

Abstract—Software failures can present an enormous detriment to

people's lives and cost millions of dollars to repair when they are
unexpectedly encountered in the wild. Despite a significant portion of
the software development lifecycle and resources are dedicated to
testing, software failures are a relatively frequent occurrence.
Nevertheless, the evaluation of testing effectiveness remains at the
forefront of ensuring high-quality software and software metrics play
a critical role in providing valuable insights into quantifiable
objectives to assess the level of assurance and confidence in the
system. As the selection of appropriate metrics can be an arduous
process, the goal of this paper is to shed light on the significance of
software metrics by examining a range of testing techniques and
metrics as well as identifying key areas for improvement. In doing so,
this paper presents a method to compare the effectiveness of testing
techniques with heterogeneous output metrics. Additionally, through
this investigation, readers will gain a deeper understanding of how
metrics can help to drive informed decision-making on delivering
high-quality software and facilitate continuous improvement in testing
practices.

Keywords—Software testing, software metrics, testing
effectiveness, black box testing, random testing, adaptive random
testing, combinatorial testing, fuzz testing, equivalence partition,
boundary value analysis, white box testings

I. INTRODUCTION

OFTWARE testing is the primary means for determining a
software’s quality through assessing whether the software

functions correctly and identifying issues that jeopardize its
correct behavior. Testing is the most prominent form of
Verification and Validation (V&V) - two facets that ensure a
given software fulfills its intended purpose. The V&V process
is ever present throughout all stages of the software
development life cycle (SDLC). Verification addresses whether
the software is built according to the design specifications at
each development stage whereas validation evaluates whether
the software satisfied its intended requirements successfully.
Unlike other forms of V&V such as code inspections and
formal methods (rigorous mathematical proof-like techniques
which can be brittle due to unyielding assumptions and are very
costly to maintain), software testing can be parallelized and
automated – features that directly correlate to its wider appeal
and ability to handle large and complex software.

Testing, nevertheless, does have substantial limitations as
well. For one, testing is an incomplete process. A software
system's behavior is governed by its input parameters or
configurations and their interactions. For a system with 𝑛 such
configurations, the total state space of valid input combinations

Qasim Zafar is with USAF, USA (e-mail: qasim.zafar@us.af.mil).

is a cartesian product of 𝑛 sets where each set contains all
possible values a given input can take. Mathematically this can
be represented as:

 𝑆 𝑉 𝑉 … 𝑉 (1)

where 𝑉 is the set of values input 𝑖 can take. For all but the most
trivial of software, this state space (𝑆) tends to be so large that
it is infeasible to test exhaustively. Rather, testing is done on a
sample of the input space commonly referred to as a test suite
or test set which in turn is composed of test cases that are tuples
with specific assigned values for each input configuration.

Therefore, regardless of how much testing is undertaken,
testing cannot prove an absence of bugs [1]. Used
interchangeably with errors at times, bugs refer to the actual
manifestation of errors discovered during the testing phase of
the SDLC whereas an error, as defined by ISO/IEC/IEEE 24765
[2], is any difference between a computed, observed, or
measured value or condition from its true or theoretically
correct value or condition. Fig. 1 visualizes the relationship
between error and its related terms. Faults are synonymous with
bugs and when they are executed in the code, a failure occurs.
A defect can refer to either a fault or a failure and vulnerabilities
are a subset of bugs that are more critical due to their potential
exploitability from bad actors. The rest of this paper will use the
term error to generalize between the different terms as error is
still the source point regardless of when and how it is
discovered in the SDLC.

As testing generally observes only a small sample of the
astronomical state space, it is always possible an error exists
amongst dormant test cases left untested. Also, it is possible that
the error simply cannot be materialized within the testing
environment. For example, an appointment scheduler system
that only tests the current year and fails to account for leap years
will yield errors after the next leap day potentially setting up
appointments on days when the venue is closed. Similarly, any
unsuspected unknown that could potentially alter or affect the
software behavior will not be capturable within the limits of
testing.

Secondly, with regards to limitations of testing, due to the
lack of a unifying quantification of metrics for measuring the
adequacy of a test, comparing different testing techniques can
often seem like comparing apples and oranges due to the
heterogeneity of metrics between the different techniques. A
recent survey [3] conducted to determine which techniques
were most prevalently utilized, identified a diverse range of
techniques but failed to determine any outstanding winner or

Qasim Zafar, Matthew Anderson, Esteban Garcia, Steven Drager

On Determining the Most Effective Technique
Available in Software Testing

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:8, 2024

548International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
77

7.
pd

f

favorites. Generally, a well-studied and understood problem
gravitates towards a solution that utilizes the most efficient
tactics available with little variation to achieve its goal. This
paper seeks, first, to provide a comprehensive examination of
prominent software testing techniques, including an analysis of

their associated metrics, advantages and disadvantages, and
secondly, to formulate a methodology for facilitating informed
decision making and enhancing overall test effectiveness for
determining the most efficient test technique at any given point
in the testing process.

Fig. 1 Relation between error, bug, fault, failure, vulnerability and defect

The cost associated with fixing an error that is discovered late
in the SDLC is exponentially greater than if it was discovered
early. As development advances, more and more components
are integrated together to form a cohesive piece of software and
it becomes a daunting task to simply identify the root cause of
the error. Also, as a software’s lines of code (SLOC) grows,
more changes may be needed to detangle the problem and issue
a solution. Software testing accounts for about 50% of the
development time and over 50% of the total cost [4]. These
percentages increase even further for more critical software
such as safety critical systems where human life may be
impacted. As a result, extensive emphasis has been put forth
towards shifting as much of testing to the left in the SDLC as
possible (i.e. Agile methodologies) as well as utilizing system
models such as digital twins to ensure correct-by-construction
design to deter total cost and time investment.

To conform with Agile methodologies, different stages of
testing are performed throughout the various stages of the
development process. The most fundamental level, unit testing,
involves testing components and modules of the software
independently. This can be done as early as in the development
or coding stage of the development lifecycle. The next stage,
integration testing, combines multiple components together to
form more complex components and verifies their interaction.
The scope expands further in system testing which tests the
system comprised of all components as a single entity.
Acceptance test, the final test before deployment of the
software, validates that all requirements of the software are met.
Other tests like regression, smoke and stress test vary similarly
either in terms of scale or the SDLC stage in which they are
performed. The rest of this paper mentions testing in the more
general sense, but the notion can be applied specifically to any
of the different levels without loss of generality.

Given the infeasibility of exhaustive testing, testing frames
into an optimization problem with an objective to maximize the
confidence in the software assurance, namely that the software
in question performs only its intended function and is free of
vulnerabilities [5]. This problem is constrained by a tolerance
cost which can depend on several factors such as budget and

criticality. Different testing techniques utilize different methods
to construct their test suites which are motivated by different
empirical evidence. Overall, the techniques form two
classifications which either construct tests based on input
combinations or on the trajectory of the software code which
observes the different paths that the software can undertake
during execution from start to end. These classifications are
referred to as black box and white box testing respectively.
Generally, white box testing is utilized at the unit testing stage
to ensure functional correctness of components independently
until the system becomes more complex through continuous
integration. Contrastingly, black box testing is applicable at
every stage of software testing but is more strongly suited for
the later levels due to its ability to abstract the varying layers of
software and analyze at the system level.

II. BLACK BOX TESTING – TECHNIQUES AND ANALYSIS

Black box testing is a classification of testing in which the
tester does not have knowledge about the inner workings of the
software and is only able to interact with the software externally
by providing a series of inputs. The inputs are then executed on
the software resulting in some output. In older publications, this
process was illustrated as a black box covering the software
element and hence how it received its most widely recognized
name. However, black box testing is also referred to as
specification-based testing, behavioral testing, opaque testing,
and closed testing. While an understanding of the underlying
intricacies of the software is not needed, black box tests do
require an executable artifact to test on - whether it be in the
form of a source code or a software model, and therefore testing
of this type cannot be performed until late into the development
process. Similarly, the adequacy of these tests is inferred only
from examining the results obtained from test suites.

Determining the functional correctness of the software
system requires three items. The first as mentioned is the
executable artifact required to run the tests. The second item is
a test oracle which serves as a test “answer key” and is formally
defined as any program, process, or body of data that specifies
the expected outcome of a set of tests as applied to a test object

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:8, 2024

549International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
77

7.
pd

f

[6]. Thirdly, a mechanism is needed to compare the values
between the two items. Given an oracle that is machine
understandable, the entire process can be automated however
oracle construction remains an active research problem within
testing that is prominently focused on utilizing less-human
centric methods to produce an automatable and scalable
solution.

In general practice, the end user often performs the role of
the oracle due to their high-level understanding of what the
expected results should be based on the software requirements.
As this process tediously identifies false positives and false
negatives from test results, it can be an error-prone and time-
consuming process due to human involvement. In this case, a
false positive test result indicates an error that is unrealizable
possibly due to dead code in the software that is unreachable
under normal operation. This type of result can be more
common among the so called “dirty” tests like fuzzing which
will be discussed in depth later. On the other hand, false
negative results are far less benign as they are test results that
should have identified an error. Upon failing detection,
primarily due to the incompleteness of testing as highlighted in
the scheduler example, the errors lay dormant to potentially
cause greater havoc during the operation and maintenance
phase of the software.

If a testing process is unable to conjure a sufficient oracle,
then functional correctness cannot be validated. Instead, the
process devolves into checking for robustness only - whether
the system hangs or crashes when it is presented with a given
test case. Although less useful as a metric, this analysis can still
be meaningful for software assurance, specifically for the
discovery of vulnerabilities.

A. Random Testing

Random Testing (RT) is the simplest form of black box
testing. It constructs test cases by randomly generating values
for all inputs, executes them iteratively, and compares each
output with the test oracle. The test quality is measured based
on the total errors discovered proportional to the total number
of runs. As the inputs are randomly generated and no record of
previous executed tests is maintained to facilitate quick test
execution, it can be easy to repeatedly test the same functional
behavior across multiple tests, even generating the same test
case although with significantly lower probability, and miss
generating rare inputs that would have identified potential
failures.

Fig. 2 An error that only occurs when the software executes a rare
input

For example, we suppose a software component has the code

structure illustrated in Fig. 2. If config1 can have hundreds of

different values, then the probability of a test case exploring the
if section of the if statement at random is extremely low that it
would constitute as a rare input. Although a unit test is likely to
pick up on this error, the issue is more pressing when the error
occurs at an intersection of multiple input values from different
components such that if the if condition was config1 == x &&
config2 == y && config3 == z instead, then the error would no
longer be identifiable via unit testing and will have only a low
probability of being discovered by random testing as well.

Over the years, advancing research has sought to improve
upon random testing by managing two aspects of the testing
process: limiting the degree of randomness of the input
generation process or applying a reduction to the
overwhelmingly large state space of test inputs.

B. Adaptive Random Testing

Adaptive Random Testing (ART) is a refinement of RT that
reduces the former technique’s degree of randomness. It
maintains two sets: a candidate set and an executed set. The
candidate set is a set of test cases generated randomly that
determines the domain of test cases from which the next test
case to execute is selected. The executed set is a set of all test
cases that have been executed. For each iteration, ART
generates a new candidate set, chooses one test case among
them to execute and runs it, moving the test case to the executed
set before it purges the candidate set. Fig. 3 provides a better
detailed pseudocode implementation of ART.

Fig. 3 Pseudocode for ART

ART uses a fitness function to calculate a “distance” measure
between each member of the candidate set and each member of
the executed set and associates the smallest value for each

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:8, 2024

550International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
77

7.
pd

f

member of the candidate set with any of the executed test case
to represent the candidate test case’s “distance” to its nearest
neighbor. Then, the test case that has the highest distance value
assigned to it is selected for execution. As ART is based on the
empirical evidence that error-inducing inputs are often confined
into contiguous clustered regions, the fitness function employs
a greedy algorithmic approach to optimize its potential to
explore a different region at every iteration by selecting the
candidate that is furthest away from any neighbor. This form of
testing is categorized as search-based software testing (SBST)
which is another prominent area of research within software
testing. The fitness function can utilize the distance function
directly factoring the difference in values of each input equally
or it can be fine-tuned to allow for specific inputs to have a
greater or lesser influence on the distance measure and in turn
identifying the cluster region to which the input belongs. For
example, a health-based application that has both height and
weight as inputs will need to normalize the input value units if
it wants to ensure they have an equal impact on the calculations
otherwise the greater range from the weight measurement will
drown the influence from height. Furthermore, any input value
that is not represented numerically will need to be converted to
be used in the calculation.

Overall, ART performs better than RT as it either finds more
errors in the same number of tests run or an equal number of
errors in a fewer number of runs [7]. However, it does have a
relatively high overhead cost due to the extra computations it
needs to perform to determine which test cases to run and the
overhead increases linearly alongside the size of the executed
set. Whereas an RT iteration would only ever have a relatively
fixed runtime of some length 𝑓, ART's runtime composes of
𝑓 𝑐𝑡, where the 𝑐𝑡 term incurs from the scaling induced from
the candidate set size 𝑐 and executed set size 𝑡. Even in
variations of the algorithm, where the candidate set size 𝑐 might
not be of a fixed length between iterations, 𝑐 can be treated like
a constant without loss of generality as the variance would not
be substantial enough to significantly affect the calculation.
Therefore, after an 𝑛 number of test cases have been executed
with both RT and ART, the runtime for the next test case will
differ by a factor of 𝑥 such that an extra 𝑥 1 RT test cases can
be run within the same interval that could effectively reduce and
potentially challenge the net effectiveness gain from ART.
Thus, due to the lack of a standard metric for comparison, many
comparison metrics exhibit an innate level of bias making them
difficult to compare on equal terms and setting.

C. Combinatorial Testing

Combinatorial testing (CT), unlike most other testing
methods, focuses on managing the large test input space
through reduction. Also referred to as combinatorial interaction
testing (CIT) and high throughput testing (HTT), CT is based
on the interaction rule backed by empirical evidence that most
errors can be realized from an interaction of only a few different
input parameters. A study investigating the distribution of
errors with respect to the number of interactions between
different input configurations concluded that up to 47% of total
errors occur from just pairwise interactions, 19% can come

from three-way interactions, an extra 7% can be discovered by
considering four-way interactions and just about every error can
be encapsulated through six-way interactions [8]. Thus, the
problem of testing all valid input combinations can be reduced
to obtaining a 𝑡-way coverage of the input values where 𝑡 refers
to the number of interactions being considered and signifies the
strength of the coverage.

Combinatorial coverage is a metric that measures the
completeness of a test suite in terms of how many of the total 𝑡-
way interactions that are encapsulated in the test suite. Not only
does 100% 𝑡-way coverage imply 100% 𝑡 1-way coverage
but it can also guarantee some percentage of 𝑡 1-way
coverage and this is considered as a strong criterion for
comparing test suites. As constructing an optimal test suite with
maximal combinatorial coverage in the fewest number of tests
is a very difficult problem to solve, several tools like ACTS [9]
are utilized to obtain a heuristic solution using greedy
approaches to construct a near optimal covering array. A
covering array is a test suite that provides 100% 𝑡-way test
coverage in the form of a matrix where each row consists of
inputs for a singular test case.

When combinatorial coverage is applied to test suites derived
through other test techniques, most suites tend to exhibit
relatively low 𝑡-way combinatorial coverage beyond pairwise
testing. One study was conducted on a spacecraft software with
82 different input configurations using a test suite of 7,489 test
cases to verify correct system behavior under a mix of normal
operating conditions and faulty scenarios. The test discovered
that although the pairwise coverage achieved was 94%, higher
t-way coverage dropped to 83% for 3-way coverage, under 70%
for 4-way and slightly over 50% for 5-way coverage [10]. As
combinatorial testing is tuned to optimize combinatorial
coverage, it is not surprising that other testing techniques would
yield lower coverage. Another study [11] comparing the fault
detection capability of CT, RT, and ART concluded that CT
performed at least as good as RT and ART on 98% of test
scenarios and the difference was most noticeable on software
with relatively few errors that only surfaced from a small
number of test cases. This aligns with the previous discussion
that very specific errors are difficult to detect with random
based techniques.

Still, other studies [12] conflict with the improved coverage
and fault detection achieved with CT stating that the
improvement is either minimal and not worth the computational
effort to generate a covering array or that the results are
indistinguishable altogether from other techniques like RT.
These clashing conclusions are likely a result of the fact that a
testing technique’s effectiveness is determined by a multitude
of factors and there may not be a one size fits all solution. For
example, factors such as the software’s size, complexity and
budget, as well as the number of errors it has, including their
density, how easy they are to discover, to even the software’s
use case which often determines the rigor of testing undertaken
can all play an important role not only in determining the
effectiveness of a specific testing technique but also in
determining which technique is most suitable.

Nevertheless, there are still some key advantages of using

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:8, 2024

551International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
77

7.
pd

f

CT. For one, CT’s fault detection effectiveness has a high
degree of stability. Where stability refers to the discrepancy in
results obtained over multiple consecutive executions of the
testing technique generating a new test suite to execute each
time, higher stability exudes more confidence on the test’s
effectiveness. Furthermore, as software development gravitates
towards a less human-centric process, the behavior of the
software system will no longer depend just on the written code
like traditional software but rather more significantly on the
input data. This may lessen the overall effectiveness of
structural coverage testing techniques as even the coding
process could be labeled as a black box and thus acquiring the
source code or reasoning about the trajectory of the software
may not be feasible. However, input-based tests like
combinatorial testing will still be relevant [13] and may prove
helpful at bridging the gap on understanding unexplainable
results by allowing for better inferences to be made regarding

the software behavior in light of results from testing.

D. Equivalence Partitioning and Boundary Value Analysis

If input configurations are continuous or unbounded, the
valid input state space becomes infinite. Equivalence
Partitioning (EP) is a technique that can transform a state space
into regions, called equivalence classes, where each class is a
grouping of inputs that output the same system behavior. EP is
guided by the principle that if a test case resolves successfully,
then other test cases from the same equivalence class would also
fail to produce an error. Therefore, testing multiple test cases
belonging to the same equivalence class becomes inefficient as
the software will treat them in the same manner. This allows for
a reduction on the state space by requiring a minimum of only
a single test case from each equivalence class to be performed.
This reduction process can be visualized in Fig. 4.

Fig. 4 Reducing the input state space for testing by categorizing test cases into equivalence classes

As all equivalence classes define the complete system
behavior, the relation between an equivalence class and a
distinct output result is an injective mapping. Thus, testing in
terms of equivalence classes bounds the state space by the
number of distinct output results – the sum of total distinct
errors that can be encountered and the total sum of distinct
correct behaviors of the system. This is upper bounded by the
total input state space but more importantly is finite even if the
input space is not. However, lacking perfect knowledge as a
black box technique, this technique relies on heuristics to carve
out each partition and is as much a form of art as it is science as
two very different partitioning representations could be
equivalent if they discover the same errors.

Boundary Value Analysis (BVA), generally used in
conjunction with EP, evaluates inputs at both sides of each
boundary formed via EP to not only check for software
correctness but also ensures that the partition regions have been
constructed accurately. As programs fail some equivalence
class condition and transition to a neighboring class at the
boundary of each partition, the test cases constructed near the
boundary regions maximize the probability of discovering
errors [14] and thus are more critical to test.

E. Fuzzing

Fuzz testing or fuzzing has generally been utilized as a black
box testing technique although in recent years it has also seen
emergence as a grey box technique utilizing structural coverage
criterion to generate tests. Conceptualized by Barton Miller
[15], a professor at the University of Wisconsin, when he

encountered several crashes while attempting to run command
line programs over a modem connection due to electrical
interference during a severe thunderstorm, fuzzing performs
negative testing through sending anomalous data through the
lens of invalid, malformed, and unexpected inputs to investigate
the non-functional properties of a software such as security and
reliability. Fuzzing has been utilized as a powerful tool for
security-critical software due to its ability to detect crashes,
timeouts, memory leaks, assert violations as well as prevent
zero-day attacks by gauging security risks before a malicious
adversary may be able to exploit them.

Starting with an input seed (a starting test case), the technique
continually modifies the previous set of inputs using a mutation
scheme to generate all future test cases. This process can be as
simple as applying an increment, flipping a bit, truncating
and/or repeating some of the bit of the input values but can also
utilize more popular and complex genetic algorithms like
particle swarm and ant colony optimization to mutate some of
the inputs. As fuzzing allows for invalid inputs to be
considered, the input state space is once again infinite as the set
of invalid inputs is unbounded in cardinality. Assuming inputs
that cause a vulnerability are very specific in terms of test cases
to constitute as a “rare input”, it will take a very long amount to
time to discover these vulnerabilities if exploration from test
cases is random. However, while some of the simpler
implementations of fuzzing can indeed be random, those
utilizing more complex mutations such as genetic algorithms
can be more deliberate at deviating from previously executed

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:8, 2024

552International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
77

7.
pd

f

test cases. Similarly, the white box implementation of fuzzing
leverages symbolic execution to ensure each test case traverses
a different execution path of the code altogether. As such the
white box implementation tends to be more efficient than the
black box implementation on code coverage as black box
mutation schemes tend to be unguided and randomized.

Due to its conceptual simplicity and low barrier to
deployment, fuzzing has been very successful at discovering
vulnerabilities in real world software such as Heartbleed and is
a requirement by Microsoft for their products.

III. WHITE BOX TESTING TECHNIQUES AND ANALYSIS

On the opposite spectrum, white box testing also referred to
as structure-based testing, clear box testing, glass box testing,
and open box testing among others requires knowledge over the
inner working of the software. Due to this reason, this type of
testing is usually performed by the developer while the former
black box testing can be outsourced to another party without
concern for loss of proprietary or confidential information.
White box testing can begin as early as post design phase of the
SDLC and is more focused towards testing the internal
structure, code, and implementation of the software even to the
extent of algorithm testing. Generally, white box testing tends
to be more exhaustive and guided compared to black box
testing, although it does also come with the caveat of being
more time consuming as well as requiring greater expertise of
the tester. White box tests assess the structural coverage by
breaking the software into measurable building blocks in the
form of statements, branches and conditions. These criteria are
defined ahead.

Statement coverage measures the total statements that are

executed by a test suite as a proportion of the total statements
in the software program. It tries to ensure that each statement is
executed at least once throughout the test suite, providing some
level of basic coverage on the codebase. However, failing that,
it can highlight areas which have not been tested to identify
potential dead code that may be unreachable. A significant
disadvantage of statement coverage is that it is the weakest form
of coverage that is still widely used. It does not check for
correctness but only that the statements are executed and does
not guarantee comprehensive testing such that executing only
one path of a condition is sufficient and it does not need to cover
all possible scenarios.

Next, branch coverage, also referred to as decision coverage,
measures how many of the total branches – edges that emerge
as a result of diverging paths created from conditional
statements, are traversed. Similarly, path coverage looks at all
potential full paths that the software can partake from start to
end. Although path and branch coverage seem very similar,
path coverage supersedes branch coverage and thus is a more
rigorous coverage metric. Likewise, branch coverage also
supersedes statement coverage. Conditional coverage testing
seeks to test all the conditional expressions for all possible
outcomes at least once.

Modified Condition/Decision Coverage (MC/DC) testing
goes one step further combining branch and condition coverage
and strengthens it further by requiring test cases to illustrate that
each input can independently affect the outcome. Per DO-178C
guidance, MC/DC testing is a requirement for avionics
software. Generally, it requires a minimum of 𝑛 1 test cases,
where 𝑛 denotes the number of unique inputs to the software.
Fig. 5 highlights the differences between the coverages as
applied to the accompanying code structure.

Fig. 5 Minimal 100% coverage test suites for conditional, branch and MC/DC coverage

 For conditional coverage testing, X, Y and Z need to
evaluate to true and false at least once each. The first test case
evaluates both X and Y to false and thus Z is not evaluated. The
second test (4th row) evaluates X to false again, but Y to true
and Z to true. The third test evaluates X to true and Z to false.
Together, the three tests cover at least one instance of X, Y and
Z being true and false. Branch coverage testing on the other
hand only aims to explore the diverging branches from the if
condition at least once and that can be achieved by multiple test

case pairs of which one is shown in Fig. 5.
For MC/DC testing, a different pair of tests show the

independence of X, Y and Z (test 2 and 6 for X, test 2 and 4 for
Y, and test 3 and 4 for Z) while also adhering to branch and
conditional coverage criteria. Between the respective pairs,
only one evaluation is changed such that only one bit differs
between each pair in the representation. This showcases the
influence a single input has on the system behavior as it
evaluates to both true and false while everything else remains

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:8, 2024

553International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
77

7.
pd

f

consistent.

Fig. 6 Varying strengths of coverage

Lastly, Multiple Condition Coverage (MCC) is a
combinatorial white box testing technique that requires testing
all value combinations of conditions. It is more rigorous than
the other white box testing techniques and would require testing
all 8 rows of the table in Fig. 5. More generally it requires a
minimum of 2 test cases where 𝑛 would be the total number
of conditions. Due to the combinatorial aspect with no bounds
unlike the 𝑡-way coverage of combinatorial testing, the required
number of test cases can be quite large. Due to this, MCC has
yet to gain more widespread acceptance, but it highly
recommended in the European standardization, EN 50128, for
railway systems with high safety integrity requirements. For
completeness, the levels of coverage are visualized in Fig. 6.

Although code coverage metrics are useful, 100% coverage

with any criteria is seldom achieved. Statement coverage, as the
most used coverage technique is feasible for 100% coverage
(discounting any unreachable code), yet most test suites only
reach upwards of 85% coverage. Similarly other types of
coverage like branch coverage seek to achieve coverage in the
range of 70-90% [16]. This is partly due to the pareto principle
as applied to software testing, which claims that 80% of the
testing effort can be expended with only 20% of the cost and
further gains have significant diminishing returns.

IV. FURTHER ANALYSIS

Table I provides a snapshot of all the testing techniques that
have been discussed in this paper along with their metrics and
where they are most suitable.

As many metrics are technique specific, it is difficult to
utilize them for a direct comparison. This is even more apparent
when trying to compare a black box and a white box technique
as all structural coverage criterion like statements ran or
branches traversed cannot be measured with black box testing
techniques. However, the total number of errors and runtime are
metrics that can be universally measured between all
techniques. The previously mentioned study [11] comparing
three black box techniques simply used errors found as its
defining metric. However, this study can be done only in
hindsight at the conclusion of testing and does not help provide
guidance to the testing process itself. In a more practical setting,
efficient testing is an online problem where a decision needs to
be made on which test should be run for most efficient
discovery of errors under imperfect information.

TABLE I

COMPARATIVE ANALYSIS OF SOFTWARE TESTING TECHNIQUES

Black Box Metric Best Suited for

Random Testing Faults discovered/ time Quick execution, faults are easy to discover

Adaptive Random Testing Faults discovered/ number of test cases ran Exploratory, faults are clustered

Combinatorial Testing
T-way coverage achieved, faults discovered, t+1-way

coverage achieved
Identifying errors related to interactions between

inputs
Equivalence Partitioning & Boundary Value

Analysis
Faults discovered Easy to draft partitions

Fuzz Testing Faults discovered, false positive & negative ratios Discovering vulnerabilities (security focused)

White Box Metric Best Suited for

Statement Coverage Number of statements executed at least once Reachability analysis

Branch Coverage Number of branches explored at least once Code coverage

Path Coverage Number of full execution paths traversed at least once Discovering logic errors

Condition Coverage Number of conditional outcomes explored at least once Examining behavior of conditions

Modified Condition/Decision Coverage
Branch coverage + condition coverage + showing each

input can independently affect system output
Safety critical software

Multiple Condition Coverage Testing all value combinations arisen from conditions Safety critical software

We suppose a tester wants to know which technique between
A or B is more effective at finding errors for a specific software.
A testing technique A is more effective than technique B if it
either discovers more errors in a shorter or equal amount of time
than the runtime of B or if it discovers an equal number of errors
in a strictly shorter amount of time. However, as many testing
techniques utilize some degree of randomness or lack an
established order in which to execute test cases, it is highly
probable that while a technique A is more efficient than
technique B at some time 𝑡, the situation can be reversed later

at another time 𝑡 𝑖. Therefore, time needs to be an important
factor in the metric to capture the constrained nature of the
problem otherwise exhaustive testing would be the best testing
technique. As more errors are discovered the longer a test is run,
the discovery rate of errors for each technique is universally
measurable and comparable as a rate of change: 𝑑𝑒/𝑑𝑡.

At first, each of the rates will need to be initialized by running
each of the testing technique with a sample number of tests.
Afterwards, the most efficient technique is the one with the
highest discovery rate and as more tests are run with that

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:8, 2024

554International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
77

7.
pd

f

technique, the rate continues to change. Once the rate for the
technique being utilized is no longer the greatest, the testing
technique should be switched to the one with the new greatest
discovery rate and so forth.

Over a prolonged period, the rate of error discovery
converges to a concave behavior exhibiting diminishing returns
from testing. With the total set of errors that can be encountered
being finite and as more and more errors get discovered over
time, the remaining errors will get fewer, impacting the
discovery rate in the same fashion.

Although, there is no clear stopping condition for this
method, just like there is no stopping condition for most testing
techniques, several conditions can be constructed such as in the
form of a time limit or ensuring all rates of error discovery are
within some tolerable amount, ϵ. Overall, the stopping
condition will largely depend on several distinct factors such as
usage and budget of the software in question.

Overall, the analysis of the state-of-the-practice on testing
techniques reveals that software metrics leave a lot to be desired
on evaluating the overall effectiveness of software testing. The
first shortcoming lies in the lack of comparable metrics. While
various metrics exist, they often differ in definitions,
measurement scales, or units, as seen with ART and RT as well
as the various white box testing techniques, that it is quite a
challenge to establish a common ground for comparison and
draw any meaningful conclusion that will aid in making
informed decisions. Addressing this issue will likely require
stronger standardization of metrics with broad applicability and
adaptability like the error discovery rate to enable fair and
accurate comparisons.

Another critique on current metrics is that while good metrics
need to be easy to measure, they seem to overlook the
qualitative attributes that define software quality. Many
existing metrics such as code coverage and faults detected focus
only on measurable aspects and do not quite holistically capture
the essence of crucial qualitative aspects such as useability and
reliability of the software. To address this limitation, a concrete
mapping that connects qualitative attributes to quantifiable
metrics needs to be established, and it is something we seek to
investigate further.

V. CONCLUSION

In conclusion, determining the most efficient technique
available in software testing requires a comprehensive analysis
of several intricate factors, including the specific test
objectives, the nature of the system under test, and the available
resources. This paper examined and compared different black
box and white box testing techniques, along with their
associated metrics, to evaluate their efficiency in achieving
thorough test coverage. Although there is no single technique
that can universally address all contexts, the efficiency of
testing techniques can be evaluated by considering the error
discovery rate. By measuring the number of errors detected per
unit of testing effort, stakeholders can gain insights into the
relative efficiency and efficacy of various testing techniques to
make informed decisions for optimizing their testing efforts and
enhancing the quality and reliability of the software involved.

REFERENCES
[1] W. Dijkstra, "Notes on Structured Programming," Technological

University Eindhoven T.H. Report 70-WSK-03, Second edition, April
1970.

[2] “ISO/IEC/IEEE International Standard - Systems and software
engineering--Vocabulary," in ISO/IEC/IEEE 24765:2017(E), vol., no.,
pp.1-541.

[3] V. Vukovic, J. Djurkovic, M. Sakal, & L. Rakovic, “An Empirical
Investigation of Software Testing Methods and Techniques in the
Province of Vojvodina,” Tehnicki Vjesnik-Technical Gazette, 2020.

[4] B.W. Boehm, “The High Cost of Software”, in Practical Strategies for
Developing Large Software Systems, E. Horowitz (editor), Addison-
Wesley, Reading, MA, 1975.

[5] DoD Instruction 5200.44: “Protection of Mission Critical Functions to
Achieve Trusted Systems and Networks (TSN),” Nov 5, 2012.

[6] B. Beizer, Software Testing Techniques. London: International Thompson
Computer Press, 1990.

[7] T. Y. Chen, F. Kuo, H. Liu, & W. C. Wong, “Does Adaptive Random
Testing Deliver a Higher Confidence than Random Testing?”, the Eighth
International Conference on Quality Software, 2008.

[8] D. R. Kuhn and D. R. Wallace, “Software fault interactions and
implications for software testing,” IEEE Trans. Softw. Eng., vol. 30, no.
6, pp. 418–421, Jun. 2004.

[9] Y. Lei, R. N. Kacker, & D. R. Kuhn, "ACTS: A combinatorial test
generation tool" IEEE Sixth International Conference on Software
Testing, Verification and Validation (ICST), 2013.

[10] D. R. Kuhn, R. N. Kacker and Y. Lei. “Combinatorial coverage as an
aspect of test quality,” 2015.

[11] H. Wu, C. Nie, J. Petke, Y. Jia and M. Harman, "An Empirical
Comparison of Combinatorial Testing, Random Testing and Adaptive
Random Testing" in IEEE Transactions on Software Engineering, vol. 46,
no. 03, pp. 302-320, 2020.

[12] L. S. Ghandehari, J. Czerwonka, Y. Lei, S. Shafiee, R. Kacker, and R.
Kuhn, “An empirical comparison of combinatorial and random testing,”
in Proc. IEEE Int. Conf. Softw. Testing Verification Validation
Workshops, 2014, pp. 68–77.

[13] R. Kuhn, M. S. Raunak and R. Kacker, "Combinatorial Coverage for
Assured Autonomy," IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), Charlotte, NC, USA,
2022, pp. 357-358.

[14] Y. Singh, Software Testing. Cambridge University Press, 2012.
[15] A. Takanen, J. D. DeMott, & C. Miller, Fuzzing for Software Security

Testing and Quality Assurance, 2018.
[16] J. W. Hollén, P. S. Zacarias. “Exploring Code Coverage in Software

Testing and its Correlation with Software Quality; A Systematic
Literature Review,” 2015.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:18, No:8, 2024

555International Scholarly and Scientific Research & Innovation 18(8) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
8,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
77

7.
pd

f

