Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8754

Search results for: Error diffusion method

8754 Dispersed Error Control based on Error Filter Design for Improving Halftone Image Quality

Authors: Sang-Chul Kim, Sung-Il Chien

Abstract:

The error diffusion method generates worm artifacts, and weakens the edge of the halftone image when the continuous gray scale image is reproduced by a binary image. First, to enhance the edges, we propose the edge-enhancing filter by considering the quantization error information and gradient of the neighboring pixels. Furthermore, to remove worm artifacts often appearing in a halftone image, we add adaptively random noise into the weights of an error filter.

Keywords: Artifact suppression, Edge enhancement, Error diffusion method, Halftone image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
8753 A New Time Discontinuous Expanded Mixed Element Method for Convection-dominated Diffusion Equation

Authors: Jinfeng Wang, Yuanhong Bi, Hong Li, Yang Liu, Meng Zhao

Abstract:

In this paper, a new time discontinuous expanded mixed finite element method is proposed and analyzed for two-order convection-dominated diffusion problem. The proofs of the stability of the proposed scheme and the uniqueness of the discrete solution are given. Moreover, the error estimates of the scalar unknown, its gradient and its flux in the L1( ¯ J,L2( )-norm are obtained.

Keywords: Convection-dominated diffusion equation, expanded mixed method, time discontinuous scheme, stability, error estimates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
8752 Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations

Authors: Naveed Ahmed, Gunar Matthies

Abstract:

We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numerical results which shows that the cGP(k) and dG(k)- methods are accurate of order k +1, respectively, in the whole time interval. Moreover, the cGP(k)-method is superconvergent of order 2k and dG(k)-method is of order 2k +1 at the discrete time points. Furthermore, the dependence of the results on the choice of the stabilization parameter are discussed and compared.

Keywords: Convection-diffusion-reaction equations, stabilized finite elements, discontinuous Galerkin, continuous Galerkin-Petrov.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
8751 Solution of Density Dependent Nonlinear Reaction-Diffusion Equation Using Differential Quadrature Method

Authors: Gülnihal Meral

Abstract:

In this study, the density dependent nonlinear reactiondiffusion equation, which arises in the insect dispersal models, is solved using the combined application of differential quadrature method(DQM) and implicit Euler method. The polynomial based DQM is used to discretize the spatial derivatives of the problem. The resulting time-dependent nonlinear system of ordinary differential equations(ODE-s) is solved by using implicit Euler method. The computations are carried out for a Cauchy problem defined by a onedimensional density dependent nonlinear reaction-diffusion equation which has an exact solution. The DQM solution is found to be in a very good agreement with the exact solution in terms of maximum absolute error. The DQM solution exhibits superior accuracy at large time levels tending to steady-state. Furthermore, using an implicit method in the solution procedure leads to stable solutions and larger time steps could be used.

Keywords: Density Dependent Nonlinear Reaction-Diffusion Equation, Differential Quadrature Method, Implicit Euler Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
8750 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces

Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.

Keywords: Close surfaces, high-order approach, numerical solutions, reaction-diffusion systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040
8749 A Finite Point Method Based on Directional Derivatives for Diffusion Equation

Authors: Guixia Lv, Longjun Shen

Abstract:

This paper presents a finite point method based on directional derivatives for diffusion equation on 2D scattered points. To discretize the diffusion operator at a given point, a six-point stencil is derived by employing explicit numerical formulae of directional derivatives, namely, for the point under consideration, only five neighbor points are involved, the number of which is the smallest for discretizing diffusion operator with first-order accuracy. A method for selecting neighbor point set is proposed, which satisfies the solvability condition of numerical derivatives. Some numerical examples are performed to show the good performance of the proposed method.

Keywords: Finite point method, directional derivatives, diffusionequation, method for selecting neighbor point set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
8748 The Comparison of Finite Difference Methods for Radiation Diffusion Equations

Authors: Ren Jian, Yang Shulin

Abstract:

In this paper, the difference between the Alternating Direction Method (ADM) and the Non-Splitting Method (NSM) is investigated, while both methods applied to the simulations for 2-D multimaterial radiation diffusion issues. Although the ADM have the same accuracy orders with the NSM on the uniform meshes, the accuracy of ADM will decrease on the distorted meshes or the boundary of domain. Numerical experiments are carried out to confirm the theoretical predication.

Keywords: Alternating Direction Method, Non-SplittingMethod, Radiation Diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
8747 A Method for Improving the Embedded Runge Kutta Fehlberg 4(5)

Authors: Sunyoung Bu, Wonkyu Chung, Philsu Kim

Abstract:

In this paper, we introduce a method for improving the embedded Runge-Kutta-Fehlberg4(5) method. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. These solution and error are obtained by solving an initial value problem whose solution has the information of the error at each integration step. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. For the assessment of the effectiveness, EULR problem is numerically solved.

Keywords: Embedded Runge-Kutta-Fehlberg method, Initial value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
8746 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation

Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results is in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes.

Keywords: Semi-Lagrangian method, Iteration free method, Nonlinear advection-diffusion equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
8745 Reducing Power in Error Correcting Code using Genetic Algorithm

Authors: Heesung Lee, Joonkyung Sung, Euntai Kim

Abstract:

This paper proposes a method which reduces power consumption in single-error correcting, double error-detecting checker circuits that perform memory error correction code. Power is minimized with little or no impact on area and delay, using the degrees of freedom in selecting the parity check matrix of the error correcting codes. The genetic algorithm is employed to solve the non linear power optimization problem. The method is applied to two commonly used SEC-DED codes: standard Hamming and odd column weight Hsiao codes. Experiments were performed to show the performance of the proposed method.

Keywords: Error correcting codes, genetic algorithm, non-linearpower optimization, Hamming code, Hsiao code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
8744 Error Propagation in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027
8743 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case

Authors: Ahmed Badawi

Abstract:

This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.

Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
8742 Unequal Error Protection for Region of Interest with Embedded Zerotree Wavelet

Authors: T. Hirner, J. Polec

Abstract:

This paper describes a new method of unequal error protection (UEP) for region of interest (ROI) with embedded zerotree wavelet algorithm (EZW). ROI technique is important in applications with different parts of importance. In ROI coding, a chosen ROI is encoded with higher quality than the background (BG). Unequal error protection of image is provided by different coding techniques. In our proposed method, image is divided into two parts (ROI, BG) that consist of more important bytes (MIB) and less important bytes (LIB). The experimental results verify effectiveness of the design. The results of our method demonstrate the comparison of the unequal error protection (UEP) of image transmission with defined ROI and the equal error protection (EEP) over multiple noisy channels.

Keywords: embedded zerotree wavelet (EZW), equal error protection (EEP), region of interest (ROI), RS code, unequal error protection (UEP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
8741 Kinematic Parameter-Independent Modeling and Measuring of Three-Axis Machine Tools

Authors: Yung-Yuan Hsu

Abstract:

The primary objective of this paper was to construct a “kinematic parameter-independent modeling of three-axis machine tools for geometric error measurement" technique. Improving the accuracy of the geometric error for three-axis machine tools is one of the machine tools- core techniques. This paper first applied the traditional method of HTM to deduce the geometric error model for three-axis machine tools. This geometric error model was related to the three-axis kinematic parameters where the overall errors was relative to the machine reference coordinate system. Given that the measurement of the linear axis in this model should be on the ideal motion axis, there were practical difficulties. Through a measurement method consolidating translational errors and rotational errors in the geometric error model, we simplified the three-axis geometric error model to a kinematic parameter-independent model. Finally, based on the new measurement method corresponding to this error model, we established a truly practical and more accurate error measuring technique for three-axis machine tools.

Keywords: Three-axis machine tool, Geometric error, HTM, Error measuring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
8740 The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues

Authors: MA. Ansari

Abstract:

In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.

Keywords: Diffusion equation, boundary element method, refractive index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
8739 A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces

Authors: Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.

Keywords: Conservation laws, diffusion equations, Cahn-Hilliard Equations, evolving surfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
8738 Modeling and Simulating Reaction-Diffusion Systems with State-Dependent Diffusion Coefficients

Authors: Paola Lecca, Lorenzo Dematte, Corrado Priami

Abstract:

The present models and simulation algorithms of intracellular stochastic kinetics are usually based on the premise that diffusion is so fast that the concentrations of all the involved species are homogeneous in space. However, recents experimental measurements of intracellular diffusion constants indicate that the assumption of a homogeneous well-stirred cytosol is not necessarily valid even for small prokaryotic cells. In this work a mathematical treatment of diffusion that can be incorporated in a stochastic algorithm simulating the dynamics of a reaction-diffusion system is presented. The movement of a molecule A from a region i to a region j of the space is represented as a first order reaction Ai k- ! Aj , where the rate constant k depends on the diffusion coefficient. The diffusion coefficients are modeled as function of the local concentration of the solutes, their intrinsic viscosities, their frictional coefficients and the temperature of the system. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the intrinsic reaction kinetics and diffusion dynamics. To demonstrate the method the simulation results of the reaction-diffusion system of chaperoneassisted protein folding in cytoplasm are shown.

Keywords: Reaction-diffusion systems, diffusion coefficient, stochastic simulation algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267
8737 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection

Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang

Abstract:

To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detection is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15μm/10m and the accuracy of the machine tool is significant improved.

Keywords: Thermal expansion error of grating scale, error compensation, machine tools, integral method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
8736 Calibration of the Radical Installation Limit Error of the Accelerometer in the Gravity Gradient Instrument

Authors: Danni Cong, Meiping Wu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokuncai, Hao Qin

Abstract:

Gravity gradient instrument (GGI) is the core of the gravity gradiometer, so the structural error of the sensor has a great impact on the measurement results. In order not to affect the aimed measurement accuracy, limit error is required in the installation of the accelerometer. In this paper, based on the established measuring principle model, the radial installation limit error is calibrated, which is taken as an example to provide a method to calculate the other limit error of the installation under the premise of ensuring the accuracy of the measurement result. This method provides the idea for deriving the limit error of the geometry structure of the sensor, laying the foundation for the mechanical precision design and physical design.

Keywords: Gravity gradient sensor, radial installation limit error, accelerometer, uniaxial rotational modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
8735 The RK1GL2X3 Method for Initial Value Problems in Ordinary Differential Equations

Authors: J.S.C. Prentice

Abstract:

The RK1GL2X3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on the RK1GL2 method which, in turn, is a particular case of the general RKrGLm method. The RK1GL2X3 method is a fourth-order method, even though its underlying Runge-Kutta method RK1 is the first-order Euler method, and hence, RK1GL2X3 is considerably more efficient than RK1. This enhancement is achieved through an implementation involving triple-nested two-point Gauss- Legendre quadrature.

Keywords: RK1GL2X3, RK1GL2, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
8734 Design of Digital Differentiator to Optimize Relative Error

Authors: Vinita V. Sondur, Vilas B. Sondur, Narasimha H. Ayachit

Abstract:

It is observed that the Weighted least-square (WLS) technique, including the modifications, results in equiripple error curve. The resultant error as a percent of the ideal value is highly non-uniformly distributed over the range of frequencies for which the differentiator is designed. The present paper proposes a modification to the technique so that the optimization procedure results in lower maximum relative error compared to the ideal values. Simulation results for first order as well as higher order differentiators are given to illustrate the excellent performance of the proposed method.

Keywords: Differentiator, equiripple, error distribution, relative error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
8733 Basket Option Pricing under Jump Diffusion Models

Authors: Ali Safdari-Vaighani

Abstract:

Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.

Keywords: Radial basis function, basket option, jump diffusion, RBF-PUM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807
8732 Topology Preservation in SOM

Authors: E. Arsuaga Uriarte, F. Díaz Martín

Abstract:

The SOM has several beneficial features which make it a useful method for data mining. One of the most important features is the ability to preserve the topology in the projection. There are several measures that can be used to quantify the goodness of the map in order to obtain the optimal projection, including the average quantization error and many topological errors. Many researches have studied how the topology preservation should be measured. One option consists of using the topographic error which considers the ratio of data vectors for which the first and second best BMUs are not adjacent. In this work we present a study of the behaviour of the topographic error in different kinds of maps. We have found that this error devaluates the rectangular maps and we have studied the reasons why this happens. Finally, we suggest a new topological error to improve the deficiency of the topographic error.

Keywords: Map lattice, Self-Organizing Map, topographic error, topology preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
8731 Local Error Control in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe an effective local error control algorithm for RK5GL3, which uses local extrapolation with an eighth-order Runge-Kutta method in tandem with RK5GL3, and a Hermite interpolating polynomial for solution estimation at the Gauss-Legendre quadrature nodes.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, Hermite interpolating polynomial, initial value problem, local error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240
8730 Restarted GMRES Method Augmented with the Combination of Harmonic Ritz Vectors and Error Approximations

Authors: Qiang Niu, Linzhang Lu

Abstract:

Restarted GMRES methods augmented with approximate eigenvectors are widely used for solving large sparse linear systems. Recently a new scheme of augmenting with error approximations is proposed. The main aim of this paper is to develop a restarted GMRES method augmented with the combination of harmonic Ritz vectors and error approximations. We demonstrate that the resulted combination method can gain the advantages of two approaches: (i) effectively deflate the small eigenvalues in magnitude that may hamper the convergence of the method and (ii) partially recover the global optimality lost due to restarting. The effectiveness and efficiency of the new method are demonstrated through various numerical examples.

Keywords: Arnoldi process, GMRES, Krylov subspace, systems of linear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
8729 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model

Authors: Phornpat Chewasoonthorn, Surat Kwanmuang

Abstract:

Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. In this study, we developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, we present an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.

Keywords: Indoor positioning, ultra-wideband, error correction, Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106
8728 Predictability of the Two Commonly Used Models to Represent the Thin-layer Re-wetting Characteristics of Barley

Authors: M. A. Basunia

Abstract:

Thirty three re-wetting tests were conducted at different combinations of temperatures (5.7- 46.30C) and relative humidites (48.2-88.6%) with barley. Two most commonly used thinlayer drying and rewetting models i.e. Page and Diffusion were compared for their ability to the fit the experimental re-wetting data based on the standard error of estimate (SEE) of the measured and simulated moisture contents. The comparison shows both the Page and Diffusion models fit the re-wetting experimental data of barley well. The average SEE values for the Page and Diffusion models were 0.176 % d.b. and 0.199 % d.b., respectively. The Page and Diffusion models were found to be most suitable equations, to describe the thin-layer re-wetting characteristics of barley over a typically five day re-wetting. These two models can be used for the simulation of deep-bed re-wetting of barley occurring during ventilated storage and deep bed drying.

Keywords: Thin-layer, barley, re-wetting parameters, temperature, relative humidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
8727 Turing Pattern in the Oregonator Revisited

Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss

Abstract:

In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.

Keywords: Diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674
8726 Exact Evaluation Method for Error Performance Analysis of Arbitrary 2-D Modulation OFDM Systems with CFO

Authors: Jaeyoon Lee, Dongweon Yoon, Hoon Yoo, Sanggoo Kim

Abstract:

Orthogonal frequency division multiplexing (OFDM) has developed into a popular scheme for wideband digital communications used in consumer applications such as digital broadcasting, wireless networking and broadband internet access. In the OFDM system, carrier frequency offset (CFO) causes intercarrier interference (ICI) which significantly degrades the system error performance. In this paper we provide an exact evaluation method for error performance analysis of arbitrary 2-D modulation OFDM systems with CFO, and analyze the effect of CFO on error performance.

Keywords: Carrier frequency offset, Probability of error, Inter-channel interference, Orthogonal frequency division multiplexing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
8725 Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

Authors: A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti

Abstract:

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Keywords: External mass transfer, pore volume diffusion, surface diffusion, mass action law isotherm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952