Search results for: error metrics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1475

Search results for: error metrics

1475 Static and Dynamic Complexity Analysis of Software Metrics

Authors: Kamaljit Kaur, Kirti Minhas, Neha Mehan, Namita Kakkar

Abstract:

Software complexity metrics are used to predict critical information about reliability and maintainability of software systems. Object oriented software development requires a different approach to software complexity metrics. Object Oriented Software Metrics can be broadly classified into static and dynamic metrics. Static Metrics give information at the code level whereas dynamic metrics provide information on the actual runtime. In this paper we will discuss the various complexity metrics, and the comparison between static and dynamic complexity.

Keywords: Static Complexity, Dynamic Complexity, Halstead Metric, Mc Cabe's Metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213
1474 Application of Artificial Neural Network for Predicting Maintainability Using Object-Oriented Metrics

Authors: K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra

Abstract:

Importance of software quality is increasing leading to development of new sophisticated techniques, which can be used in constructing models for predicting quality attributes. One such technique is Artificial Neural Network (ANN). This paper examined the application of ANN for software quality prediction using Object- Oriented (OO) metrics. Quality estimation includes estimating maintainability of software. The dependent variable in our study was maintenance effort. The independent variables were principal components of eight OO metrics. The results showed that the Mean Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we found that ANN method was useful in constructing software quality model.

Keywords: Software quality, Measurement, Metrics, Artificial neural network, Coupling, Cohesion, Inheritance, Principal component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572
1473 Theoretical Considerations for Software Component Metrics

Authors: V. Lakshmi Narasimhan, Bayu Hendradjaya

Abstract:

We have defined two suites of metrics, which cover static and dynamic aspects of component assembly. The static metrics measure complexity and criticality of component assembly, wherein complexity is measured using Component Packing Density and Component Interaction Density metrics. Further, four criticality conditions namely, Link, Bridge, Inheritance and Size criticalities have been identified and quantified. The complexity and criticality metrics are combined to form a Triangular Metric, which can be used to classify the type and nature of applications. Dynamic metrics are collected during the runtime of a complete application. Dynamic metrics are useful to identify super-component and to evaluate the degree of utilisation of various components. In this paper both static and dynamic metrics are evaluated using Weyuker-s set of properties. The result shows that the metrics provide a valid means to measure issues in component assembly. We relate our metrics suite with McCall-s Quality Model and illustrate their impact on product quality and to the management of component-based product development.

Keywords: Component Assembly, Component Based SoftwareEngineering, CORBA Component Model, Software ComponentMetrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2280
1472 Reasons for Non-Applicability of Software Entropy Metrics for Bug Prediction in Android

Authors: Arvinder Kaur, Deepti Chopra

Abstract:

Software Entropy Metrics for bug prediction have been validated on various software systems by different researchers. In our previous research, we have validated that Software Entropy Metrics calculated for Mozilla subsystem’s predict the future bugs reasonably well. In this study, the Software Entropy metrics are calculated for a subsystem of Android and it is noticed that these metrics are not suitable for bug prediction. The results are compared with a subsystem of Mozilla and a comparison is made between the two software systems to determine the reasons why Software Entropy metrics are not applicable for Android.

Keywords: Android, bug prediction, mining software repositories, Software Entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
1471 Modeling Metrics for Monitoring Software Project Performance Based On the GQM Model

Authors: Mariayee Doraisamy, Suhaimi Bin Ibrahim, Mohd Naz’ri Mahrin

Abstract:

There are several methods to monitor software projects and the objective for monitoring is to ensure that the software projects are developed and delivered successfully. A performance measurement is a method that is closely associated with monitoring and it can be scrutinized by looking at two important attributes which are efficiency and effectiveness both of which are factors that are important for the success of a software project. Consequently, a successful steering is achieved by monitoring and controlling a software project via the performance measurement criteria and metrics. Hence, this paper is aimed at identifying the performance measurement criteria and the metrics for monitoring the performance of a software project by using the Goal Question Metrics (GQM) approach. The GQM approach is utilized to ensure that the identified metrics are reliable and useful. These identified metrics are useful guidelines for project managers to monitor the performance of their software projects.

Keywords: Software project performance, Goal Question Metrics, Performance Measurement Criteria, Metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
1470 A Formal Suite of Object Relational Database Metrics

Authors: Justus S, K Iyakutti

Abstract:

Object Relational Databases (ORDB) are complex in nature than traditional relational databases because they combine the characteristics of both object oriented concepts and relational features of conventional databases. Design of an ORDB demands efficient and quality schema considering the structural, functional and componential traits. This internal quality of the schema is assured by metrics that measure the relevant attributes. This is extended to substantiate the understandability, usability and reliability of the schema, thus assuring external quality of the schema. This work institutes a formalization of ORDB metrics; metric definition, evaluation methodology and the calibration of the metric. Three ORDB schemas were used to conduct the evaluation and the formalization of the metrics. The metrics are calibrated using content and criteria related validity based on the measurability, consistency and reliability of the metrics. Nominal and summative scales are derived based on the evaluated metric values and are standardized. Future works pertaining to ORDB metrics forms the concluding note.

Keywords: Measurements, Product metrics, Metrics calibration, Object-relational database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
1469 The Content Based Objective Metrics for Video Quality Evaluation

Authors: Michal Mardiak, Jaroslav Polec

Abstract:

In this paper we proposed comparison of four content based objective metrics with results of subjective tests from 80 video sequences. We also include two objective metrics VQM and SSIM to our comparison to serve as “reference” objective metrics because their pros and cons have already been published. Each of the video sequence was preprocessed by the region recognition algorithm and then the particular objective video quality metric were calculated i.e. mutual information, angular distance, moment of angle and normalized cross-correlation measure. The Pearson coefficient was calculated to express metrics relationship to accuracy of the model and the Spearman rank order correlation coefficient to represent the metrics relationship to monotonicity. The results show that model with the mutual information as objective metric provides best result and it is suitable for evaluating quality of video sequences.

Keywords: Objective quality metrics, mutual information, region recognition, content based metrics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
1468 Dynamic Coupling Metrics for Service – Oriented Software

Authors: Pham Thi Quynh, Huynh Quyet Thang

Abstract:

Service-oriented systems have become popular and presented many advantages in develop and maintain process. The coupling is the most important attribute of services when they are integrated into a system. In this paper, we propose a suite of metrics to evaluate service-s quality according to its ability of coupling. We use the coupling metrics to measure the maintainability, reliability, testability, and reusability of services. Our proposed metrics are operated in run-time which bring more exact results.

Keywords: Dynamic coupling metric, SOA, web service, SOAP Extension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1467 Dynamic Metrics for Polymorphism in Object Oriented Systems

Authors: Parvinder Singh Sandhu, Gurdev Singh

Abstract:

Metrics is the process by which numbers or symbols are assigned to attributes of entities in the real world in such a way as to describe them according to clearly defined rules. Software metrics are instruments or ways to measuring all the aspect of software product. These metrics are used throughout a software project to assist in estimation, quality control, productivity assessment, and project control. Object oriented software metrics focus on measurements that are applied to the class and other characteristics. These measurements convey the software engineer to the behavior of the software and how changes can be made that will reduce complexity and improve the continuing capability of the software. Object oriented software metric can be classified in two types static and dynamic. Static metrics are concerned with all the aspects of measuring by static analysis of software and dynamic metrics are concerned with all the measuring aspect of the software at run time. Major work done before, was focusing on static metric. Also some work has been done in the field of dynamic nature of the software measurements. But research in this area is demanding for more work. In this paper we give a set of dynamic metrics specifically for polymorphism in object oriented system.

Keywords: Metrics, Software, Quality, Object oriented system, Polymorphism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
1466 A Study on Early Prediction of Fault Proneness in Software Modules using Genetic Algorithm

Authors: Parvinder S. Sandhu, Sunil Khullar, Satpreet Singh, Simranjit K. Bains, Manpreet Kaur, Gurvinder Singh

Abstract:

Fault-proneness of a software module is the probability that the module contains faults. To predict faultproneness of modules different techniques have been proposed which includes statistical methods, machine learning techniques, neural network techniques and clustering techniques. The aim of proposed study is to explore whether metrics available in the early lifecycle (i.e. requirement metrics), metrics available in the late lifecycle (i.e. code metrics) and metrics available in the early lifecycle (i.e. requirement metrics) combined with metrics available in the late lifecycle (i.e. code metrics) can be used to identify fault prone modules using Genetic Algorithm technique. This approach has been tested with real time defect C Programming language datasets of NASA software projects. The results show that the fusion of requirement and code metric is the best prediction model for detecting the faults as compared with commonly used code based model.

Keywords: Genetic Algorithm, Fault Proneness, Software Faultand Software Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1983
1465 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. Earlier we predicted the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven datasets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: Software Metrics, Fault prediction, Cross project, Within project.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
1464 Abrupt Scene Change Detection

Authors: Priyadarshinee Adhikari, Neeta Gargote, Jyothi Digge, B.G. Hogade

Abstract:

A number of automated shot-change detection methods for indexing a video sequence to facilitate browsing and retrieval have been proposed in recent years. This paper emphasizes on the simulation of video shot boundary detection using one of the methods of the color histogram wherein scaling of the histogram metrics is an added feature. The difference between the histograms of two consecutive frames is evaluated resulting in the metrics. Further scaling of the metrics is performed to avoid ambiguity and to enable the choice of apt threshold for any type of videos which involves minor error due to flashlight, camera motion, etc. Two sample videos are used here with resolution of 352 X 240 pixels using color histogram approach in the uncompressed media. An attempt is made for the retrieval of color video. The simulation is performed for the abrupt change in video which yields 90% recall and precision value.

Keywords: Abrupt change, color histogram, ground-truthing, precision, recall, scaling, threshold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
1463 Approximation for Average Error Probability of BPSK in the Presence of Phase Error

Authors: Yeonsoo Jang, Dongweon Yoon, Ki Ho Kwon, Jaeyoon Lee, Wooju Lee

Abstract:

Phase error in communications systems degrades error performance. In this paper, we present a simple approximation for the average error probability of the binary phase shift keying (BPSK) in the presence of phase error having a uniform distribution on arbitrary intervals. For the simple approximation, we use symmetry and periodicity of a sinusoidal function. Approximate result for the average error probability is derived, and the performance is verified through comparison with simulation result.

Keywords: Average error probability, Phase shift keying, Phase error

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
1462 A Study on using N-Pattern Chains of Design Patterns based on Software Quality Metrics

Authors: Niloofar Khedri, Masoud Rahgozar, MahmoudReza Hashemi

Abstract:

Design patterns describe good solutions to common and reoccurring problems in program design. Applying design patterns in software design and implementation have significant effects on software quality metrics such as flexibility, usability, reusability, scalability and robustness. There is no standard rule for using design patterns. There are some situations that a pattern is applied for a specific problem and this pattern uses another pattern. In this paper, we study the effect of using chain of patterns on software quality metrics.

Keywords: Design Patterns, Design patterns' Relationship, Software quality Metrics, Software Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
1461 Effects of Manufacture and Assembly Errors on the Output Error of Globoidal Cam Mechanisms

Authors: Shuting Ji, Yueming Zhang, Jing Zhao

Abstract:

The output error of the globoidal cam mechanism can be considered as a relevant indicator of mechanism performance, because it determines kinematic and dynamical behavior of mechanical transmission. Based on the differential geometry and the rigid body transformations, the mathematical model of surface geometry of the globoidal cam is established. Then we present the analytical expression of the output error (including the transmission error and the displacement error along the output axis) by considering different manufacture and assembly errors. The effects of the center distance error, the perpendicular error between input and output axes and the rotational angle error of the globoidal cam on the output error are systematically analyzed. A globoidal cam mechanism which is widely used in automatic tool changer of CNC machines is applied for illustration. Our results show that the perpendicular error and the rotational angle error have little effects on the transmission error but have great effects on the displacement error along the output axis. This study plays an important role in the design, manufacture and assembly of the globoidal cam mechanism.

Keywords: Globoidal cam mechanism, manufacture error, transmission error, automatic tool changer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
1460 A New Categorization of Image Quality Metrics Based On a Model of Human Quality Perception

Authors: Maria Grazia Albanesi, Riccardo Amadeo

Abstract:

This study presents a new model of the human image quality assessment process: the aim is to highlightthe foundations of the image quality metrics proposed in literature, by identifyingthe cognitive/physiological or mathematical principles of their development and the relation with the actual human quality assessment process. The model allows to createa novel categorization of objective and subjective image quality metrics. Our work includes an overview of the most used or effectiveobjective metrics in literature, and, for each of them, we underline its main characteristics, with reference to the rationale of the proposed model and categorization. From the results of this operation, we underline a problem that affects all the presented metrics: the fact that many aspects of human biasesare not taken in account at all. We then propose a possible methodology to address this issue.

Keywords: Eye-Tracking, image quality assessment metric, MOS, quality of user experience, visual perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448
1459 Imputing Missing Data in Electronic Health Records: A Comparison of Linear and Non-Linear Imputation Models

Authors: Alireza Vafaei Sadr, Vida Abedi, Jiang Li, Ramin Zand

Abstract:

Missing data is a common challenge in medical research and can lead to biased or incomplete results. When the data bias leaks into models, it further exacerbates health disparities; biased algorithms can lead to misclassification and reduced resource allocation and monitoring as part of prevention strategies for certain minorities and vulnerable segments of patient populations, which in turn further reduce data footprint from the same population – thus, a vicious cycle. This study compares the performance of six imputation techniques grouped into Linear and Non-Linear models, on two different real-world electronic health records (EHRs) datasets, representing 17864 patient records. The mean absolute percentage error (MAPE) and root mean squared error (RMSE) are used as performance metrics, and the results show that the Linear models outperformed the Non-Linear models in terms of both metrics. These results suggest that sometimes Linear models might be an optimal choice for imputation in laboratory variables in terms of imputation efficiency and uncertainty of predicted values.

Keywords: EHR, Machine Learning, imputation, laboratory variables, algorithmic bias.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173
1458 Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions

Authors: Anita S. Gangal, P. K. Kalra, D. S. Chauhan

Abstract:

The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.

Keywords: Complex backpropagation algorithm, complex errorfunctions, complex valued neural network, split activation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
1457 Predicting the Impact of the Defect on the Overall Environment in Function Based Systems

Authors: Parvinder S. Sandhu, Urvashi Malhotra, E. Ardil

Abstract:

There is lot of work done in prediction of the fault proneness of the software systems. But, it is the severity of the faults that is more important than number of faults existing in the developed system as the major faults matters most for a developer and those major faults needs immediate attention. In this paper, we tried to predict the level of impact of the existing faults in software systems. Neuro-Fuzzy based predictor models is applied NASA-s public domain defect dataset coded in C programming language. As Correlation-based Feature Selection (CFS) evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature along with the degree of redundancy between them. So, CFS is used for the selecting the best metrics that have highly correlated with level of severity of faults. The results are compared with the prediction results of Logistic Models (LMT) that was earlier quoted as the best technique in [17]. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provide a relatively better prediction accuracy as compared to other models and hence, can be used for the modeling of the level of impact of faults in function based systems.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, Software Faults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
1456 Combined Automatic Speech Recognition and Machine Translation in Business Correspondence Domain for English-Croatian

Authors: Sanja Seljan, Ivan Dunđer

Abstract:

The paper presents combined automatic speech recognition (ASR) of English and machine translation (MT) for English and Croatian and Croatian-English language pairs in the domain of business correspondence. The first part presents results of training the ASR commercial system on English data sets, enriched by error analysis. The second part presents results of machine translation performed by free online tool for English and Croatian and Croatian-English language pairs. Human evaluation in terms of usability is conducted and internal consistency calculated by Cronbach's alpha coefficient, enriched by error analysis. Automatic evaluation is performed by WER (Word Error Rate) and PER (Position-independent word Error Rate) metrics, followed by investigation of Pearson’s correlation with human evaluation.

Keywords: Automatic machine translation, integrated language technologies, quality evaluation, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2912
1455 On Determining the Most Effective Technique Available in Software Testing

Authors: Qasim Zafar, Matthew Anderson, Esteban Garcia, Steven Drager

Abstract:

Software failures can present an enormous detriment to people's lives and cost millions of dollars to repair when they are unexpectedly encountered in the wild. Despite a significant portion of the software development lifecycle and resources are dedicated to testing, software failures are a relatively frequent occurrence. Nevertheless, the evaluation of testing effectiveness remains at the forefront of ensuring high-quality software and software metrics play a critical role in providing valuable insights into quantifiable objectives to assess the level of assurance and confidence in the system. As the selection of appropriate metrics can be an arduous process, the goal of this paper is to shed light on the significance of software metrics by examining a range of testing techniques and metrics as well as identifying key areas for improvement. In doing so, this paper presents a method to compare the effectiveness of testing techniques with heterogeneous output metrics. Additionally, through this investigation, readers will gain a deeper understanding of how metrics can help to drive informed decision-making on delivering high-quality software and facilitate continuous improvement in testing practices.

Keywords: Software testing, software metrics, testing effectiveness, black box testing, random testing, adaptive random testing, combinatorial testing, fuzz testing, equivalence partition, boundary value analysis, white box testings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65
1454 A Novel Metric for Performance Evaluation of Image Fusion Algorithms

Authors: Nedeljko Cvejic, Artur Łoza, David Bull, Nishan Canagarajah

Abstract:

In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.

Keywords: Fusion performance measures, image fusion, non-reference quality measures, objective quality measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
1453 A Survey on Metric of Software Cognitive Complexity for OO design

Authors: A.Aloysius, L. Arockiam

Abstract:

In modern era, the biggest challenge facing the software industry is the upcoming of new technologies. So, the software engineers are gearing up themselves to meet and manage change in large software system. Also they find it difficult to deal with software cognitive complexities. In the last few years many metrics were proposed to measure the cognitive complexity of software. This paper aims at a comprehensive survey of the metric of software cognitive complexity. Some classic and efficient software cognitive complexity metrics, such as Class Complexity (CC), Weighted Class Complexity (WCC), Extended Weighted Class Complexity (EWCC), Class Complexity due to Inheritance (CCI) and Average Complexity of a program due to Inheritance (ACI), are discussed and analyzed. The comparison and the relationship of these metrics of software complexity are also presented.

Keywords: Software Metrics, Software Complexity, Cognitive Informatics, Cognitive Complexity, Software measurement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3026
1452 A Similarity Metric for Assessment of Image Fusion Algorithms

Authors: Nedeljko Cvejic, Artur Łoza, David Bull, Nishan Canagarajah

Abstract:

In this paper, we present a novel objective nonreference performance assessment algorithm for image fusion. It takes into account local measurements to estimate how well the important information in the source images is represented by the fused image. The metric is based on the Universal Image Quality Index and uses the similarity between blocks of pixels in the input images and the fused image as the weighting factors for the metrics. Experimental results confirm that the values of the proposed metrics correlate well with the subjective quality of the fused images, giving a significant improvement over standard measures based on mean squared error and mutual information.

Keywords: Fusion performance measures, image fusion, nonreferencequality measures, objective quality measures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490
1451 A Metric Framework for Analysis of Quality of Object Oriented Design

Authors: Amandeep Kaur, Satwinder Singh, Dr. K. S. Kahlon

Abstract:

The impact of OO design on software quality characteristics such as defect density and rework by mean of experimental validation. Encapsulation, inheritance, polymorphism, reusability, Data hiding and message-passing are the major attribute of an Object Oriented system. In order to evaluate the quality of an Object oriented system the above said attributes can act as indicators. The metrics are the well known quantifiable approach to express any attribute. Hence, in this paper we tried to formulate a framework of metrics representing the attributes of object oriented system. Empirical Data is collected from three different projects based on object oriented paradigms to calculate the metrics.

Keywords: Object Oriented, Software metrics, Methods, Attributes, cohesion, coupling, Inheritance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
1450 Topology Preservation in SOM

Authors: E. Arsuaga Uriarte, F. Díaz Martín

Abstract:

The SOM has several beneficial features which make it a useful method for data mining. One of the most important features is the ability to preserve the topology in the projection. There are several measures that can be used to quantify the goodness of the map in order to obtain the optimal projection, including the average quantization error and many topological errors. Many researches have studied how the topology preservation should be measured. One option consists of using the topographic error which considers the ratio of data vectors for which the first and second best BMUs are not adjacent. In this work we present a study of the behaviour of the topographic error in different kinds of maps. We have found that this error devaluates the rectangular maps and we have studied the reasons why this happens. Finally, we suggest a new topological error to improve the deficiency of the topographic error.

Keywords: Map lattice, Self-Organizing Map, topographic error, topology preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
1449 Design of Digital Differentiator to Optimize Relative Error

Authors: Vinita V. Sondur, Vilas B. Sondur, Narasimha H. Ayachit

Abstract:

It is observed that the Weighted least-square (WLS) technique, including the modifications, results in equiripple error curve. The resultant error as a percent of the ideal value is highly non-uniformly distributed over the range of frequencies for which the differentiator is designed. The present paper proposes a modification to the technique so that the optimization procedure results in lower maximum relative error compared to the ideal values. Simulation results for first order as well as higher order differentiators are given to illustrate the excellent performance of the proposed method.

Keywords: Differentiator, equiripple, error distribution, relative error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1226
1448 Dispersed Error Control based on Error Filter Design for Improving Halftone Image Quality

Authors: Sang-Chul Kim, Sung-Il Chien

Abstract:

The error diffusion method generates worm artifacts, and weakens the edge of the halftone image when the continuous gray scale image is reproduced by a binary image. First, to enhance the edges, we propose the edge-enhancing filter by considering the quantization error information and gradient of the neighboring pixels. Furthermore, to remove worm artifacts often appearing in a halftone image, we add adaptively random noise into the weights of an error filter.

Keywords: Artifact suppression, Edge enhancement, Error diffusion method, Halftone image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1447 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks

Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra

Abstract:

The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.

Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
1446 Performance Management Guide for Research and Development Process

Authors: Heejung Lee

Abstract:

Performance management seems to be essential in business area and is also an exciting topic. Despite significant and myriads of research efforts, performance management guide today as a rigorous approach is still in an immature state and metrics are often selected based on intuitive and heuristic approach. In R&D side, the difficulty to guide the proper performance management is even more increasing due to the natural characteristics of R&D such as unique or domain-specific problems. In our approach, we present R&D performance management guide considering various characteristics of R&D side: performance evaluation objectives, dimensions, metrics, and uncertainties of R&D sector.

Keywords: Performance management, R&D, metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549