Search results for: electricity consumption and CO2 emission.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1669

Search results for: electricity consumption and CO2 emission.

1639 Centralized Peak Consumption Smoothing Revisited for Habitat Energy Scheduling

Authors: M. Benbouzid, Q. Bresson, A. Duclos, K. Longo, Q. Morel

Abstract:

Currently, electricity suppliers must predict the consumption of their customers in order to deduce the power they need to produce. It is then important in a first step to optimize household consumptions to obtain more constant curves by limiting peaks in energy consumption. Here centralized real time scheduling is proposed to manage the equipments starting in parallel. The aim is not to exceed a certain limit while optimizing the power consumption across a habitat. The Raspberry Pi is used as a box; this scheduler interacts with the various sensors in 6LoWPAN. At the scale of a single dwelling, household consumption decreases, particularly at times corresponding to the peaks. However, it would be wiser to consider the use of a residential complex so that the result would be more significant. So the ceiling would no longer be fixed. The scheduling would be done on two scales, on the one hand per dwelling, and secondly, at the level of a residential complex.

Keywords: Smart grid, Energy box, Scheduling, Gang Model, Energy consumption, Energy management system, and Wireless Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1638 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data

Authors: Rudra P. Pradhan

Abstract:

This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.

Keywords: Financial development, energy consumption, Panel VECM, FATF countries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
1637 Analysing the Renewable Energy Integration Paradigm in the Post-COVID-19 Era: An Examination of the Upcoming Energy Law of China

Authors: Lan Wu

Abstract:

China’s declared transformation towards a ‘new electricity system dominated by renewable energy’ requires a cleaner electricity consumption mix with high shares of renewable energy sourced-electricity (RES-E). Unfortunately, integration of RES-E into Chinese electricity markets remains a problem pending more robust legal support, evidenced by the curtailment of wind and solar power due to integration constraints. The upcoming Energy Law of the PRC (Energy Law) is expected to provide such long-awaiting support and coordinate the existing diverse sector-specific laws to deal with the weak implementation that dampening the delivery of their desired regulatory effects. However, in the shadow of the COVID-19 crisis, it remains uncertain how this new Energy Law brings synergies to RES-E integration, mindful of the significant impacts of the pandemic. Through the theoretical lens of the interplay between China’s electricity market reform and legislative development, this paper investigates whether there is a paradigm shift in Energy Law regarding renewable energy integration compared with the existing sector-specific energy laws. It examines the 2020 Draft for Comments on the Energy Law and analyses its relationship with sector-specific energy laws focusing on RES-E integration. The comparison is drawn upon five critical aspects of the RES-E integration issue, including the status of renewables, marketisation, incentive schemes, consumption mechanisms, access to power grids and dispatching. The analysis shows that it is reasonable to expect a more open and well-organised electricity market, enabling the absorption of high shares of RES-E. The present paper concludes that a period of prosperous development of RES-E in the post-COVID-19 era can be anticipated with the legal support by the upcoming Energy Law. It contributes to understanding the signals China is sending regarding the transition towards a cleaner energy future.

Keywords: energy law, energy transition, electricity market reform, renewable energy integration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 612
1636 Environmental Policy Instruments and Greenhouse Gas Emissions: VAR Analysis

Authors: Veronika Solilová, Danuše Nerudová

Abstract:

The paper examines the interaction between the environmental taxation, size of government spending on environmental protection and greenhouse gas emissions and gross inland energy consumption. The aim is to analyze the effects of environmental taxation and government spending on environmental protection as an environmental policy instruments on greenhouse gas emissions and gross inland energy consumption in the EU15. The empirical study is performed using a VAR approach with the application of aggregated data of EU15 over the period 1995 to 2012. The results provide the evidence that the reactions of greenhouse gas emission and gross inland energy consumption to the shocks of environmental policy instruments are strong, mainly in the short term and decay to zero after about 8 years. Further, the reactions of the environmental policy instruments to the shocks of greenhouse gas emission and gross inland energy consumption are also strong in the short term, however with the deferred effects. In addition, the results show that government spending on environmental protection together with gross inland energy consumption has stronger effect on greenhouse gas emissions than environmental taxes in EU15 over the examined period.

Keywords: VAR analysis, greenhouse gas emissions, environmental taxation, government spending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
1635 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations

Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman

Abstract:

CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.

Keywords: Slow steaming, carbon emission, maritime logistics, sustainability, green supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634
1634 Reducing Power Consumption in Cloud Platforms using an Effective Mechanism

Authors: Shuen-Tai Wang, Chin-Hung Li, Ying-Chuan Chen

Abstract:

In recent years there has been renewal of interest in the relation between Green IT and Cloud Computing. The growing use of computers in cloud platform has caused marked energy consumption, putting negative pressure on electricity cost of cloud data center. This paper proposes an effective mechanism to reduce energy utilization in cloud computing environments. We present initial work on the integration of resource and power management that aims at reducing power consumption. Our mechanism relies on recalling virtualization services dynamically according to user-s virtualization request and temporarily shutting down the physical machines after finish in order to conserve energy. Given the estimated energy consumption, this proposed effort has the potential to positively impact power consumption. The results from the experiment concluded that energy indeed can be saved by powering off the idling physical machines in cloud platforms.

Keywords: Green IT, Cloud Computing, virtualization, power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
1633 Trade-off Between NOX, Soot and EGR Rates for an IDI Diesel Engine Fuelled with JB5

Authors: M. Gomaa, A. J. Alimin, K. A. Kamarudin

Abstract:

Nowadays, the focus on renewable energy and alternative fuels has increased due to increasing oil prices, environment pollution, and also concern on preserving the nature. Biodiesel has been known as an attractive alternative fuel although biodiesel produced from edible oil is very expensive than conventional diesel. Therefore, the uses of biodiesel produced from non-edible oils are much better option. Currently Jatropha biodiesel (JBD) is receiving attention as an alternative fuel for diesel engine. Biodiesel is non-toxic, biodegradable, high lubricant ability, highly renewable, and its use therefore produces real reduction in petroleum consumption and carbon dioxide (CO2) emissions. Although biodiesel has many advantages, but it still has several properties need to improve, such as lower calorific value, lower effective engine power, higher emission of nitrogen oxides (NOX) and greater sensitivity to low temperature. Exhaust gas recirculation (EGR) is effective technique to reduce NOX emission from diesel engines because it enables lower flame temperature and oxygen concentration in the combustion chamber. Some studies succeeded to reduce the NOX emission from biodiesel by EGR but they observed increasing soot emission. The aim of this study was to investigate the engine performance and soot emission by using blended Jatropha biodiesel with different EGR rates. A CI engine that is water-cooled, turbocharged, using indirect injection system was used for the investigation. Soot emission, NOX, CO2, carbon monoxide (CO) were recorded and various engine performance parameters were also evaluated.

Keywords: EGR, Jatropha biodiesel, NOX, Soot emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3243
1632 Effects of Energy Consumption on Indoor Air Quality

Authors: M. Raatikainen, J-P. Skön, M. Johansson, K. Leiviskä, M. Kolehmainen

Abstract:

Continuous measurements and multivariate methods are applied in researching the effects of energy consumption on indoor air quality (IAQ) in a Finnish one-family house. Measured data used in this study was collected continuously in a house in Kuopio, Eastern Finland, during fourteen months long period. Consumption parameters measured were the consumptions of district heat, electricity and water. Indoor parameters gathered were temperature, relative humidity (RH), the concentrations of carbon dioxide (CO2) and carbon monoxide (CO) and differential air pressure. In this study, self-organizing map (SOM) and Sammon's mapping were applied to resolve the effects of energy consumption on indoor air quality. Namely, the SOM was qualified as a suitable method having a property to summarize the multivariable dependencies into easily observable two-dimensional map. Accompanying that, the Sammon's mapping method was used to cluster pre-processed data to find similarities of the variables, expressing distances and groups in the data. The methods used were able to distinguish 7 different clusters characterizing indoor air quality and energy efficiency in the study house. The results indicate, that the cost implications in euros of heating and electricity energy vary according to the differential pressure, concentration of carbon dioxide, temperature and season.

Keywords: Indoor air quality, Energy efficiency, Self- organizing map, Sammon's mapping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
1631 NOx Emission and Computational Analysis of Jatropha Curcus Fuel and Crude Oil

Authors: Vipan Kumar Sohpal, Rajesh K Sharma

Abstract:

Diminishing of conventional fuels and hysterical vehicles emission leads to deterioration of the environment, which emphasize the research to work on biofuels. Biofuels from different sources attract the attention of research due to low emission and biodegradability. Emission of carbon monoxide, carbon dioxide and H-C reduced drastically using Biofuels (B-20) combustion. Contrary to the conventional fuel, engine emission results indicated that nitrous oxide emission is higher in Biofuels. So this paper examines and compares the nitrogen oxide emission of Jatropha Curcus (JCO) B-20% blends with the vegetable oil. In addition to that computational analysis of crude non edible oil performed to assess the impact of composition on emission quality. In conclusion, JCO have the potential feedstock for the biodiesel production after the genetic modification in the plant.

Keywords: Jatropha Curcus, computational analysis, emissions, biofuels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
1630 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India

Authors: A. Kumar, V. Devadas

Abstract:

Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.

Keywords: Appliance, consumption, electricity, households.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417
1629 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
1628 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and Parabolic Trough Collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: Building integrated renewable systems, Net-Zero Energy Building, solar fraction, avoided CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2578
1627 Feasibility Study of Air Conditioners Operated by Solar Energy in Saudi Arabia

Authors: Eman Simbawa, Budur Alasmri, Hanan Munahir, Hanin Munahir

Abstract:

Solar energy has become currently the subject of attention around the world and is undergoing many researches and studies. Using solar energy, which is a renewable energy, is aligned with the Saudi Vision 2030. People are more aware of it and are starting to use it more for environmental and economical reasons. A questionnaire was conducted in this paper to measure the awareness of people in Saudi Arabia regarding solar energy and their attitude towards it. Then, two kinds of air conditioners (one powered by electricity only and one powered by solar panels and electricity) are compared in terms of their cost over a period of 20 years. This will help the users to decide which kind of device to use depending on its cost. The result shows that as the electricity tariffs in Saudi Arabia increases, depending on the sector, the solar air conditioner is cheaper. In fact, if the tariff in the future increases to reach 50 Halalah/kWh, the solar air conditioner is more economical. This will influence users to buy more solar powered devices, and it will decrease the consumption of electricity. Therefore, the dependence on oil will decrease.

Keywords: Air conditioner, solar energy, photovoltaic cells, present value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 664
1626 Modeling Prices of Electricity Futures at EEX

Authors: Robest Flasza, Milan Rippel, Jan Solc

Abstract:

The main aim of this paper is to develop and calibrate an econometric model for modeling prices of long term electricity futures contracts. The calibration of our model is performed on data from EEX AG allowing us to capture the specific features of German electricity market. The data sample contains several structural breaks which have to be taken into account for modeling. We model the data with an ARIMAX model which reveals high correlation between the price of electricity futures contracts and prices of LT futures contracts of fuels (namely coal, natural gas and crude oil). Besides this, also a share price index of representative electricity companies traded on Xetra, spread between 10Y and 1Y German bonds and exchange rate between EUR and USD appeared to have significant explanatory power over these futures contracts on EEX.

Keywords: electricity futures, EEX, ARIMAX, emissionallowances

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
1625 Viability of Rice Husk Ash Concrete Brick/Block from Green Electricity in Bangladesh

Authors: Mohammad A. N. M. Shafiqul Karim

Abstract:

As a developing country, Bangladesh has to face numerous challenges. Self Independence in electricity, contributing to climate change by reducing carbon emission and bringing the backward population of society to the mainstream is more challenging for them. Therefore, it is essential to ensure recycled use of local products to the maximum level in every sector. Some private organizations have already worked alongside government to bring the backward population to the mainstream by developing their financial capacities. As rice husk is the largest single category of the total energy supply in Bangladesh. As part of this strategy, rice husk can play a great as a promising renewable energy source, which is readily available, has considerable environmental benefits and can produce electricity and ensure multiple uses of byproducts in construction technology. For the first time in Bangladesh, an experimental multidimensional project depending on Rice Husk Electricity and Rice Husk Ash (RHA) concrete brick/block under Green Eco-Tech Limited has already been started. Project analysis, opportunity, sustainability, the high monitoring component, limitations and finally evaluated data reflecting the viability of establishing more projects using rice husk are discussed in this paper. The by-product of rice husk from the production of green electricity, RHA, can be used for making, in particular, RHA concrete brick/block in Bangladeshi aspects is also discussed here.

Keywords: Project analysis, rice husk, rice husk ash concrete brick/block, compressive strength of rice husk ash concrete brick/block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
1624 Financial Portfolio Optimization in Turkish Electricity Market via Value at Risk

Authors: F. Gökgöz, M. E. Atmaca

Abstract:

Electricity has an indispensable role in human daily life, technological development and economy. It is a special product or service that should be instantaneously generated and consumed. Sources of the world are limited so that effective and efficient use of them is very important not only for human life and environment but also for technological and economic development. Competitive electricity market is one of the important way that provides suitable platform for effective and efficient use of electricity. Besides benefits, it brings along some risks that should be carefully managed by a market player like Electricity Generation Company. Risk management is an essential part in market players’ decision making. In this paper, risk management through diversification is applied with the help of Value at Risk methods for case studies. Performance of optimal electricity sale solutions are measured and the portfolio performance has been evaluated via Sharpe-Ratio, and compared with conventional approach. Biennial historical electricity price data of Turkish Day Ahead Market are used to demonstrate the approach.

Keywords: Electricity market, portfolio optimization, risk management, Sharpe ratio, value at risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
1623 Hourly Electricity Load Forecasting: An Empirical Application to the Italian Railways

Authors: M. Centra

Abstract:

Due to the liberalization of countless electricity markets, load forecasting has become crucial to all public utilities for which electricity is a strategic variable. With the goal of contributing to the forecasting process inside public utilities, this paper addresses the issue of applying the Holt-Winters exponential smoothing technique and the time series analysis for forecasting the hourly electricity load curve of the Italian railways. The results of the analysis confirm the accuracy of the two models and therefore the relevance of forecasting inside public utilities.

Keywords: ARIMA models, Exponential smoothing, Electricity, Load forecasting, Rail transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
1622 Economical Analysis of Thermal Energy Storage by Partially Operation

Authors: Z. Noranai, M.Z. Md Yusof

Abstract:

Building Sector is the major electricity consumer and it is costly to building owners. Therefore the application of thermal energy storage (TES) has gained attractive to reduce energy cost. Many attractive tariff packages are being offered by the electricity provider to promote TES. The tariff packages offered higher cost of electricity during peak period and lower cost of electricity during off peak period. This paper presented the return of initial investment by implementing a centralized air-conditioning plant integrated with thermal energy storage with partially operation strategies. Building load profile will be calculated hourly according to building specification and building usage trend. TES operation conditions will be designed according to building load demand profile, storage capacity, tariff packages and peak/off peak period. The Payback Period analysis method was used to evaluate economic analysis. The investment is considered a good investment where by the initial cost is recovered less than ten than seven years.

Keywords: building load profile, energy consumption, payback period, thermal energy storage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
1621 Energy Management System in HEV Using PI Controller

Authors: S. Saravanan, G. Sugumaran

Abstract:

Nowadays the use of Hybrid Electric Vehicles (HEV) is increasing dramatically. The HEV is mainly dependent on electricity and there is always a need for storage of charge. Fuel Cell (FC), Batteries and Ultra Capacitor are being used for the proposed HEV as an electric power source or as an energy storage unit. The aim of developing an energy management technique is to utilize the sources according to the requirement of the vehicle with help of controller. This increases the efficiency of hybrid electric vehicle to reduce the fuel consumption and unwanted emission. The Maximum Power Point Tracking (MPPT) in FC is done using (Perturb & Observe) algorithm. In this paper, the control of automobiles at variable speed is achieved effectively.

Keywords: Batteries, Energy Management System (EMS), Fuel Cell (FC), Hybrid Electric Vehicles (HEVs), Maximum Power Point Tracking (MPPT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3296
1620 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques

Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar

Abstract:

Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.

Keywords: Share of electricity generation, CO2 emission, targets, multivariate methods, hierarchical clustering, K-means clustering, discriminant analyzed, correlation, EU member countries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205
1619 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector

Authors: Ahmed Al-Adaileh, Souheil Khaddaj

Abstract:

Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.

Keywords: Smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711
1618 Impact of Government Spending on Private Consumption and on the Economy: The Case of Thailand

Authors: Paitoon Kraipornsak

Abstract:

Government spending is categorized into consumption spending and capital spending. Three categories of private consumption are used: food consumption, nonfood consumption, and services consumption. The estimated model indicates substitution effects of government consumption spending on budget shares of private nonfood consumption and of government capital spending on budget share of private food consumption. However, the results do not indicate whether the negative effects of changes in the budget shares of the nonfood and the food consumption equates to reduce total private consumption. The concept of aggregate demand comprising consumption, investment, government spending (consumption spending and capital spending), export, and import are used to estimate their relationship by using the Vector Error Correction Mechanism. The study found no effect of government capital spending on either the private consumption or the growth of GDP while the government consumption spending has negative effect on the growth of GDP.

Keywords: Complementary effect, government capital spending, government consumption spending, private consumption on food, nonfood, and services, substitution effect, vector error correction mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
1617 Estimation of Methane from Hydrocarbon Exploration and Production in India

Authors: A. K. Pathak, K. Ojha

Abstract:

Methane is the second most important greenhouse gas (GHG) after carbon dioxide. Amount of methane emission from energy sector is increasing day by day with various activities. In present work, various sources of methane emission from upstream, middle stream and downstream of oil & gas sectors are identified and categorised as per IPCC-2006 guidelines. Data were collected from various oil & gas sector like (i) exploration & production of oil & gas (ii) supply through pipelines (iii) refinery throughput & production (iv) storage & transportation (v) usage. Methane emission factors for various categories were determined applying Tier-II and Tier-I approach using the collected data. Total methane emission from Indian Oil & Gas sectors was thus estimated for the year 1990 to 2007.

Keywords: Carbon credit, Climate change, Methane emission, Oil & Gas production

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
1616 Emission Constrained Economic Dispatch for Hydrothermal Coordination

Authors: Md. Sayeed Salam

Abstract:

This paper presents an efficient emission constrained economic dispatch algorithm that deals with nonlinear cost function and constraints. It is then incorporated into the dynamic programming based hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Keywords: Emission constraint, Hydrothermal coordination, and Economic dispatch algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
1615 Emission Constrained Hydrothermal Scheduling Algorithm

Authors: Sayeed Salam

Abstract:

This paper presents an efficient emission constrained hydrothermal scheduling algorithm that deals with nonlinear functions such as the water discharge characteristics, thermal cost, and transmission loss. It is then incorporated into the hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Keywords: Emission constraint, Hydrothermal coordination, and Hydrothermal scheduling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
1614 Performance and Emission Study of Linseed Oilas a Fuel for CI Engine

Authors: Ashutosh Kumar Rai, Naveen Kumar, Bhupendra Singh Chauhan

Abstract:

Increased energy demand and the concern about environment friendly technology, renewable bio-fuels are better alternative to petroleum products. In the present study linseed oil was used as alternative source for diesel engine fuel and the results were compared with baseline data of neat diesel. Performance parameters such as brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) and emissions parameters such as CO, unburned hydro carbon (UBHC), NOx, CO2 and exhaust temperature were compared. BTE of the engine was lower and BSFC was higher when the engine was fueled with Linseed oil compared to diesel fuel. Emission characteristics are better than diesel fuel. NOx formation by using linseed oil during the experiment was lower than diesel fuel. Linseed oil is non edible oil, so it can be used as an extender of diesel fuel energy source for small and medium energy needs.

Keywords: Bio-fuel, exhaust emission, linseed oil, triglyceride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3811
1613 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.

Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403
1612 Electrification Strategy of Hybrid Electric Vehicle as a Solution to Decrease CO2 Emission in Cities

Authors: M. Mourad, K. Mahmoud

Abstract:

Recently hybrid vehicles have become a major concern as one alternative vehicles. This type of hybrid vehicle contributes greatly to reducing pollution. Therefore, this work studies the influence of electrification phase of hybrid electric vehicle on emission of vehicle at different road conditions. To accomplish this investigation, a simulation model was used to evaluate the external characteristics of the hybrid electric vehicle according to variant conditions of road resistances. Therefore, this paper reports a methodology to decrease the vehicle emission especially greenhouse gas emission inside cities. The results show the effect of electrification on vehicle performance characteristics. The results show that CO2 emission of vehicle decreases up to 50.6% according to an urban driving cycle due to applying the electrification strategy for hybrid electric vehicle.

Keywords: Electrification strategy, hybrid electric vehicle, CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
1611 Experimental Investigations on the Use of Preheated Neat Karanja Oil as Fuel in a Compression Ignition Engine

Authors: Sagar Pramodrao Kadu, Rajendra H. Sarda

Abstract:

The concerns about clean environment and high oil prices driving forces for the research on alternative fuels. The research efforts directed towards improving the performance of C.I engines using vegetable oil as fuel. The paper deals results of performance of a four stroke, single cylinder C.I. engine by preheated neat Karanja oil is done from 30 o C to 100 o C. The performance of the engine was studied for a speed range between 1500 to 4000 rpm, with the engine operated under full load conditions. The performance parameters considered for comparing are brake specific fuel consumption, thermal efficiency, brake power, Nox emission of the engine. The engine offers lower thermal efficiency when it is powered by preheated neat Karanja oil at higher speed. The power developed and Nox emission increase with the increase in the fuel inlet temperature and the specific fuel consumption is higher than diesel fuel operation at all elevated fuel inlet temperature.

Keywords: Alternative fuel, Compression ignition engine, neatKaranja oil, preheating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
1610 Disclosing the Relationship among CO2 Emissions, Energy Consumption, Economic Growth and Bilateral Trade between Singapore and Malaysia: An Econometric Analysis

Authors: H. A. Bekhet, T. Yasmin

Abstract:

The aim of this paper is to examine the relationship among CO2 per capita emissions, energy consumption, economic growth and bilateral trade between Singapore and Malaysia for the 1970-2011 period. ARDL model and Granger causality tests are employed for the analysis.  Results of bound F-statistics suggest that long-run  relationship exists between CO2 per capita (PCO2) and its determinants. The EKC hypothesis is not supported in Malaysia. Carbon emissions are mainly determined by energy consumption in the short and long run. While, exports to Singapore is a significant variable in explaining PCO2 emissions in Malaysia in long-run. Furthermore, we find a unidirectional causal relationship running from economic growth to PCO2 emissions.

Keywords: ADRL Bound Test, Bilateral trade, CO2 emission, Environmental Kuznets Curve, Energy consumption, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599