR). The distance between the single plane jets is two times the channel height. The experimental investigation applies 2D Particle Image Velocimetry (PIV) and static pressure measurements. Our study focuses on the influence of two different outlet nozzle geometries (triangular shape with 2 x 7.5° and blunt geometry) with respect to variation of Reynolds number from 5500 - 12000. It is shown that the outlet geometry has a major influence on the jet formation in terms of uniformity of velocity profiles downstream of the sudden expansion. Furthermore, we describe characteristic regions like converging region, merging region and combined region. The triangular outlet geometry generates most uniform velocity distributions in comparison to a blunt outlet nozzle geometry. The blunt outlet geometry shows an unstable behavior where the jets tend to attach to one side of the walls (ceiling) generating a large recirculation region on the opposite side. Static pressure measurements confirm the observation and indicate that the recirculation region is connected to larger pressure drop.
Keywords: 2D particle image velocimetry, parallel jet interaction, pressure drop, sudden expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876485 Investigation of the Capability of REALP5 to Solve Complex Fuel Geometry
Authors: D. Abdelrazek, M. NaguibAly, A. A. Badawi, Asmaa G. Abo Elnour, A. A. El-Kafas
Abstract:
This work is developed within IAEA Coordinated Research Program 1496, “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal-hydraulic computational methods and tools for operation and safety analysis of research reactors”.
The study investigates the capability of Code RELAP5/Mod3.4 to solve complex geometry complexity. Its results are compared to the results of PARET, a common code in thermal hydraulic analysis for research reactors, belonging to MTR-PC groups.
The WWR-SM reactor at the Institute of Nuclear Physics (INP) in the Republic of Uzbekistan is simulated using both PARET and RELAP5 at steady state. Results from the two codes are compared.
REALP5 code succeeded in solving the complex fuel geometry. The PARET code needed some calculations to obtain the final result. Although the final results from the PARET are more accurate, the small differences in both results makes using RELAP5 code recommended in case of complex fuel assemblies.
Keywords: Complex fuel geometry, PARET, RELAP5, WWR-SM reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2252484 On Bianchi Type Cosmological Models in Lyra’s Geometry
Authors: R. K. Dubey
Abstract:
Bianchi type cosmological models have been studied on the basis of Lyra’s geometry. Exact solution has been obtained by considering a time dependent displacement field for constant deceleration parameter and varying cosmological term of the universe. The physical behavior of the different models has been examined for different cases.Keywords: Bianchi type-I cosmological model, variable gravitational coupling (G) and Cosmological Constant term (β).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250