
 

 
Abstract—Software failures can present an enormous detriment to 

people's lives and cost millions of dollars to repair when they are 
unexpectedly encountered in the wild. Despite a significant portion of 
the software development lifecycle and resources are dedicated to 
testing, software failures are a relatively frequent occurrence. 
Nevertheless, the evaluation of testing effectiveness remains at the 
forefront of ensuring high-quality software and software metrics play 
a critical role in providing valuable insights into quantifiable 
objectives to assess the level of assurance and confidence in the 
system. As the selection of appropriate metrics can be an arduous 
process, the goal of this paper is to shed light on the significance of 
software metrics by examining a range of testing techniques and 
metrics as well as identifying key areas for improvement. In doing so, 
this paper presents a method to compare the effectiveness of testing 
techniques with heterogeneous output metrics. Additionally, through 
this investigation, readers will gain a deeper understanding of how 
metrics can help to drive informed decision-making on delivering 
high-quality software and facilitate continuous improvement in testing 
practices. 
 

Keywords—Software testing, software metrics, testing 
effectiveness, black box testing, random testing, adaptive random 
testing, combinatorial testing, fuzz testing, equivalence partition, 
boundary value analysis, white box testings  

I. INTRODUCTION 

OFTWARE testing is the primary means for determining a 
software’s quality through assessing whether the software 

functions correctly and identifying issues that jeopardize its 
correct behavior. Testing is the most prominent form of 
Verification and Validation (V&V) - two facets that ensure a 
given software fulfills its intended purpose. The V&V process 
is ever present throughout all stages of the software 
development life cycle (SDLC). Verification addresses whether 
the software is built according to the design specifications at 
each development stage whereas validation evaluates whether 
the software satisfied its intended requirements successfully. 
Unlike other forms of V&V such as code inspections and 
formal methods (rigorous mathematical proof-like techniques 
which can be brittle due to unyielding assumptions and are very 
costly to maintain), software testing can be parallelized and 
automated – features that directly correlate to its wider appeal 
and ability to handle large and complex software. 

Testing, nevertheless, does have substantial limitations as 
well. For one, testing is an incomplete process. A software 
system's behavior is governed by its input parameters or 
configurations and their interactions. For a system with 𝑛 such 
configurations, the total state space of valid input combinations 
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is a cartesian product of 𝑛 sets where each set contains all 
possible values a given input can take. Mathematically this can 
be represented as: 
 

                          𝑆  𝑉   𝑉  …  𝑉                            (1) 
 
where 𝑉  is the set of values input 𝑖 can take. For all but the most 
trivial of software, this state space (𝑆 ) tends to be so large that 
it is infeasible to test exhaustively. Rather, testing is done on a 
sample of the input space commonly referred to as a test suite 
or test set which in turn is composed of test cases that are tuples 
with specific assigned values for each input configuration. 

Therefore, regardless of how much testing is undertaken, 
testing cannot prove an absence of bugs [1]. Used 
interchangeably with errors at times, bugs refer to the actual 
manifestation of errors discovered during the testing phase of 
the SDLC whereas an error, as defined by ISO/IEC/IEEE 24765 
[2], is any difference between a computed, observed, or 
measured value or condition from its true or theoretically 
correct value or condition. Fig. 1 visualizes the relationship 
between error and its related terms. Faults are synonymous with 
bugs and when they are executed in the code, a failure occurs. 
A defect can refer to either a fault or a failure and vulnerabilities 
are a subset of bugs that are more critical due to their potential 
exploitability from bad actors. The rest of this paper will use the 
term error to generalize between the different terms as error is 
still the source point regardless of when and how it is 
discovered in the SDLC. 

As testing generally observes only a small sample of the 
astronomical state space, it is always possible an error exists 
amongst dormant test cases left untested. Also, it is possible that 
the error simply cannot be materialized within the testing 
environment. For example, an appointment scheduler system 
that only tests the current year and fails to account for leap years 
will yield errors after the next leap day potentially setting up 
appointments on days when the venue is closed. Similarly, any 
unsuspected unknown that could potentially alter or affect the 
software behavior will not be capturable within the limits of 
testing.  

Secondly, with regards to limitations of testing, due to the 
lack of a unifying quantification of metrics for measuring the 
adequacy of a test, comparing different testing techniques can 
often seem like comparing apples and oranges due to the 
heterogeneity of metrics between the different techniques. A 
recent survey [3] conducted to determine which techniques 
were most prevalently utilized, identified a diverse range of 
techniques but failed to determine any outstanding winner or 
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favorites. Generally, a well-studied and understood problem 
gravitates towards a solution that utilizes the most efficient 
tactics available with little variation to achieve its goal. This 
paper seeks, first, to provide a comprehensive examination of 
prominent software testing techniques, including an analysis of 

their associated metrics, advantages and disadvantages, and 
secondly, to formulate a methodology for facilitating informed 
decision making and enhancing overall test effectiveness for 
determining the most efficient test technique at any given point 
in the testing process. 

 

 

Fig. 1 Relation between error, bug, fault, failure, vulnerability and defect 
 

The cost associated with fixing an error that is discovered late 
in the SDLC is exponentially greater than if it was discovered 
early. As development advances, more and more components 
are integrated together to form a cohesive piece of software and 
it becomes a daunting task to simply identify the root cause of 
the error. Also, as a software’s lines of code (SLOC) grows, 
more changes may be needed to detangle the problem and issue 
a solution. Software testing accounts for about 50% of the 
development time and over 50% of the total cost [4]. These 
percentages increase even further for more critical software 
such as safety critical systems where human life may be 
impacted. As a result, extensive emphasis has been put forth 
towards shifting as much of testing to the left in the SDLC as 
possible (i.e. Agile methodologies) as well as utilizing system 
models such as digital twins to ensure correct-by-construction 
design to deter total cost and time investment. 

To conform with Agile methodologies, different stages of 
testing are performed throughout the various stages of the 
development process. The most fundamental level, unit testing, 
involves testing components and modules of the software 
independently. This can be done as early as in the development 
or coding stage of the development lifecycle. The next stage, 
integration testing, combines multiple components together to 
form more complex components and verifies their interaction. 
The scope expands further in system testing which tests the 
system comprised of all components as a single entity. 
Acceptance test, the final test before deployment of the 
software, validates that all requirements of the software are met. 
Other tests like regression, smoke and stress test vary similarly 
either in terms of scale or the SDLC stage in which they are 
performed. The rest of this paper mentions testing in the more 
general sense, but the notion can be applied specifically to any 
of the different levels without loss of generality. 

Given the infeasibility of exhaustive testing, testing frames 
into an optimization problem with an objective to maximize the 
confidence in the software assurance, namely that the software 
in question performs only its intended function and is free of 
vulnerabilities [5]. This problem is constrained by a tolerance 
cost which can depend on several factors such as budget and 

criticality. Different testing techniques utilize different methods 
to construct their test suites which are motivated by different 
empirical evidence. Overall, the techniques form two 
classifications which either construct tests based on input 
combinations or on the trajectory of the software code which 
observes the different paths that the software can undertake 
during execution from start to end. These classifications are 
referred to as black box and white box testing respectively. 
Generally, white box testing is utilized at the unit testing stage 
to ensure functional correctness of components independently 
until the system becomes more complex through continuous 
integration. Contrastingly, black box testing is applicable at 
every stage of software testing but is more strongly suited for 
the later levels due to its ability to abstract the varying layers of 
software and analyze at the system level. 

II. BLACK BOX TESTING – TECHNIQUES AND ANALYSIS 

Black box testing is a classification of testing in which the 
tester does not have knowledge about the inner workings of the 
software and is only able to interact with the software externally 
by providing a series of inputs. The inputs are then executed on 
the software resulting in some output. In older publications, this 
process was illustrated as a black box covering the software 
element and hence how it received its most widely recognized 
name. However, black box testing is also referred to as 
specification-based testing, behavioral testing, opaque testing, 
and closed testing. While an understanding of the underlying 
intricacies of the software is not needed, black box tests do 
require an executable artifact to test on - whether it be in the 
form of a source code or a software model, and therefore testing 
of this type cannot be performed until late into the development 
process. Similarly, the adequacy of these tests is inferred only 
from examining the results obtained from test suites. 

Determining the functional correctness of the software 
system requires three items. The first as mentioned is the 
executable artifact required to run the tests. The second item is 
a test oracle which serves as a test “answer key” and is formally 
defined as any program, process, or body of data that specifies 
the expected outcome of a set of tests as applied to a test object 
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[6]. Thirdly, a mechanism is needed to compare the values 
between the two items. Given an oracle that is machine 
understandable, the entire process can be automated however 
oracle construction remains an active research problem within 
testing that is prominently focused on utilizing less-human 
centric methods to produce an automatable and scalable 
solution.   

In general practice, the end user often performs the role of 
the oracle due to their high-level understanding of what the 
expected results should be based on the software requirements. 
As this process tediously identifies false positives and false 
negatives from test results, it can be an error-prone and time-
consuming process due to human involvement. In this case, a 
false positive test result indicates an error that is unrealizable 
possibly due to dead code in the software that is unreachable 
under normal operation. This type of result can be more 
common among the so called “dirty” tests like fuzzing which 
will be discussed in depth later. On the other hand, false 
negative results are far less benign as they are test results that 
should have identified an error. Upon failing detection, 
primarily due to the incompleteness of testing as highlighted in 
the scheduler example, the errors lay dormant to potentially 
cause greater havoc during the operation and maintenance 
phase of the software. 

If a testing process is unable to conjure a sufficient oracle, 
then functional correctness cannot be validated. Instead, the 
process devolves into checking for robustness only - whether 
the system hangs or crashes when it is presented with a given 
test case. Although less useful as a metric, this analysis can still 
be meaningful for software assurance, specifically for the 
discovery of vulnerabilities. 

A. Random Testing 

Random Testing (RT) is the simplest form of black box 
testing. It constructs test cases by randomly generating values 
for all inputs, executes them iteratively, and compares each 
output with the test oracle. The test quality is measured based 
on the total errors discovered proportional to the total number 
of runs. As the inputs are randomly generated and no record of 
previous executed tests is maintained to facilitate quick test 
execution, it can be easy to repeatedly test the same functional 
behavior across multiple tests, even generating the same test 
case although with significantly lower probability, and miss 
generating rare inputs that would have identified potential 
failures. 

 

 

Fig. 2 An error that only occurs when the software executes a rare 
input 

 
For example, we suppose a software component has the code 

structure illustrated in Fig. 2. If config1 can have hundreds of 

different values, then the probability of a test case exploring the 
if section of the if statement at random is extremely low that it 
would constitute as a rare input. Although a unit test is likely to 
pick up on this error, the issue is more pressing when the error 
occurs at an intersection of multiple input values from different 
components such that if the if condition was config1 == x && 
config2 == y && config3 == z instead, then the error would no 
longer be identifiable via unit testing and will have only a low 
probability of being discovered by random testing as well. 

Over the years, advancing research has sought to improve 
upon random testing by managing two aspects of the testing 
process: limiting the degree of randomness of the input 
generation process or applying a reduction to the 
overwhelmingly large state space of test inputs. 

B. Adaptive Random Testing 

Adaptive Random Testing (ART) is a refinement of RT that 
reduces the former technique’s degree of randomness. It 
maintains two sets: a candidate set and an executed set. The 
candidate set is a set of test cases generated randomly that 
determines the domain of test cases from which the next test 
case to execute is selected. The executed set is a set of all test 
cases that have been executed. For each iteration, ART 
generates a new candidate set, chooses one test case among 
them to execute and runs it, moving the test case to the executed 
set before it purges the candidate set. Fig. 3 provides a better 
detailed pseudocode implementation of ART. 

 

 

Fig. 3 Pseudocode for ART 
 

ART uses a fitness function to calculate a “distance” measure 
between each member of the candidate set and each member of 
the executed set and associates the smallest value for each 
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member of the candidate set with any of the executed test case 
to represent the candidate test case’s “distance” to its nearest 
neighbor. Then, the test case that has the highest distance value 
assigned to it is selected for execution. As ART is based on the 
empirical evidence that error-inducing inputs are often confined 
into contiguous clustered regions, the fitness function employs 
a greedy algorithmic approach to optimize its potential to 
explore a different region at every iteration by selecting the 
candidate that is furthest away from any neighbor. This form of 
testing is categorized as search-based software testing (SBST) 
which is another prominent area of research within software 
testing. The fitness function can utilize the distance function 
directly factoring the difference in values of each input equally 
or it can be fine-tuned to allow for specific inputs to have a 
greater or lesser influence on the distance measure and in turn 
identifying the cluster region to which the input belongs. For 
example, a health-based application that has both height and 
weight as inputs will need to normalize the input value units if 
it wants to ensure they have an equal impact on the calculations 
otherwise the greater range from the weight measurement will 
drown the influence from height. Furthermore, any input value 
that is not represented numerically will need to be converted to 
be used in the calculation.  

Overall, ART performs better than RT as it either finds more 
errors in the same number of tests run or an equal number of 
errors in a fewer number of runs [7]. However, it does have a 
relatively high overhead cost due to the extra computations it 
needs to perform to determine which test cases to run and the 
overhead increases linearly alongside the size of the executed 
set. Whereas an RT iteration would only ever have a relatively 
fixed runtime of some length 𝑓, ART's runtime composes of 
𝑓 𝑐𝑡, where the 𝑐𝑡 term incurs from the scaling induced from 
the candidate set size 𝑐 and executed set size 𝑡. Even in 
variations of the algorithm, where the candidate set size 𝑐 might 
not be of a fixed length between iterations, 𝑐 can be treated like 
a constant without loss of generality as the variance would not 
be substantial enough to significantly affect the calculation. 
Therefore, after an 𝑛 number of test cases have been executed 
with both RT and ART, the runtime for the next test case will 
differ by a factor of 𝑥 such that an extra 𝑥 1 RT test cases can 
be run within the same interval that could effectively reduce and 
potentially challenge the net effectiveness gain from ART. 
Thus, due to the lack of a standard metric for comparison, many 
comparison metrics exhibit an innate level of bias making them 
difficult to compare on equal terms and setting. 

C. Combinatorial Testing 

Combinatorial testing (CT), unlike most other testing 
methods, focuses on managing the large test input space 
through reduction. Also referred to as combinatorial interaction 
testing (CIT) and high throughput testing (HTT), CT is based 
on the interaction rule backed by empirical evidence that most 
errors can be realized from an interaction of only a few different 
input parameters. A study investigating the distribution of 
errors with respect to the number of interactions between 
different input configurations concluded that up to 47% of total 
errors occur from just pairwise interactions, 19% can come 

from three-way interactions, an extra 7% can be discovered by 
considering four-way interactions and just about every error can 
be encapsulated through six-way interactions [8]. Thus, the 
problem of testing all valid input combinations can be reduced 
to obtaining a 𝑡-way coverage of the input values where 𝑡 refers 
to the number of interactions being considered and signifies the 
strength of the coverage. 

Combinatorial coverage is a metric that measures the 
completeness of a test suite in terms of how many of the total 𝑡-
way interactions that are encapsulated in the test suite. Not only 
does 100% 𝑡-way coverage imply 100% 𝑡 1-way coverage 
but it can also guarantee some percentage of 𝑡 1-way 
coverage and this is considered as a strong criterion for 
comparing test suites. As constructing an optimal test suite with 
maximal combinatorial coverage in the fewest number of tests 
is a very difficult problem to solve, several tools like ACTS [9] 
are utilized to obtain a heuristic solution using greedy 
approaches to construct a near optimal covering array. A 
covering array is a test suite that provides 100% 𝑡-way test 
coverage in the form of a matrix where each row consists of 
inputs for a singular test case. 

When combinatorial coverage is applied to test suites derived 
through other test techniques, most suites tend to exhibit 
relatively low 𝑡-way combinatorial coverage beyond pairwise 
testing. One study was conducted on a spacecraft software with 
82 different input configurations using a test suite of 7,489 test 
cases to verify correct system behavior under a mix of normal 
operating conditions and faulty scenarios. The test discovered 
that although the pairwise coverage achieved was 94%, higher 
t-way coverage dropped to 83% for 3-way coverage, under 70% 
for 4-way and slightly over 50% for 5-way coverage [10]. As 
combinatorial testing is tuned to optimize combinatorial 
coverage, it is not surprising that other testing techniques would 
yield lower coverage. Another study [11] comparing the fault 
detection capability of CT, RT, and ART concluded that CT 
performed at least as good as RT and ART on 98% of test 
scenarios and the difference was most noticeable on software 
with relatively few errors that only surfaced from a small 
number of test cases. This aligns with the previous discussion 
that very specific errors are difficult to detect with random 
based techniques. 

Still, other studies [12] conflict with the improved coverage 
and fault detection achieved with CT stating that the 
improvement is either minimal and not worth the computational 
effort to generate a covering array or that the results are 
indistinguishable altogether from other techniques like RT. 
These clashing conclusions are likely a result of the fact that a 
testing technique’s effectiveness is determined by a multitude 
of factors and there may not be a one size fits all solution. For 
example, factors such as the software’s size, complexity and 
budget, as well as the number of errors it has, including their 
density, how easy they are to discover, to even the software’s 
use case which often determines the rigor of testing undertaken 
can all play an important role not only in determining the 
effectiveness of a specific testing technique but also in 
determining which technique is most suitable. 

Nevertheless, there are still some key advantages of using 
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CT. For one, CT’s fault detection effectiveness has a high 
degree of stability. Where stability refers to the discrepancy in 
results obtained over multiple consecutive executions of the 
testing technique generating a new test suite to execute each 
time, higher stability exudes more confidence on the test’s 
effectiveness. Furthermore, as software development gravitates 
towards a less human-centric process, the behavior of the 
software system will no longer depend just on the written code 
like traditional software but rather more significantly on the 
input data. This may lessen the overall effectiveness of 
structural coverage testing techniques as even the coding 
process could be labeled as a black box and thus acquiring the 
source code or reasoning about the trajectory of the software 
may not be feasible. However, input-based tests like 
combinatorial testing will still be relevant [13] and may prove 
helpful at bridging the gap on understanding unexplainable 
results by allowing for better inferences to be made regarding 

the software behavior in light of results from testing. 

D. Equivalence Partitioning and Boundary Value Analysis 

If input configurations are continuous or unbounded, the 
valid input state space becomes infinite. Equivalence 
Partitioning (EP) is a technique that can transform a state space 
into regions, called equivalence classes, where each class is a 
grouping of inputs that output the same system behavior. EP is 
guided by the principle that if a test case resolves successfully, 
then other test cases from the same equivalence class would also 
fail to produce an error. Therefore, testing multiple test cases 
belonging to the same equivalence class becomes inefficient as 
the software will treat them in the same manner. This allows for 
a reduction on the state space by requiring a minimum of only 
a single test case from each equivalence class to be performed. 
This reduction process can be visualized in Fig. 4. 

 

 

Fig. 4 Reducing the input state space for testing by categorizing test cases into equivalence classes 
 

As all equivalence classes define the complete system 
behavior, the relation between an equivalence class and a 
distinct output result is an injective mapping. Thus, testing in 
terms of equivalence classes bounds the state space by the 
number of distinct output results – the sum of total distinct 
errors that can be encountered and the total sum of distinct 
correct behaviors of the system. This is upper bounded by the 
total input state space but more importantly is finite even if the 
input space is not. However, lacking perfect knowledge as a 
black box technique, this technique relies on heuristics to carve 
out each partition and is as much a form of art as it is science as 
two very different partitioning representations could be 
equivalent if they discover the same errors. 

Boundary Value Analysis (BVA), generally used in 
conjunction with EP, evaluates inputs at both sides of each 
boundary formed via EP to not only check for software 
correctness but also ensures that the partition regions have been 
constructed accurately. As programs fail some equivalence 
class condition and transition to a neighboring class at the 
boundary of each partition, the test cases constructed near the 
boundary regions maximize the probability of discovering 
errors [14] and thus are more critical to test. 

E. Fuzzing 

Fuzz testing or fuzzing has generally been utilized as a black 
box testing technique although in recent years it has also seen 
emergence as a grey box technique utilizing structural coverage 
criterion to generate tests. Conceptualized by Barton Miller 
[15], a professor at the University of Wisconsin, when he 

encountered several crashes while attempting to run command 
line programs over a modem connection due to electrical 
interference during a severe thunderstorm, fuzzing performs 
negative testing through sending anomalous data through the 
lens of invalid, malformed, and unexpected inputs to investigate 
the non-functional properties of a software such as security and 
reliability. Fuzzing has been utilized as a powerful tool for 
security-critical software due to its ability to detect crashes, 
timeouts, memory leaks, assert violations as well as prevent 
zero-day attacks by gauging security risks before a malicious 
adversary may be able to exploit them. 

Starting with an input seed (a starting test case), the technique 
continually modifies the previous set of inputs using a mutation 
scheme to generate all future test cases. This process can be as 
simple as applying an increment, flipping a bit, truncating 
and/or repeating some of the bit of the input values but can also 
utilize more popular and complex genetic algorithms like 
particle swarm and ant colony optimization to mutate some of 
the inputs. As fuzzing allows for invalid inputs to be 
considered, the input state space is once again infinite as the set 
of invalid inputs is unbounded in cardinality. Assuming inputs 
that cause a vulnerability are very specific in terms of test cases 
to constitute as a “rare input”, it will take a very long amount to 
time to discover these vulnerabilities if exploration from test 
cases is random. However, while some of the simpler 
implementations of fuzzing can indeed be random, those 
utilizing more complex mutations such as genetic algorithms 
can be more deliberate at deviating from previously executed 

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:8, 2024 

552International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
Sy

st
em

s 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
77

7.
pd

f



 

test cases. Similarly, the white box implementation of fuzzing 
leverages symbolic execution to ensure each test case traverses 
a different execution path of the code altogether. As such the 
white box implementation tends to be more efficient than the 
black box implementation on code coverage as black box 
mutation schemes tend to be unguided and randomized. 

Due to its conceptual simplicity and low barrier to 
deployment, fuzzing has been very successful at discovering 
vulnerabilities in real world software such as Heartbleed and is 
a requirement by Microsoft for their products. 

III. WHITE BOX TESTING TECHNIQUES AND ANALYSIS 

On the opposite spectrum, white box testing also referred to 
as structure-based testing, clear box testing, glass box testing, 
and open box testing among others requires knowledge over the 
inner working of the software. Due to this reason, this type of 
testing is usually performed by the developer while the former 
black box testing can be outsourced to another party without 
concern for loss of proprietary or confidential information. 
White box testing can begin as early as post design phase of the 
SDLC and is more focused towards testing the internal 
structure, code, and implementation of the software even to the 
extent of algorithm testing. Generally, white box testing tends 
to be more exhaustive and guided compared to black box 
testing, although it does also come with the caveat of being 
more time consuming as well as requiring greater expertise of 
the tester. White box tests assess the structural coverage by 
breaking the software into measurable building blocks in the 
form of statements, branches and conditions. These criteria are 
defined ahead. 

Statement coverage measures the total statements that are 

executed by a test suite as a proportion of the total statements 
in the software program. It tries to ensure that each statement is 
executed at least once throughout the test suite, providing some 
level of basic coverage on the codebase. However, failing that, 
it can highlight areas which have not been tested to identify 
potential dead code that may be unreachable. A significant 
disadvantage of statement coverage is that it is the weakest form 
of coverage that is still widely used. It does not check for 
correctness but only that the statements are executed and does 
not guarantee comprehensive testing such that executing only 
one path of a condition is sufficient and it does not need to cover 
all possible scenarios. 

Next, branch coverage, also referred to as decision coverage, 
measures how many of the total branches – edges that emerge 
as a result of diverging paths created from conditional 
statements, are traversed. Similarly, path coverage looks at all 
potential full paths that the software can partake from start to 
end. Although path and branch coverage seem very similar, 
path coverage supersedes branch coverage and thus is a more 
rigorous coverage metric. Likewise, branch coverage also 
supersedes statement coverage. Conditional coverage testing 
seeks to test all the conditional expressions for all possible 
outcomes at least once. 

Modified Condition/Decision Coverage (MC/DC) testing 
goes one step further combining branch and condition coverage 
and strengthens it further by requiring test cases to illustrate that 
each input can independently affect the outcome. Per DO-178C 
guidance, MC/DC testing is a requirement for avionics 
software. Generally, it requires a minimum of 𝑛 1 test cases, 
where 𝑛 denotes the number of unique inputs to the software. 
Fig. 5 highlights the differences between the coverages as 
applied to the accompanying code structure.  

 

 

Fig. 5 Minimal 100% coverage test suites for conditional, branch and MC/DC coverage 
 

 For conditional coverage testing, X, Y and Z need to 
evaluate to true and false at least once each. The first test case 
evaluates both X and Y to false and thus Z is not evaluated. The 
second test (4th row) evaluates X to false again, but Y to true 
and Z to true. The third test evaluates X to true and Z to false. 
Together, the three tests cover at least one instance of X, Y and 
Z being true and false. Branch coverage testing on the other 
hand only aims to explore the diverging branches from the if 
condition at least once and that can be achieved by multiple test 

case pairs of which one is shown in Fig. 5. 
For MC/DC testing, a different pair of tests show the 

independence of X, Y and Z (test 2 and 6 for X, test 2 and 4 for 
Y, and test 3 and 4 for Z) while also adhering to branch and 
conditional coverage criteria. Between the respective pairs, 
only one evaluation is changed such that only one bit differs 
between each pair in the representation. This showcases the 
influence a single input has on the system behavior as it 
evaluates to both true and false while everything else remains 
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consistent.   
 

 

Fig. 6 Varying strengths of coverage 
 

Lastly, Multiple Condition Coverage (MCC) is a 
combinatorial white box testing technique that requires testing 
all value combinations of conditions. It is more rigorous than 
the other white box testing techniques and would require testing 
all 8 rows of the table in Fig. 5. More generally it requires a 
minimum of 2  test cases where 𝑛 would be the total number 
of conditions. Due to the combinatorial aspect with no bounds 
unlike the 𝑡-way coverage of combinatorial testing, the required 
number of test cases can be quite large. Due to this, MCC has 
yet to gain more widespread acceptance, but it highly 
recommended in the European standardization, EN 50128, for 
railway systems with high safety integrity requirements. For 
completeness, the levels of coverage are visualized in Fig. 6. 

Although code coverage metrics are useful, 100% coverage 

with any criteria is seldom achieved. Statement coverage, as the 
most used coverage technique is feasible for 100% coverage 
(discounting any unreachable code), yet most test suites only 
reach upwards of 85% coverage. Similarly other types of 
coverage like branch coverage seek to achieve coverage in the 
range of 70-90% [16]. This is partly due to the pareto principle 
as applied to software testing, which claims that 80% of the 
testing effort can be expended with only 20% of the cost and 
further gains have significant diminishing returns.  

IV. FURTHER ANALYSIS 

Table I provides a snapshot of all the testing techniques that 
have been discussed in this paper along with their metrics and 
where they are most suitable. 

As many metrics are technique specific, it is difficult to 
utilize them for a direct comparison. This is even more apparent 
when trying to compare a black box and a white box technique 
as all structural coverage criterion like statements ran or 
branches traversed cannot be measured with black box testing 
techniques. However, the total number of errors and runtime are 
metrics that can be universally measured between all 
techniques. The previously mentioned study [11] comparing 
three black box techniques simply used errors found as its 
defining metric. However, this study can be done only in 
hindsight at the conclusion of testing and does not help provide 
guidance to the testing process itself. In a more practical setting, 
efficient testing is an online problem where a decision needs to 
be made on which test should be run for most efficient 
discovery of errors under imperfect information. 

 
TABLE I 

COMPARATIVE ANALYSIS OF SOFTWARE TESTING TECHNIQUES 

Black Box Metric Best Suited for 

Random Testing Faults discovered/ time Quick execution, faults are easy to discover 

Adaptive Random Testing Faults discovered/ number of test cases ran Exploratory, faults are clustered 

Combinatorial Testing 
T-way coverage achieved, faults discovered, t+1-way 

coverage achieved
Identifying errors related to interactions between 

inputs 
Equivalence Partitioning & Boundary Value 

Analysis 
Faults discovered Easy to draft partitions 

Fuzz Testing Faults discovered, false positive & negative ratios Discovering vulnerabilities (security focused) 

White Box Metric Best Suited for 

Statement Coverage Number of statements executed at least once Reachability analysis 

Branch Coverage Number of branches explored at least once Code coverage 

Path Coverage Number of full execution paths traversed at least once Discovering logic errors 

Condition Coverage Number of conditional outcomes explored at least once Examining behavior of conditions 

Modified Condition/Decision Coverage 
Branch coverage + condition coverage + showing each 

input can independently affect system output
Safety critical software 

Multiple Condition Coverage Testing all value combinations arisen from conditions Safety critical software 

 

We suppose a tester wants to know which technique between 
A or B is more effective at finding errors for a specific software. 
A testing technique A is more effective than technique B if it 
either discovers more errors in a shorter or equal amount of time 
than the runtime of B or if it discovers an equal number of errors 
in a strictly shorter amount of time. However, as many testing 
techniques utilize some degree of randomness or lack an 
established order in which to execute test cases, it is highly 
probable that while a technique A is more efficient than 
technique B at some time 𝑡, the situation can be reversed later 

at another time 𝑡 𝑖. Therefore, time needs to be an important 
factor in the metric to capture the constrained nature of the 
problem otherwise exhaustive testing would be the best testing 
technique. As more errors are discovered the longer a test is run, 
the discovery rate of errors for each technique is universally 
measurable and comparable as a rate of change: 𝑑𝑒/𝑑𝑡. 

At first, each of the rates will need to be initialized by running 
each of the testing technique with a sample number of tests. 
Afterwards, the most efficient technique is the one with the 
highest discovery rate and as more tests are run with that 
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technique, the rate continues to change. Once the rate for the 
technique being utilized is no longer the greatest, the testing 
technique should be switched to the one with the new greatest 
discovery rate and so forth. 

Over a prolonged period, the rate of error discovery 
converges to a concave behavior exhibiting diminishing returns 
from testing. With the total set of errors that can be encountered 
being finite and as more and more errors get discovered over 
time, the remaining errors will get fewer, impacting the 
discovery rate in the same fashion.  

Although, there is no clear stopping condition for this 
method, just like there is no stopping condition for most testing 
techniques, several conditions can be constructed such as in the 
form of a time limit or ensuring all rates of error discovery are 
within some tolerable amount, ϵ. Overall, the stopping 
condition will largely depend on several distinct factors such as 
usage and budget of the software in question. 

Overall, the analysis of the state-of-the-practice on testing 
techniques reveals that software metrics leave a lot to be desired 
on evaluating the overall effectiveness of software testing. The 
first shortcoming lies in the lack of comparable metrics. While 
various metrics exist, they often differ in definitions, 
measurement scales, or units, as seen with ART and RT as well 
as the various white box testing techniques, that it is quite a 
challenge to establish a common ground for comparison and 
draw any meaningful conclusion that will aid in making 
informed decisions. Addressing this issue will likely require 
stronger standardization of metrics with broad applicability and 
adaptability like the error discovery rate to enable fair and 
accurate comparisons. 

Another critique on current metrics is that while good metrics 
need to be easy to measure, they seem to overlook the 
qualitative attributes that define software quality. Many 
existing metrics such as code coverage and faults detected focus 
only on measurable aspects and do not quite holistically capture 
the essence of crucial qualitative aspects such as useability and 
reliability of the software. To address this limitation, a concrete 
mapping that connects qualitative attributes to quantifiable 
metrics needs to be established, and it is something we seek to 
investigate further. 

V.  CONCLUSION 

In conclusion, determining the most efficient technique 
available in software testing requires a comprehensive analysis 
of several intricate factors, including the specific test 
objectives, the nature of the system under test, and the available 
resources. This paper examined and compared different black 
box and white box testing techniques, along with their 
associated metrics, to evaluate their efficiency in achieving 
thorough test coverage. Although there is no single technique 
that can universally address all contexts, the efficiency of 
testing techniques can be evaluated by considering the error 
discovery rate. By measuring the number of errors detected per 
unit of testing effort, stakeholders can gain insights into the 
relative efficiency and efficacy of various testing techniques to 
make informed decisions for optimizing their testing efforts and 
enhancing the quality and reliability of the software involved. 
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