Search results for: contact force estimator.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1372

Search results for: contact force estimator.

1162 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle

Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan

Abstract:

The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.

Keywords: Spring, mass, damper, impact, knee joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1161 Generalization of SGIP Surface Tension Force Model in Three-Dimensional Flows and Compare to Other Models in Interfacial Flows

Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani

Abstract:

In this paper, the two-dimensional stagger grid interface pressure (SGIP) model has been generalized and presented into three-dimensional form. For this purpose, various models of surface tension force for interfacial flows have been investigated and compared with each other. The VOF method has been used for tracking the interface. To show the ability of the SGIP model for three-dimensional flows in comparison with other models, pressure contours, maximum spurious velocities, norm spurious flow velocities and pressure jump error for motionless drop of liquid and bubble of gas are calculated using different models. It has been pointed out that SGIP model in comparison with the CSF, CSS and PCIL models produces the least maximum and norm spurious velocities. Additionally, the new model produces more accurate results in calculating the pressure jumps across the interface for motionless drop of liquid and bubble of gas which is generated in surface tension force.

Keywords: Volume-of-Fluid; SGIP model; CSS model; CSF model; PCIL model; surface tension force; spurious currents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
1160 Development of a Fiber based Interferometric Sensor for Non-contact Displacement Measurement

Authors: S. Pullteap

Abstract:

In this paper, a fiber based Fabry-Perot interferometer is proposed and demonstrated for a non-contact displacement measurement. A piece of micro-prism which attached to the mechanical vibrator is served as the target reflector. Interference signal is generated from the superposition between the sensing beam and the reference beam within the sensing arm of the fiber sensor. This signal is then converted to the displacement value by using a developed program written in visual Cµ programming with a resolution of λ/8. A classical function generator is operated for controlling the vibrator. By fixing an excitation frequency of 100 Hz and varying the excitation amplitude range of 0.1 – 3 Volts, the output displacements measured by the fiber sensor are obtained from 1.55 μm to 30.225 μm. A reference displacement sensor with a sensitivity of ~0.4 μm is also employed for comparing the displacement errors between both sensors. We found that over the entire displacement range, a maximum and average measurement error are obtained of 0.977% and 0.44% respectively.

Keywords: Non-contact displacement measurement, extrinsicfiber based Fabry-Perot interferometer, interference signal, zerocrossingfringe counting technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
1159 Sprayer Boom Active Suspension Using Intelligent Active Force Control

Authors: M. Tahmasebi, R.A. Rahman, M. Mailah, M. Gohari

Abstract:

The control of sprayer boom undesired vibrations pose a great challenge to investigators due to various disturbances and conditions. Sprayer boom movements lead to reduce of spread efficiency and crop yield. This paper describes the design of a novel control method for an active suspension system applying proportional-integral-derivative (PID) controller with an active force control (AFC) scheme integration of an iterative learning algorithm employed to a sprayer boom. The iterative learning as an intelligent method is principally used as a method to calculate the best value of the estimated inertia of the sprayer boom needed for the AFC loop. Results show that the proposed AFC-based scheme performs much better than the standard PID control technique. Also, this shows that the system is more robust and accurate.

Keywords: Active force control, sprayer boom, active suspension, iterative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
1158 Segmentation of Cardiac Images by the Force Field Driven Speed Term

Authors: Renato Dedic, Madjid Allili, Roger Lecomte, Adbelhamid Benchakroun

Abstract:

The class of geometric deformable models, so-called level sets, has brought tremendous impact to medical imagery. In this paper we present yet another application of level sets to medical imaging. The method we give here will in a way modify the speed term in the standard level sets equation of motion. To do so we build a potential based on the distance and the gradient of the image we study. In turn the potential gives rise to the force field: F~F(x, y) = P ∀(p,q)∈I ((x, y) - (p, q)) |ÔêçI(p,q)| |(x,y)-(p,q)| 2 . The direction and intensity of the force field at each point will determine the direction of the contour-s evolution. The images we used to test our method were produced by the Univesit'e de Sherbrooke-s PET scanners.

Keywords: PET, Cardiac, Heart, Mouse, Geodesic, Geometric, Level Sets, Deformable Models, Edge Detection, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
1157 A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending

Authors: Mahesh Chudasama, Harit Raval

Abstract:

Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected.

Keywords: Roller-bending, static-bending, stress-conditions, analytical-modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011
1156 Guidelines for Selecting the Appropriate Heel Insert for Long-Standing Ladies

Authors: Atisthan Wuttimanop, Suchada Rianmora, Mahint Mahattanakorn

Abstract:

Feet and ankles are parts of human body that receive high-pressure in every day. Feet disorders such as ankle sprain, achilles tendonitis, heel pain, and plantar fasciitis are very common. There are many causes for these feet disorders such as wearing high heels, obesity, sports activity, and standing for a long time. There are many reliefs for feet disorders such as heel insert. However, they come in various shapes and use different materials. There are no specifications in which type is suitable for specific user. This has led to the proposed research to provide guidelines for selecting the appropriate heel insert for ladies who face with long-standing carriers. This research uses contact-measuring techniques to test forces, contact area, and pressure acting on a person’s feet in various standing positions with different insert materials and shapes. The proper material for making insert will be presented and discussed.

Keywords: Heel inserts, Long-standing person, Contact-data acquisition, Finite element analysis, Ethylene-vinyl acetate (EVA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
1155 Conceptual Design and Characterization of Contractile Water Jet Thruster Using IPMC Actuator

Authors: Muhammad Farid Shaari, Zahurin Samad

Abstract:

This paper presents the design, development and characterization of contractile water jet thruster (CWJT) for mini underwater robot. Instead of electric motor, this CWJT utilizes the Ionic Polymer Metal Composite (IPMC) as the actuator to generate the water jet. The main focus of this paper is to analyze the conceptual design of the proposed CWJT which would determine the thrust force value, jet flow behavior and actuator’s stress. Those thrust force and jet flow studies were carried out using Matlab/Simscape simulation software. The actuator stress had been analyzed using COSMOS simulation software. The results showed that there was no significant change for jet velocity at variable cross sectional nozzle area. However, a significant change was detected for jet velocity at different nozzle cross sectional area ratio which was up to 37%. The generated thrust force has proportional relation to the nozzle cross sectional area.

Keywords: Contractile water jet thruster, IPMC actuator, Thrust force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
1154 Fretting Fatigue behavior of Bolted Single Lap Joints of Aluminum Alloys

Authors: Hadi Rezghi Maleki, Babak Abazadeh

Abstract:

In this paper, the effect of bolt clamping force on the fatigue behavior of bolted single lap joints of aluminum alloy 2024- T3 have been studied using numerical finite element method. To do so, a three dimensional model according to the bolted single lap joint has been created and numerical analysis has been carried out using finite element based package. Then the stress distribution and also the slip amplitudes have been calculated in the critical regions and the outcome have been compared with the available experimental fatigue tests results. The numerical results show that in low applied clamping force, the fatigue failure of the specimens occur around the stress concentration location (the bolted hole edge) due to the tensile stresses and thus fatigue crack propagation, but with increase of the clamping force, the fatigue life increases and the cracks nucleate and propagate far from the hole edge because of fretting fatigue. In other words, with the further increase of clamping force value of the joint, the fatigue life reduces due to occurrence of the fretting fatigue in the critical location where the slip amplitude is within its critical occurs earlier.

Keywords: Fretting fatigue, bolted single lap joint, torque tightening, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
1153 Courses Pre-Required Visualization Using Force Directed Placement Technique

Authors: Imen Ammari, Mourad Elloumi, Ala Eddine Barouni

Abstract:

Visualizing “Courses – Pre – Required - Architecture" on the screen has proven to be useful and helpful for university actors and specially for students. In fact, these students can easily identify courses and their pre required, perceive the courses to follow in the future, and then can choose rapidly the appropriate course to register in. Given a set of courses and their prerequired, we present an algorithm for visualization a graph entitled “Courses-Pre-Required-Graph" that present courses and their prerequired in order to help students to recognize, lonely, what courses to take in the future and perceive the contain of all courses that they will study. Our algorithm using “Force Directed Placement" technique visualizes the “Courses-Pre-Required-Graph" in such way that courses are easily identifiable. The time complexity of our drawing algorithm is O (n2), where n is the number of courses in the “Courses-Pre-Required-Graph".

Keywords: Courses–Pre-Required-Architecture, Courses-Pre- Required-Graph, Courses-Pre-Required-Visualization, Force directed Placement, Resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
1152 Parametric Study on Grindability of GFRP Laminates Using Different Abrasives

Authors: P. Chockalingam, C. K. Kok, T. R. Vijayaram

Abstract:

A study on grindability of chopped strand mat glass fiber reinforced polymer laminates (CSM GFRP) have been carried out to evaluate the significant parameters on wheel performance. Performance of Aluminum oxide and c-BN wheels during grinding of CSM GFRP laminate was evaluated in terms of grinding force and surface roughness during grinding. The cubic Boron Nitride wheel experiences higher tangential grinding forces components and lower normal force component than Aluminum oxide grinding wheels. In case of surface finish, Aluminum oxide grinding wheels outdo the cubic Boron Nitride grinding wheels.

Keywords: Grinding, glass fiber reinforced polymer laminates, grinding force, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1151 Numerical Simulation of a Single Air Bubble Rising in Water with Various Models of Surface Tension Force

Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani

Abstract:

Different numerical methods are employed and developed for simulating interfacial flows. A large range of applications belong to this group, e.g. two-phase flows of air bubbles in water or water drops in air. In such problems surface tension effects often play a dominant role. In this paper, various models of surface tension force for interfacial flows, the CSF, CSS, PCIL and SGIP models have been applied to simulate the motion of small air bubbles in water and the results were compared and reviewed. It has been pointed out that by using SGIP or PCIL models, we are able to simulate bubble rise and obtain results in close agreement with the experimental data.

Keywords: Volume-of-Fluid, Bubble Rising, SGIP model, CSS model, CSF model, PCIL model, interface, surface tension force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
1150 Analysis of Surface Spalling on a First Intermediate Roll in Sendzirmir Mills

Authors: Shiang-Cheng Jeng, Horng-Shing Chiou

Abstract:

A first intermediate roll of Sendzirmir mills was failure by surface spalling during operation. After analyzing by visual, stereo microscope, optical microscope, scanning electron microscope, glow-discharged spectrometer and hardness test, respectively, the results show that some voids and cracks existed on the contact surface as well as subsurface. Further examination verified inadequate hardness and inclusions were responsible for the failure of surface spalling.

Keywords: Sendzirmir mills; surface spalling; fatigue failure;inclusion; contact stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
1149 Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, characterisations, contact angle measurement, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
1148 A Simulation Model for the H-gate PDSOI MOSFET

Authors: Bu Jianhui, Bi Jinshun, Liu Mengxin, Luo Jiajun, Han Zhengsheng

Abstract:

The floating body effect is a serious problem for the PDSOI MOSFET, and the H-gate layout is frequently used as the body contact to eliminate this effect. Unfortunately, most of the standard commercial SOI MOSFET model is for the device with finger gate, the necessity of the new models for the H-gate device arises. A simulation model for the H-gate PDSOI MOSFET is proposed based on the 0.35μm PDSOI process developed by the Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS), and then the model is well verified by the ring-oscillator.

Keywords: PDSOI H-gate Device model Body contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1147 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang

Abstract:

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Keywords: Unsteady flow, axial turbine, wake, aerodynamic force, loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
1146 Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil

Authors: Wei-Hsin Sun, Jr-Ming Miao, Chang-Hsien Tai, Chien-Chun Hung

Abstract:

The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.

Keywords: biomimetic, MAVs, aerodynamic, ANOVA analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
1145 Statistical Optimization of Process Conditions for Disinfection of Water Using Defatted Moringa oleifera Seed Extract

Authors: Suleyman A. Muyibi, Munirat, A. Idris, Saedi Jami, Parveen Jamal, Mohd Ismail Abdul Karim

Abstract:

In this study, statistical optimization design was used to study the optimum disinfection parameters using defatted crude Moringa oleifera seed extracts against Escherichia coli (E. coli) bacterial cells. The classical one-factor-at-a-time (OFAT) and response surface methodology (RSM) was used. The possible optimum range of dosage, contact time and mixing rate from the OFAT study were 25mg/l to 200mg/l, 30minutes to 240 minutes and 100rpm to 160rpm respectively. Analysis of variance (ANOVA) of the statistical optimization using faced centered central composite design showed that dosage, contact time and mixing rate were highly significant. The optimum disinfection range was 125mg/l, at contact time of 30 minutes with mixing rate of 120 rpm. 

Keywords: E.coli, disinfection, Moringa oleifera, response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538
1144 Influence of the Compression Force and Powder Particle Size on Some Physical Properties of Date Fruit (Phoenix dactylifera) Tablets

Authors: Djemaa Megdoud, Messaoud Boudaa, Fatima Ouamrane, Salem Benamara

Abstract:

In recent years, the compression of date (Phoenix dactylifera L.) fruit powders (DP) to obtain date tablets (DT) has been suggested as a promising form of valorization of non commercial valuable date fruit (DF) varieties. To further improve and characterize DT, the present study aims to investigate the influence of the DP particle size and compression force on some physical properties of DT. The results show that independently of particle size, the hardness (y) of tablets increases with the increase of the compression force (x) following a logarithmic law (y = a ln (bx) where a and b are the constants of model). Further, a full factorial design (FFD) at two levels, applied to investigate the erosion %, reveals that the effects of time and particle size are the same in absolute value and they are beyond the effect of the compression. Regarding the disintegration time, the obtained results also by means of a FFD show that the effect of the compression force exceeds 4 times that of the DP particle size. As final stage, the color parameters in the CIELab system of DT immediately after their obtaining are differently influenced by the size of the initial powder.

Keywords: Powder, valorization, tablets, date fruit (Phoenix dactylifera L.), hardness, erosion, disintegration time, color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2682
1143 HERMES System: a Virtual Reality Simulator for the Angioplasty Intervention Training

Authors: Giovanni Aloisio, Lucio T. De Paolis, Luciana Provenzano, Lucio Colizzi, Gianluca Pantile

Abstract:

One of the essential requirements in order to have a realistic surgical simulator is real-time interaction by means of a haptic interface is. In fact, reproducing haptic sensations increases the realism of the simulation. However, the interaction need to be performed in real-time, since a delay between the user action and the system reaction reduces the user immersion. In this paper, we present a prototype of the coronary stent implant simulator developed in the HERMES Project; this system allows real-time interactions with a artery by means of a specific haptic device; thus the user can interactively navigate in a reconstructed artery and force feedback is produced when contact occurs between the artery walls and the medical instruments

Keywords: Collision Detection, Haptic Interface, Real-Time Interaction, Surgical Simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
1142 Determining the Maximum Lateral Displacement Due to Sever Earthquakes without Using Nonlinear Analysis

Authors: Mussa Mahmoudi

Abstract:

For Seismic design, it is important to estimate, maximum lateral displacement (inelastic displacement) of the structures due to sever earthquakes for several reasons. Seismic design provisions estimate the maximum roof and storey drifts occurring in major earthquakes by amplifying the drifts of the structures obtained by elastic analysis subjected to seismic design load, with a coefficient named “displacement amplification factor" which is greater than one. Here, this coefficient depends on various parameters, such as ductility and overstrength factors. The present research aims to evaluate the value of the displacement amplification factor in seismic design codes and then tries to propose a value to estimate the maximum lateral structural displacement from sever earthquakes, without using non-linear analysis. In seismic codes, since the displacement amplification is related to “force reduction factor" hence; this aspect has been accepted in the current study. Meanwhile, two methodologies are applied to evaluate the value of displacement amplification factor and its relation with the force reduction factor. In the first methodology, which is applied for all structures, the ratio of displacement amplification and force reduction factors is determined directly. Whereas, in the second methodology that is applicable just for R/C moment resisting frame, the ratio is obtained by calculating both factors, separately. The acquired results of these methodologies are alike and estimate the ratio of two factors from 1 to 1.2. The results indicate that the ratio of the displacement amplification factor and the force reduction factor differs to those proposed by seismic provisions such as NEHRP, IBC and Iranian seismic code (standard no. 2800).

Keywords: Displacement amplification factor, Ductility factor, Force reduction factor, Maximum lateral displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
1141 Two Lessons Learnt in Defining Intersections and Interfaces in Numerical Modeling with Plaxis

Authors: Mahdi Sadeghian, Somaye Sadeghian, Reza Dinarvand

Abstract:

This paper is going to discuss two issues encountered in using PLAXIS. Both issues were monitored during application of PLAXIS to estimate the excavation-induced displacement. Column Soil Mixing (CSM) was applied to stabilise the excavation. It was understood that the estimated excavation induced deformation at the top of the CSM blocks highly depends on the material type defining pavement material adjacent to the CSM blocks. Cohesive material for pavement will result in the unrealistic connection between pavement and CSM even by defining an interface element. To find the most realistic approach, the interface defined in three different manners (1) no interface elements were applied (2) a non-cohesive soil layer was defined between pavement and CSM block to represent the friction between these materials (3) built-in interface elements in PLAXIS was used to define the boundary between the pavement and the CSM block. The result showed that the option 2 would result in more realistic results. The second issue was in the modelling of the contact line between the CSM block and an inclined layer underneath. The analysis result showed that the excavation-induced deformation highly depends on how the PLAXIS user defines the contact area. It was understood that if the contact area had defined as a point in which CSM block had intersected the layer underneath the estimated lateral displacement of CSM block would be unrealistically lower than the model in which the contact area was defined as a line.

Keywords: PLAXIS, FEM, CSM, excavation-induced deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
1140 Effect of Physical Contact (Hand-Holding) on Heart Rate Variability

Authors: T. Pishbin, S.M.P. Firoozabadi, N. Jafarnia Dabanloo, F. Mohammadi, S. Koozehgari

Abstract:

Heart-s electric field can be measured anywhere on the surface of the body (ECG). When individuals touch, one person-s ECG signal can be registered in other person-s EEG and elsewhere on his body. Now, the aim of this study was to test the hypothesis that physical contact (hand-holding) of two persons changes their heart rate variability. Subjects were sixteen healthy female (age: 20- 26) which divided into eight sets. In each sets, we had two friends that they passed intimacy test of J.sternberg. ECG of two subjects (each set) acquired for 5 minutes before hand-holding (as control group) and 5 minutes during they held their hands (as experimental group). Then heart rate variability signals were extracted from subjects' ECG and analyzed in linear feature space (time and frequency domain) and nonlinear feature space. Considering the results, we conclude that physical contact (hand-holding of two friends) increases parasympathetic activity, as indicate by increase SD1, SD1/SD2, HF and MF power (p<0.05) and decreases sympathetic activity, as indicate by decrease LF power (p<0.01) and LF/HF ratio (p<0.05).

Keywords: Autonomic nervous system (ANS), Hand- holding, Heart rate variability (HRV), Power spectral density analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3045
1139 Development of Highly Sensitive System for Measurement and Monitoring of Small Impacts

Authors: Priyanka Guin, Dibyendu Chatterjee, Arijit Roy

Abstract:

Developing electronic system for detecting low energy impacts using open source hardware such as Arduino is challenging. A highly efficient loadcell is designed and fabricated. A commercial polyvinylidene fluoride (PVDF) piezoelectric film is used as primary sensor for sensing small impacts. Without modifying hardware, the Arduino board is configured by programming to capture the signal from the film sensor with a resolution better than 1.1 mV. By our system, impact energy as low as 1.8 µJ (corresponds to impact force of 39.9 mN) is reliably and monitored. In the linear zone, sensitivity of the system found to be as high as 20.7 kV/J or 3.3 V/N with a measurement frequency of 500 Hz. The various characteristics such as linearity, hysteresis, repeatability and spectrum analysis are discussed. After calibration, measurements of unknown impact energy and impact force are investigated and results are found to agree well.

Keywords: Arduino, impact energy, impact force, measurement system, PVDF film sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
1138 Buckling Resistance of GFRP Sandwich Infill Panels with Different Cores under Increased Temperatures

Authors: Viriyavudh Sim, Woo Young Jung

Abstract:

This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of increased temperature on the foam core. Failure mode under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length and both the type of foam for core and the variation of its module elastic under the thermal influence. Increment of temperature is considered in static cases and only applied to core. Indeed, it is proven that the effect of temperature alters the mechanical properties of the entire panel system. Moreover, the rises of temperature result in a decrease in strength of the panel. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on performance of infill panel. Their significance factors are based on type of polymer for core. Therefore, by comparing difference type of core material, the variation can be reducing.

Keywords: Buckling, contact length, foam core, temperature dependent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
1137 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time based DNA codes, writing DNA code from scratch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582
1136 Experimental Investigation on Tsunami Acting on Bridges

Authors: Iman Mazinani, Zubaidah Ismail, Ahmad Mustafa Hashim, Amirreza Saba

Abstract:

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.

Keywords: Tsunami, bridge, horizontal force, uplift force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
1135 Detente and Power - Conceptual Determination, Forms and Means of Education at the Preteen Age

Authors: Constantin Pehoiu

Abstract:

The scientific perspective, the practice area of physical education and sports activities improve power capacity in all its forms of expression, being a generator of the research topics. Today theories that strength training athletes and slow down development progress will affect the strength and flexibility are discredited. On the other hand there are sectors and / or samples whose results are sports of the way higher manifestation of power as a result of the composition of the force and velocity, being based in this respect on the systematic and continuous development of both bio-motric capacities said. Training of force for children was and is controversial. Teama de accidentări sau a stopării premature a procesului de creştere a făcut ca în trecut copiii să fie ţinuţi departe de lucrul cu diferite greutăţi.Fear of injury or premature stop the growth process in the past made the children to be kept away from working with different weights. Recent studies have shown that the risk of accidents is relatively small and the strength training can help prevent them. For example, most accidents occur at the level of athletics ligaments and tendons. From this point of view, it can be said that a progressive intervention of force training, optimal design, will help enhancing their process, such as athlete much better prepared to meet training requests and competitions. Preparation of force provides a solid basis for further phases in the highest performance.

Keywords: Detente, education, effort will, power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
1134 Real-time Haptic Modeling and Simulation for Prosthetic Insertion

Authors: Catherine A. Todd, Fazel Naghdy

Abstract:

In this work a surgical simulator is produced which enables a training otologist to conduct a virtual, real-time prosthetic insertion. The simulator provides the Ear, Nose and Throat surgeon with real-time visual and haptic responses during virtual cochlear implantation into a 3D model of the human Scala Tympani (ST). The parametric model is derived from measured data as published in the literature and accounts for human morphological variance, such as differences in cochlear shape, enabling patient-specific pre- operative assessment. Haptic modeling techniques use real physical data and insertion force measurements, to develop a force model which mimics the physical behavior of an implant as it collides with the ST walls during an insertion. Output force profiles are acquired from the insertion studies conducted in the work, to validate the haptic model. The simulator provides the user with real-time, quantitative insertion force information and associated electrode position as user inserts the virtual implant into the ST model. The information provided by this study may also be of use to implant manufacturers for design enhancements as well as for training specialists in optimal force administration, using the simulator. The paper reports on the methods for anatomical modeling and haptic algorithm development, with focus on simulator design, development, optimization and validation. The techniques may be transferrable to other medical applications that involve prosthetic device insertions where user vision is obstructed.

Keywords: Haptic modeling, medical device insertion, real-time visualization of prosthetic implantation, surgical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
1133 Computational Studies of Binding Energies and Structures of Methylamine on Functionalized Activated Carbon Surfaces

Authors: R. C. J. Mphahlele, K. Bolton, H. Kasaini

Abstract:

Empirical force fields and density functional theory (DFT) was used to study the binding energies and structures of methylamine on the surface of activated carbons (ACs). This is a first step in studying the adsorption of alkyl amines on the surface of functionalized ACs. The force fields used were Dreiding (DFF), Universal (UFF) and Compass (CFF) models. The generalized gradient approximation with Perdew Wang 91 (PW91) functional was used for DFT calculations. In addition to obtaining the aminecarboxylic acid adsorption energies, the results were used to establish reliability of the empirical models for these systems. CFF predicted a binding energy of -9.227 (kcal/mol) which agreed with PW91 at - 13.17 (kcal/mol), compared to DFF 0 (kcal/mol) and UFF -0.72 (kcal/mol). However, the CFF binding energies for the amine to ester and ketone disagreed with PW91 results. The structures obtained from all models agreed with PW91 results.

Keywords: Activated Carbons, Binding energy, DFT, Force fields.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901