Search results for: coupling effect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4768

Search results for: coupling effect

3328 Effect of Vibration Intervention on Leg-press Exercise

Authors: Youngkuen Cho, Seonhong Hwang, Jinyoung Min, Youngho Kim, Dohyung Lim, Hansung Kim

Abstract:

Many studies have emphasized the importance of resistive exercise to maintain a healthy human body, particular in prevention of weakening of physical strength. Recently, some studies advocated that an application of vibration as a supplementary means in a regular training was effective in encouraging physical strength. Aim of the current study was, therefore, to identify if an application of vibration in a resistive exercise was effective in encouraging physical strength as that in a regular training. A 3-dimensional virtual lower extremity model for a healthy male and virtual leg-press model were generated and synchronized. Dynamic leg-press exercises on a slide machine with/without extra load and on a footboard with vibration as well as on a slide machine with extra load were analyzed. The results of the current indicated that the application of the vibration on the dynamic leg-press exercise might be not greatly effective in encouraging physical strength, compared with the dynamic leg press exercise with extra load. It was, however, thought that the application of the vibration might be helpful to elderly individuals because the reduced maximum muscle strength appeared by the effect of the vibration may avoid a muscular spasm, which can be driven from a high muscle strength sometimes produced during the leg-press exercise with extra load.

Keywords: Resistive exercise, leg-press exercise, muscle strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
3327 Effect of Curing Conditions on Strength of Fly ash-based Self-Compacting Geopolymer Concrete

Authors: Fareed Ahmed Memon, Muhd Fadhil Nuruddin, Samuel Demie, Nasir Shafiq

Abstract:

This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the compressive strength of self-compacting geopolymer concrete prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time and curing temperature in the range of 24-96 hours and 60-90°C respectively. The essential workability properties of freshly prepared Self-compacting Geopolymer concrete such as filling ability, passing ability and segregation resistance were evaluated by using Slump flow, V-funnel, L-box and J-ring test methods. The fundamental requirements of high flowability and resistance to segregation as specified by guidelines on Self-compacting Concrete by EFNARC were satisfied. Test results indicate that longer curing time and curing the concrete specimens at higher temperatures result in higher compressive strength. There was increase in compressive strength with the increase in curing time; however increase in compressive strength after 48 hours was not significant. Concrete specimens cured at 70°C produced the highest compressive strength as compared to specimens cured at 60°C, 80°C and 90°C.

Keywords: Geopolymer Concrete, Self-compacting Geopolymerconcrete, Compressive strength, Curing time, Curing temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5665
3326 Effect of Surface Pretreatments on Nanocrystalline Diamond Deposited On Silicon Nitride Substrates

Authors: D.N Awang Sh'ri, E. Hamzah

Abstract:

The deposition of diamond films on a Si3N4 substrate is an attractive technique for industrial applications because of the excellent properties of diamond. Pretreatment of substrate is very important prior to diamond deposition to promote nucleation and adhesion between coating and substrate. Deposition of nanocrystalline diamonds films on silicon nitride substrate have been carried out by HF-CVD technique using mixture of methane and hydrogen gases. Different pretreatment of substrate including chemical etching consists of hot acid etching and basic etching and mechanical etching were used to study the quality of diamond formed on the substrate. The structure and morphology of diamond coating have been studied using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) while diamond film quality has been characterized using Raman spectroscopy. AFM was used to investigate the effect of chemical etching and mechanical pretreatment on the surface roughness of the substrates and the resultant morphology of nanocrystalline diamond. It was found that diamond film deposited on as-received, basic etched and grinded substrate shows the morphology of cauliflower while blasted and acidic etched substrates produce smooth, continuous diamond film. However, the Raman investigation did not show any deviation in quality of diamond film for any pretreatment.

Keywords: Nanocrystalline diamond, Chemical VaporDeposition, Pretreatment, Silicon Nitride

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
3325 Compatibility of Copolymer-Based Grinding Aids and Sulfonated Acetone-Formaldehyde Superplasticizer

Authors: Tailong Zhang, Jianming Gao, Xue Xie, Wei Sun

Abstract:

Compatibility between sulfonated acetone- formalehyde superplasticizer (SAF) and copolymer-based grinding aids (GA) were studied by fluidity, Zeta potential, setting time of cement pasts, initial slump and slump flow of concrete and compressive strength of concrete. ESEM, MIP, and XRD were used to investigate the changing of microstructure of interior concrete. The results indicated that GA could noticeably enhance the dispersion ability of SAF. It was found that better fluidity and slump-keeping ability of cement paste were obtained in the case of GA. In addition, GA together with SAF had a certain retardation effect on hydration of cement paste. With increasing of the GA dosage, the dispersion ability and retardation effect of admixture increased. The compressive strength of the sample made with SAF and GA after 28 days was higher than that of the control sample made only with SAF.  The initial slump and slump flow of concrete increased by 10.0% and 22.9%, respectively, while 0.09 wt.% GA was used. XRD examination indicated that new products were not found in the case of GA. In addition, more dense arrangement of hydrates and lower porosity of the specimen were observed by ESEM and MIP, which contributed to higher compressive strength.

Keywords: Copolymer-Based grinding aids, superplasiticizer, compatibility, microstructure, cement, concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
3324 Effect of Addition Rate of Expansive Additive on Autogenous Shrinkage and Delayed Expansion of Ultra-High Strength Mortar

Authors: Yulu Zhang, Atushi Teramoto, Taka-Aki Ohkubo

Abstract:

In this study, the effect of expansive additives on autogenous shrinkage and delayed expansion of ultra-high strength mortar was explored. The specimens made for the study were composed of ultra-high strength mortar, which was mixed with ettringite-lime composite type expansive additive. Two series of experiments were conducted with the specimens. The experimental results confirmed that the autogenous shrinkage of specimens was effectively decreased by increasing the proportion of the expansive additive. On the other hand, for the specimens, which had 7% expansive additive, and were cured for seven days at a constant temperature of 20°C, and then cured for a long time in either in an underwater, moist (Relative humidity: 100%) or dry air (Relative humidity: 60%) environment, excessively large expansion strain occurred. Specifically, typical turtle shell-like swelling expansion cracks were confirmed in the specimens that underwent long-term curing in an underwater and moist environment. According to the result of hydration analysis, the formation of expansive substances, calcium hydroxide and alumina, ferric oxide, tri-sulfate contribute to the occurrence of delayed expansion.

Keywords: Ultra-high strength mortar, expansive additive, autogenous shrinkage, delayed expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712
3323 Study on the Effect of Pre-Operative Patient Education on Post-Operative Outcomes

Authors: Chaudhary Itisha, Shankar Manu

Abstract:

Patient satisfaction represents a crucial aspect in the evaluation of health care services. Preoperative teaching provides the patient with pertinent information concerning the surgical process and the intended surgical procedure as well as anticipated patient behavior (anxiety, fear), expected sensation, and the probable outcomes. Although patient education is part of Accreditation protocols, it is not uniform at most places. The aim of this study was to try to assess the benefit of preoperative patient education on selected post-operative outcome parameters; mainly, post-operative pain scores, requirement of additional analgesia, return to activity of daily living and overall patient satisfaction, and try to standardize few education protocols. Dependent variables were measured before and after the treatment on a study population of 302 volunteers. Educational intervention was provided by the Investigator in the preoperative period to the study group through personal counseling. An information booklet contained detailed information was also provided. Statistical Analysis was done using Chi square test, Mann Whitney u test and Fischer Exact Test on a total of 302 subjects. P value <0.05 was considered as level of statistical significance and p<0.01 was considered as highly significant. This study suggested that patients who are given a structured, individualized and elaborate preoperative education and counseling have a better ability to cope up with postoperative pain in the immediate post-operative period. However, there was not much difference when the patients have had almost complete recovery. There was no difference in the requirement of additional analgesia among the two groups. There is a positive effect of preoperative counseling on expected return to the activities of daily living and normal work schedule. However, no effect was observed on the activities in the immediate post-operative period. There is no difference in the overall satisfaction score among the two groups of patients. Thus this study concludes that there is a positive benefit as suggested by the results for pre-operative patient education. Although the difference in various parameters studied might not be significant over a long term basis, they definitely point towards the benefits of preoperative patient education. 

Keywords: Patient education, post-operative pain, patient satisfaction, post-operative outcome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3257
3322 Effect of a Probiotic Compound in Rumen Development, Diarrhea Incidence and Weight Gain in Young Holstein Calves

Authors: Camilo Aldana, Sara Cabra, Carlos A. Ospina, Fredy Carvajal, Fernando Rodríguez

Abstract:

It has been proven that early establishment of microbial flora in digestive tract of ruminants, has a beneficial effect on their health condition and productivity. A probiotic compound, made from five bacteria isolated from adult bovine cattle, was dosed to 15 Holstein newborn calves in order to measure its capacity of improving body weight gain and reduce diarrhea incidence. The test was performed in the municipality of Cajicá (Colombia), at 2580 m.a.s.l., throughout rainy season, with environmental temperature that oscillated between 4 to 25 °C. Five calves were allotted to control (no addition of probiotic). Treatments 1, and 2 (5 calves per group) received 10 ml Probiotic mix 1 and 2, respectively. Probiotic mixes 1 and 2 where similar in microbial composition but different in production process. Probiotics were added to the morning milk and dosed on a daily basis by a month and then on a weekly basis for three additional months. Diarrhea incidence was measured by observance of number of animals affected in each group; each animal was weighed up on a daily basis for obtaining weight gain and rumen fluid samples were extracted with oro-esophageal catheter for determining level of fiber and grain consumption.

Keywords: Calve, diarrhea, probiotic, rumen microorganisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
3321 The Effect of Mist Cooling on Sexual Behavior and Semen Quality of Sahiwal Bulls

Authors: Khalid Ahmed Elrabie Abdelrasoul

Abstract:

The present study was carried out on Sahiwal cattle bulls maintained at the Artificial Breeding Complex, NDRI, Karnal, Hayana, India, to assess the effect of cooling using mist cooling and fanning on Sahiwal bulls in the dry hot summer season. Fourteen Sahiwal bulls were divided into two groups of seven each. Sexual behavior and semen quality traits considered were: Reaction time (RT), Dismounting time (DMT), Total time taken in mounts (TTTM), Flehmen response (FR), Erection Score (ES), Protrusion Score (PS), Intensity of thrust (ITS), Temperament Score (TS), Libido Score (LS), Semen volume, Physical appearance, Mass activity, Initial progressive motility, Non-eosinophilic spermatozoa count (NESC) and post thaw motility percent. Data were analyzed by least squares technique. Group-1 was the control, whereas group-2 (treatment group) bulls were exposed to mist cooling and fanning (thrice a day 15 min each) in the dry hot summer season. Group-2 showed significantly (p < 0.01) higher value in DMT (sec), ES, PS, ITS, LS, semen volume (ml), semen color density, mass activity, initial motility, progressive motility and live sperm.

Keywords: Mist cooling, Sahiwal bulls, semen quality, sexual behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
3320 Study of Aero-thermal Effects with Heat Radiation in Optical Side Window

Authors: Chun-Chi Li, Da-Wei Huang, Yin-Chia Su, Liang-Chih Tasi

Abstract:

In hypersonic environments, the aerothermal effect makes it difficult for the optical side windows of optical guided missiles to withstand high heat. This produces cracking or breaking, resulting in an inability to function. This study used computational fluid mechanics to investigate the external cooling jet conditions of optical side windows. The turbulent models k-ε and k-ω were simulated. To be in better accord with actual aerothermal environments, a thermal radiation model was added to examine suitable amounts of external coolants and the optical window problems of aero-thermodynamics. The simulation results indicate that when there are no external cooling jets, because airflow on the optical window and the tail groove produce vortices, the temperatures in these two locations reach a peak of approximately 1600 K. When the external cooling jets worked at 0.15 kg/s, the surface temperature of the optical windows dropped to approximately 280 K. When adding thermal radiation conditions, because heat flux dissipation was faster, the surface temperature of the optical windows fell from 280 K to approximately 260 K. The difference in influence of the different turbulence models k-ε and k-ω on optical window surface temperature was not significant.

Keywords: aero-optical side window, aerothermal effect, cooling, hypersonic flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3070
3319 Strength and Permeability Characteristics of Steel Fibre Reinforced Concrete

Authors: A. P. Singh

Abstract:

The results reported in this paper are the part of an extensive laboratory investigation undertaken to study the effects of fibre parameters on the permeability and strength characteristics of steel fibre reinforced concrete (SFRC). The effect of varying fibre content and curing age on the water permeability, compressive and split tensile strengths of SFRC was investigated using straight steel fibres having an aspect ratio of 65. Samples containing three different weight fractions of 1.0%, 2.0% and 4.0% were cast and tested for permeability and strength after 7, 14, 28 and 60 days of curing. Plain concrete samples were also cast and tested for reference purposes.

Permeability was observed to decrease significantly with the addition of steel fibres and continued to decrease with increasing fibre content and increasing curing age. An exponential relationship was observed between permeability and compressive and split tensile strengths for SFRC as well as PCC. To evaluate the effect of fibre content on the permeability and strength characteristics, the Analysis of Variance (ANOVA) statistical method was used. An a level (probability of error) of 0.05 was used for ANOVA test. Regression analysis was carried out to develop relationship between permeability, compressive strength and curing age.

Keywords: Permeability, grade of concrete, fibre shape, fibre content, curing age, steady state, Darcy’s law, method of penetration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3024
3318 Effect of Dry Cutting on Force and Tool Life When Machining Aerospace Material

Authors: K.Kadirgama, M.M.Noor, K.A. Abou-El-Hossein, H.H.Habeeb, M.M. Rahman, B.Mohamad, R.A. Bakar

Abstract:

Cutting fluids, usually in the form of a liquid, are applied to the chip formation zone in order to improve the cutting conditions. Cutting fluid can be expensive and represents a biological and environmental hazard that requires proper recycling and disposal, thus adding to the cost of the machining operation. For these reasons dry cutting or dry machining has become an increasingly important approach; in dry machining no coolant or lubricant is used. This paper discussed the effect of the dry cutting on cutting force and tool life when machining aerospace materials (Haynes 242) with using two different coated carbide cutting tools (TiAlN and TiN/MT-TiCN/TiN). Response surface method (RSM) was used to minimize the number of experiments. ParTiAlN Swarm Optimisation (PSO) models were developed to optimize the machining parameters (cutting speed, federate and axial depth) and obtain the optimum cutting force and tool life. It observed that carbide cutting tool coated with TiAlN performed better in dry cutting compared with TiN/MT-TiCN/TiN. On other hand, TiAlN performed more superior with using of 100 % water soluble coolant. Due to the high temperature produced by aerospace materials, the cutting tool still required lubricant to sustain the heat transfer from the workpiece.

Keywords: Dry cutting, partial swarm optimisation, response surface method, tool life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2488
3317 Effect of Pollination on Qualitative Characteristics of Rapeseed (Brassica campestris L. var. toria) Seed in Chitwan, Nepal

Authors: R. Pudasaini, R. B. Thapa, P. R. Poudel

Abstract:

An experiment was conducted to determine the effect of pollination on seed quality of rapeseed in Chitwan, Nepal during 2012-2013. The experiment was designed in Randomized Complete Block with four replications and five treatments. The rapeseed plots were caged with mosquito nets at 10% flowering except natural pollination. Two-framed colonies of Apis mellifera L. and Apis cerana F. were introduced separately for pollination, and control plot caged without pollinators. The highest germination percent was observed on Apis cerana F. pollinated plot seeds (90.50% germination) followed by Apis mellifera L. pollinated plots (87.25 %) and lowest on control plots (42.00% germination) seeds. Similarly, seed test weight of Apis cerana F. pollinated plots (3.22 gm/ 1000 seed) and Apis mellifera L. pollinated plots (2.93 gm/1000 seed) were and lowest on control plots (2.26 gm/ 1000 seed) recorded. Likewise, oil content was recorded highest on pollinated by Apis cerana F. (36.1%) followed by pollinated by Apis mellifera L. (35.4%) and lowest on control plots (32.8%). This study clearly indicated pollination increases the seed quality of rapeseed and therefore, management of honeybee is necessary for producing higher quality of rapeseed under Chitwan condition.

Keywords: Apis cerana, Apis mellifera, rapeseed pollination, seed quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
3316 Heat Transfer from a Cylinder in Cross-Flow of Single and Multiphase Flows

Authors: F. A. Hamad, S. He

Abstract:

In this paper, the average heat transfer characteristics for a cross flow cylinder of 16 mm diameter in a vertical pipe has been studied for single-phase flow (water/oil) and multicomponent (non-boiling) flow (water-air, water-oil, oil-air and water-oil-air). The cylinder is uniformly heated by electrical heater placed at the centre of the element. The results show that the values of average heat transfer coefficients for water are around four times the values for oil flow. Introducing air as a second phase with water has very little effect on heat transfer rate, while the heat transfer increased by 70% in case of oil. For water–oil flow, the heat transfer coefficient values are reflecting the percentage of water up to 50%, but increasing the water more than 50% leads to a sharp increase in the heat transfer coefficients to become close to the values of pure water. The enhancement of heat transfer by mixing two phases may be attributed to the changes in flow structure near to cylinder surface which lead to thinner boundary layer and higher turbulence. For three-phase flow, the heat transfer coefficients for all cases fall within the limit of single-phase flow of water and oil and are very close to pure water values. The net effect of the turbulence augmentation due to the introduction of air and the attenuation due to the introduction of oil leads to a thinner boundary layer of oil over the cylinder surface covered by a mixture of water and air bubbles.

Keywords: Circular cylinder, cross-flow, heat transfer, multicomponent multiphase flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
3315 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar Harsh Climate

Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue

Abstract:

Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.

Keywords: Atmospheric turbulence, haze, soft switching, Raptor codes, refractive index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
3314 A Finite Volume Procedure on Unstructured Meshes for Fluid-Structure Interaction Problems

Authors: P I Jagad, B P Puranik, A W Date

Abstract:

Flow through micro and mini channels requires relatively high driving pressure due to the large fluid pressure drop through these channels. Consequently the forces acting on the walls of the channel due to the fluid pressure are also large. Due to these forces there are displacement fields set up in the solid substrate containing the channels. If the movement of the substrate is constrained at some points, then stress fields are established in the substrate. On the other hand, if the deformation of the channel shape is sufficiently large then its effect on the fluid flow is important to be calculated. Such coupled fluid-solid systems form a class of problems known as fluidstructure interactions. In the present work a co-located finite volume discretization procedure on unstructured meshes is described for solving fluid-structure interaction type of problems. A linear elastic solid is assumed for which the effect of the channel deformation on the flow is neglected. Thus the governing equations for the fluid and the solid are decoupled and are solved separately. The procedure is validated by solving two benchmark problems, one from fluid mechanics and another from solid mechanics. A fluid-structure interaction problem of flow through a U-shaped channel embedded in a plate is solved.

Keywords: Finite volume method, flow induced stresses, fluidstructureinteraction, unstructured meshes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
3313 An Experimental Investigation in Effect of Confining Stress and Matric Suction on the Mechanical Behavior of Sand with Different Fine Content

Authors: S. Asreazad

Abstract:

This paper presents the results that the soil volumetric strain and shear strength are closely related to the confining stress and initial matric suction under constant water content testing on the specimens of unsaturated sand with clay and silt fines contents. The silty sand specimens reached their peak strength after a very small axial strain followed by a post-peak softening towards an ultimate value. The post-peak drop in stress increased by an increment of the suction, while there is no peak strength for clayey sand specimens. The clayey sand shows compressibility and possesses ductile stress-strain behaviour. Shear strength increased nonlinearly with respect to matric suction for both soil types. When suction exceeds a certain range, the effect of suction on shear strength increment weakens gradually. Under the same confining stress, the dilatant tendencies in the silty sand increased under lower values of suction and decreased for higher suction values under the same confining stress. However, the amount of contraction increased with increasing initial suction for clayey sand specimens.

Keywords: Unsaturated soils, silty sand, clayey sand, triaxial test, constant water content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
3312 The Correlation of Total Phenol Content with Free Radicals Scavenging Activity and Effect of Ethanol Concentration in Extraction Process of Mangosteen Rind (Garcinia mangostana)

Authors: Ririn Lestari Sri Rahayu, Mustofa Ahda

Abstract:

The use of synthetic antioxidants often causes a negative effect on health and increases the incidence of carcinogenesis. Development of the natural antioxidants should be investigated. However, natural antioxidants have a low toxicity and are safe for human consumption. Ethanol extract of mangosteen rind (Garcinia mangostana) contains natural antioxidant compounds that have various pharmacological activities. Antioxidants from the ethanol extract of mangosteen rind have free radicals scavenging activities. The scavenging activity of ethanol extract of mangosteen rind was determined by DPPH method. The phenolic compound from the ethanol extract of mangosteen rind is determined with Folin-Ciocalteu method. The results showed that the absolute ethanol extract of mangosteen rind has IC50 of 40.072 ug/mL. The correlation of total phenols content with free radical scavenging activity has an equation y: 5.207x + 205.51 and determination value (R2) of 0.9329. Total phenols content from the ethanol extract of mangosteen rind has a good correlation with free radicals scavenging activity of DPPH.

Keywords: Antioxidant, Garcinia mangostana, inhibition concentration 50%, total phenolic compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
3311 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System

Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar

Abstract:

Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.

Keywords: Common rail, hydrogen engine, port injection, wave propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
3310 Thermophoresis Particle Precipitate on Heated Surfaces

Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak

Abstract:

This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.

Keywords: Thermophoresis, porous medium, variable surface heat flux.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
3309 Cold-pressed Kenaf and Fibreglass Hybrid Composites Laminates: Effect of Fibre Types

Authors: Z. Salleh, M. N. Berhan, Koay Mei Hyie, D. H. Isaac

Abstract:

Natural fibres have emerged as the potential reinforcement material for composites and thus gain attraction by many researchers. This is mainly due to their applicable benefits as they offer low density, low cost, renewable, biodegradability and environmentally harmless and also comparable mechanical properties with synthetic fibre composites. The properties of hybrid composites highly depends on several factors, including the interaction of fillers with the polymeric matrix, shape and size (aspect ratio), and orientation of fillers [1]. In this study, natural fibre kenaf composites and kenaf/fibreglass hybrid composites were fabricated by a combination of hand lay-up method and cold-press method. The effect of different fibre types (powder, short and long) on the tensile properties of composites is investigated. The kenaf composites with and without the addition of fibreglass were then characterized by tensile testing and scanning electron microscopy. A significant improvement in tensile strength and modulus were indicated by the introduction of long kenaf/woven fibreglass hybrid composite. However, the opposite trends are observed in kenaf powder composite. Fractographic observation shows that fibre/matrix debonding causes the fibres pull out. This phenomenon results in the fibre and matrix fracture.

Keywords: Kenaf, Fibreglass, Hybrid Composite, Tensile Strength, Tensile Modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
3308 Effects of Hypoxic Duration at Different Growth Stages on Yield Potential of Waxy Corn (Zea mays L.)

Authors: S. Boonlertnirun, R. Suvannasara, K. Boonlertnirun

Abstract:

Hypoxia has negative effects on growth and crop yield, its severity is so varied depending on crop growth stages, duration of hypoxia and crop species. The objective was to evaluate the sensitive growth stage and the duration of hypoxia negatively affecting growth and yield of waxy corn. Pot experiment was conducted using a split plot in randomized complete block with 3 growth stages: V3 (3-4 true leaves), V7 (7-8 true leaves) and R1 (silking stage), and 3 hypoxic durations: 6, 9 and 12 days, in an open –ended outdoor greenhouse during January to March 2013. The results revealed that different growth stages had significantly (p < 0.5) different responses to hypoxia, seeing that the sensitive growth stage affecting plant height, yield and yield components was mostly detected in V7 growth stage whereas leaf greenness and days to silking were sensitive to hypoxia at R1 growth stage. Different hypoxic durations significantly affected yield and yield components, hypoxic duration of 12 days showed the most negative effect greater than the others. In this present study, it can be concluded that waxy corn plants were waterlogged at V7 growth stage for 12 days had the most negative effect on yield and yield components.

Keywords: Hypoxia duration, waxy corn, growth stage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
3307 Numerical Simulation of unsteady MHD Flow and Heat Transfer of a Second Grade Fluid with Viscous Dissipation and Joule Heating using Meshfree Approach

Authors: R. Bhargava, Sonam Singh

Abstract:

In the present study, a numerical analysis is carried out to investigate unsteady MHD (magneto-hydrodynamic) flow and heat transfer of a non-Newtonian second grade viscoelastic fluid over an oscillatory stretching sheet. The flow is induced due to an infinite elastic sheet which is stretched oscillatory (back and forth) in its own plane. Effect of viscous dissipation and joule heating are taken into account. The non-linear differential equations governing the problem are transformed into system of non-dimensional differential equations using similarity transformations. A newly developed meshfree numerical technique Element free Galerkin method (EFGM) is employed to solve the coupled non linear differential equations. The results illustrating the effect of various parameters like viscoelastic parameter, Hartman number, relative frequency amplitude of the oscillatory sheet to the stretching rate and Eckert number on velocity and temperature field are reported in terms of graphs and tables. The present model finds its application in polymer extrusion, drawing of plastic films and wires, glass, fiber and paper production etc.

Keywords: EFGM, MHD, Oscillatory stretching sheet, Unsteady, Viscoelastic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
3306 Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance

Authors: Saad Odeh

Abstract:

Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels.

Keywords: Energy efficiency, roof shading, thermal performance, PV panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
3305 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method

Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen

Abstract:

This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.

Keywords: Design of Experiment, Taguchi Design, Optimization, Analysis of Variance, Machining Parameters, Horizontal Boring Tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
3304 The Effect of Intermediate Stiffeners on Steel Reinforced Concrete Beams Behaviors

Authors: Teguh Sudibyo, Cheng-Cheng Chen

Abstract:

Eight steel reinforced concrete beams (SRC), were fabricated and tested under earthquake type cyclic loading. The effectiveness of intermediate stiffeners, such as mid-span stiffener and plastic hinge zone stiffeners, in enhancing composite action and ductility of SRC beams was investigated. The effectiveness of strengthened beam-to-column (SBC) and weakened beam-to-column (WBC) connections in enhancing beam ductility was also studied. It was found that: (1) All the specimens possessed fairly high flexural ductility and were found adequate for structures in high seismic zones. (2) WBC connections induced stress concentration which caused extra damage to concrete near the flange tapering zone. This extra damage inhibited the flexural strength development and the ductility of the specimens with WBC connections to some extent. (3) Specimens with SBC connections demonstrated higher flexural strength and ductility compared to specimens with WBC connections. (4) The intermediate stiffeners, especially combination of plastic hinge zone stiffener and mid span stiffeners, have an obvious effect in enhancing the ductility of the beams with SBC connection.

Keywords: Composite beam, concrete encased steel beam, steel reinforced concrete, stiffeners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3820
3303 Effect of Testing Device Calibration on Liquid Limit Assessment

Authors: M. O. Bayram, H. B. Gencdal, N. O. Fercan, B. Basbug

Abstract:

Liquid limit, which is used as a measure of soil strength, can be detected by Casagrande and fall-cone testing methods. The two methods majorly diverge from each other in terms of operator dependency. The Casagrande method that is applied according to ASTM D4318-17 standards may give misleading results, especially if the calibration process is not performed well. In this study, to reveal the effect of calibration for drop height and amount of soil paste placement in the Casagrande cup, a series of tests were carried out by multipoint method as it is specified in the ASTM standards. The tests include the combination of 6 mm, 8 mm, 10 mm, and 12 mm drop heights and under-filled, half-filled, and full-filled Casagrande cups by kaolin samples. It was observed that during successive tests, the drop height of the cup deteriorated; hence the device was recalibrated before and after each test to provide the accuracy of the results. Besides, the tests by under-filled and full-filled samples for higher drop heights revealed lower liquid limit values than the lower drop heights revealed. For the half-filled samples, it was clearly seen that the liquid limit values did not change at all as the drop height increased, and this explains the function of standard specifications.

Keywords: Calibration, Casagrande cup method, drop height, kaolin, liquid limit, placing form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288
3302 Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

Authors: M. A. Talha, M. Osman Gani, M. Ferdows

Abstract:

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

Keywords: Convection flow, internal heat generation, similarity, spectral method, numerical analysis, Williamson nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
3301 Application of Voltammetry to Study Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection

Authors: Mandlenkosi George Robert Mahlobo, Peter Apata Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behavior of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP which was only applied on two of the three coupons at the protection potential -0.8 V vs. Cu/CuSO4 for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from ohmic drop. Voltammetry was finally performed the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduce the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect, from the decreased potential, and an induced effect, associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: Carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61
3300 The Effect of Loperamide and Fentanyl on the Distribution Kinetics of Verapamil in the Lung and Brain in Sprague Dawley Rats

Authors: Iman A. Elkiweri, Ph.D, Martha C. Tissot van Patot, Ph.D., Yan Ling Zhang, Ph.D., Uwe Christians, Ph.D., Thomas K. Henthorn, M.D.,

Abstract:

Verapamil has been shown to inhibit fentanyl uptake in vitro and is a potent P-glycoprotein inhibitor. Tissue partitioning of loperamide, a commercially available opioid, is closely controlled by the P-gp efflux transporter. The following studies were designed to evaluate the effect of opioids on verapamil partitioning in the lung and brain, in vivo. Opioid (fentanyl or loperamide) was administered by intravenous infusion to Sprague Dawley rats alone or in combination with verapamil and plasma, with lung and brain tissues were collected at 1, 5, 6, 8, 10 and 60 minutes. Drug dispositions were modeled by recirculatory pharmacokinetic models. Fentanyl slightly increased the verapamil lung (PL) partition coefficient yet decreased the brain (PB) partition coefficient. Furthermore, loperamide significantly increased PLand PB. Fentanyl reduced the verapamil volume of distribution (V1) and verapamil elimination clearance (ClE). Fentanyl decreased verapamil brain partitioning, yet increased verapamil lung partitioning. Also, loperamide increased lung and brain partitioning in vivo. These results suggest that verapamil and fentanyl may be substrates of an unidentified inward transporter in brain tissue and confirm that verapamil and loperamide are substrates of the efflux transporter P-gp.

Keywords: Efflux transporter, elimination clearance, partition coefficient, verapamil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
3299 Increase of Heat Index over Bangladesh: Impact of Climate Change

Authors: Mohammad Adnan Rajib, Md.Rubayet Mortuza, Saranah Selmi, Asif Khan Ankur, Md. Mujibur Rahman

Abstract:

Heat Index describes the combined effect of temperature and humidity on human body. This combined effect is causing a serious threat to the health of people because of the changing climate. With climate change, climate variability and thus the occurrence of heat waves is likely to increase. Evidence is emerging from the analysis of long-term climate records of an increase in the frequency and duration of extreme temperature events in all over Bangladesh particularly during summer. Summer season has prolonged while winters have become short in Bangladesh. Summers have become hotter and thus affecting the lives of the people engaged in outdoor activities during scorching sun hours. In 2003 around 62 people died due to heat wave across the country. In this paper Bangladesh is divided in four regions and heat index has been calculated from 1960 to 2010 in these regions of the country. The aim of this paper is to identify the spots most vulnerable to heat strokes and heat waves due to high heat index. The results show upward trend of heat index in almost all the regions of Bangladesh. The highest increase in heat index value has been observed in areas of South-west region and North-west Region. The highest change in average heat index has been found in Jessore by almost 5.50C.

Keywords: Anomaly, Heat index, Relative humidity, Temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962