Search results for: chemical analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9404

Search results for: chemical analysis

9194 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-Functionalized SWNT Sensor Array

Authors: Wenjun Zhang, Yunqing Du, Ming L. Wang

Abstract:

Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancements in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless, and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-functionalized single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Seven DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, and diabetes. Our test results indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability; and different molecules can be distinguished through pattern recognition enabled by this sensor array. Furthermore, the experimental sensing results are consistent with the Molecular Dynamics simulated ssDNAmolecular target interaction rankings. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or biomolecular detection for the noninvasive diagnostics of diseases and personal health monitoring.

Keywords: Breath analysis, DNA-SWNT sensor array, diagnosis, noninvasive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
9193 Molecular Characteristics of Phosphoric Acid Treated Soils

Authors: Amin Eisazadeh, Khairul Anuar Kassim, Hadi Nur

Abstract:

The expansive nature of soils containing high amounts of clay minerals can be altered through chemical stabilization, resulting in a material suitable for construction purposes. The primary objective of this investigation was to study the changes induced in the molecular structure of phosphoric acid stabilized bentonite and lateritic soil using Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopy. Based on the obtained data, it was found that a surface alteration mechanism was the main reason responsible for the improvement of treated soils. Furthermore, the results indicated that the Al present in the octahedral layer of clay minerals were more amenable to chemical attacks and also partly responsible for the formation of new products.

Keywords: Bentonite, Laterite clay, Molecularcharacterization, Phosphoric acid, Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
9192 Product Yields and Chemical Compounds of Cogongrass by Pyrolysis in Twin Screw Feeder

Authors: Kittiphop Promdee, Tharapong Vitidsant

Abstract:

Continuous pyrolysis of Cogongrass by control temperature in the novel pyrolysis reactor were conducted at three difference temperatures 400, 450 and 500°C. Preliminary calculate of the product yields founded the liquid yield of Cogongrass was highest of 41.45 %, at 500 oC. Indicated that the liquid yield from Cogongrass had good received yields because it gave over 40 % and its produced more liquid than that solid and gas. The compounds detected in bio-oil from Cogongrass showed the functional group, especially; Phenol, Phenol, 2,5-dimethyl, Phenol, 3-methyl, 2- methyl-1,3-oxathiofane, Benzene,1-ethyl-4-methoxy, 2-Cyclopenten- 1-one,2,3-dimethyl, 2- Cyclopenten-1- one, 3-Methyl.

Keywords: Pyrolysis, Cogongrass, Product Yields, Chemical Compounds, Twin Screw Feeder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
9191 Use of Caffeine and Human Pharmaceutical Compounds to Identify Sewage Contamination

Authors: Jingming Wu, Junqi Yue, Ruikang Hu, Zhaoguang Yang, Lifeng Zhang

Abstract:

Fecal coliform bacteria are widely used as indicators of sewage contamination in surface water. However, there are some disadvantages in these microbial techniques including time consuming (18-48h) and inability in discriminating between human and animal fecal material sources. Therefore, it is necessary to seek a more specific indicator of human sanitary waste. In this study, the feasibility was investigated to apply caffeine and human pharmaceutical compounds to identify the human-source contamination. The correlation between caffeine and fecal coliform was also explored. Surface water samples were collected from upstream, middle-stream and downstream points respectively, along Rochor Canal, as well as 8 locations of Marina Bay. Results indicate that caffeine is a suitable chemical tracer in Singapore because of its easy detection (in the range of 0.30-2.0 ng/mL), compared with other chemicals monitored. Relative low concentrations of human pharmaceutical compounds (< 0.07 ng/mL) in Rochor Canal and Marina Bay water samples make them hard to be detected and difficult to be chemical tracer. However, their existence can help to validate sewage contamination. In addition, it was discovered the high correlation exists between caffeine concentration and fecal coliform density in the Rochor Canal water samples, demonstrating that caffeine is highly related to the human-source contamination.

Keywords: Caffeine, Human Pharmaceutical Compounds, Chemical Tracer, Sewage Contamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
9190 Political Economy of Integrated Soil Fertility Management in the Okavango Delta, Botswana

Authors: Oluwatoyin D. Kolawole, Oarabile Mogobe, Lapologang Magole

Abstract:

Although many factors play a significant role in agricultural production and productivity, the importance of soil fertility cannot be underestimated. The extent to which small farmers are able to manage the fertility of their farmlands is crucial in agricultural development particularly in sub-Saharan Africa (SSA).  This paper assesses the nutrient status of selected farmers’ fields in relation to how government policy addresses the allocation of and access to agricultural inputs (e.g. chemical fertilizers) in a unique social-ecological environment of the Okavango Delta in northern Botswana. It also analyses small farmers and soil scientists’ perceptions about the political economy of integrated soil fertility management (ISFM) in the area. A multi-stage sampling procedure was used to elicit quantitative and qualitative information from 228 farmers and 9 soil researchers through the use of interview schedules and questionnaires, respectively. Knowledge validation workshops and focus group discussions (FGDs) were also used to collect qualitative data from farmers. Thirty-three composite soil samples were collected from 30 farmers’ plots in three farming communities of Makalamabedi, Nokaneng and Mohembo for laboratory analysis. While meeting points exist, farmers and scientists have divergent perspectives on soil fertility management. Laboratory analysis carried out shows that most soils in the wetland and the adjoining dry-land/upland surroundings are low in essential nutrients as well as in cation exchange capacity (CEC). Although results suggest the identification and use of appropriate inorganic fertilizers, the low CEC is an indication that holistic cultural practices, which are beyond mere chemical fertilizations, are critical and more desirable for improved soil health and sustainable livelihoods in the area. Farmers’ age (t= -0.728; p≤0.10); their perceptions about the political economy (t = -0.485; p≤0.01) of ISFM; and their preference for the use of local knowledge in soil fertility management (t = -10.254; p≤0.01) had a significant relationship with how they perceived their involvement in the implementation of ISFM.

Keywords: Access, Botswana, ecology, inputs, Okavango Delta, policy, scientists, small farmers, soil fertility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
9189 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach

Authors: Abdallah Al-Shammari

Abstract:

This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solution

Keywords: Linear programming, Petrochemicals, stability analysis, uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
9188 Aging Evaluation of Ammonium Perchlorate/Hydroxyl Terminated Polybutadiene-Based Solid Rocket Engine by Reactive Molecular Dynamics Simulation and Thermal Analysis

Authors: R. F. B. Gonçalves, E. N. Iwama, J. A. F. F. Rocco, K. Iha

Abstract:

Propellants based on Hydroxyl Terminated Polybutadiene/Ammonium Perchlorate (HTPB/AP) are the most commonly used in most of the rocket engines used by the Brazilian Armed Forces. This work aimed at the possibility of extending its useful life (currently in 10 years) by performing kinetic-chemical analyzes of its energetic material via Differential Scanning Calorimetry (DSC) and also performing computer simulation of aging process using the software Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Thermal analysis via DSC was performed in triplicates and in three heating ratios (5 ºC, 10 ºC, and 15 ºC) of rocket motor with 11 years shelf-life, using the Arrhenius equation to obtain its activation energy, using Ozawa and Kissinger kinetic methods, allowing comparison with manufacturing period data (standard motor). In addition, the kinetic parameters of internal pressure of the combustion chamber in 08 rocket engines with 11 years of shelf-life were also acquired, for comparison purposes with the engine start-up data.

Keywords: Shelf-life, thermal analysis, Ozawa method, Kissinger method, LAMMPS software, thrust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
9187 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character

Authors: Nihit Madireddi, P. A. Mahanwar

Abstract:

We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2Hperflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.

Keywords: FAS, nano-silica, PU clear coat, self-cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
9186 Modelling the Sublimation-Desublimation Processes for Production of Ultrafine Powders

Authors: V. Golubev, A. Dosmakanbetova, A. Brener

Abstract:

The purpose of this work is to establish the theoretical foundations for calculating and designing the sublimationcondensation processes in chemical apparatuses which are intended for production of ultrafine powders of crystalline and amorphous materials with controlled fractional composition. Theoretic analysis of the primary processes of nucleation and growth kinetics of the clusters according to the degree of super-saturation and the homogeneous or heterogeneous nature of nucleation has been carried out. The engineering design procedures of desublimation processes have been offered and tested for modification of the Claus process.

Keywords: Desublimation, controlled fraction composition, nucleation, ultrafine powders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
9185 Influence of Raw Material Composition on Microstructure and Mechanical Properties of Nodular Cast Iron

Authors: Alan Vaško, Juraj Belan, Lenka Hurtalová, Eva Tillová

Abstract:

The aim of this study is to evaluate the influence of raw material composition on the microstructure, mechanical and fatigue properties and micromechanisms of failure of nodular cast iron. In order to evaluate the influence of charge composition, the structural analysis, mechanical and fatigue tests and microfractographic analysis were carried out on specimens of ten melts with different charge compositions. The basic charge of individual melts was formed by different ratio of pig iron and steel scrap and by different additive for regulation of chemical composition (silicon carbide or ferrosilicon). The results show differences in mechanical and fatigue properties, which are connected with the microstructure. SiC additive positively influences microstructure. Consequently, mechanical and fatigue properties of nodular cast iron are improved, especially in the melts with higher ratio of steel scrap in the charge.

Keywords: Nodular cast iron, silicon carbide, microstructure, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
9184 Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis

Authors: Reza Nadimi, Fariborz Jolai

Abstract:

This article combines two techniques: data envelopment analysis (DEA) and Factor analysis (FA) to data reduction in decision making units (DMU). Data envelopment analysis (DEA), a popular linear programming technique is useful to rate comparatively operational efficiency of decision making units (DMU) based on their deterministic (not necessarily stochastic) input–output data and factor analysis techniques, have been proposed as data reduction and classification technique, which can be applied in data envelopment analysis (DEA) technique for reduction input – output data. Numerical results reveal that the new approach shows a good consistency in ranking with DEA.

Keywords: Effectiveness, Decision Making, Data EnvelopmentAnalysis, Factor Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
9183 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion, and co-firing applications. In the course of torrefaction, the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The nonstationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: Torrefaction, biomass pellets, model, heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
9182 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

The article presents a plasma chemical technology for processing solid fuels, using examples of bituminous and brown coals. Thermodynamic and experimental investigation of the technology was made. The technology allows producing synthesis gas from the coal organic mass and valuable components (technical silicon, ferrosilicon, aluminum, and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, etc.) from the mineral mass. The thusly produced highcalorific synthesis gas can be used for synthesis of methanol, as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants.

Keywords: Gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
9181 Study of the Sorption of Biosurfactants from l. Pentosus on Sediments

Authors: Devesa-Rey R., Vecino X., Barral M.T., Cruz J.M., Moldes A.B

Abstract:

Losses of surfactant due to sorption need to be considered when selecting surfactant doses for soil bioremediation. The degree of surfactant sorption onto soil depends primarily on the organic carbon fraction of soil and the chemical nature of the surfactant. The use of biosurfactants in the control of the bioavailability of toxicants in soils is an attractive option because of their biodegradability. In this work biosurfactants were produced from a cheap raw material, trimming vine shoots, employing Lactobacillus pentosus. When biosurfactants from L. pentosus was added to sediments the surface tensión of the water containing the sediments rapidly increase, the same behaviour was observed with the chemical surfactant Tween 20; whereas sodyum dodecyl sulphate (SDS) kept the surface tension of the water around 36 mN/m. It means, that the behaviour of biosurfactants from L. pentosus is more similar to non-ionic surfactatns than to anionic surfactants.

Keywords: Biosurfactants, L. pentous, sediments, surface tension

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
9180 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: Building structure, seismic waves, spectral analysis, structural response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5236
9179 Laser Beam Welding of Ti/Al Dissimilar Thin Sheets - A Literature Review

Authors: K. Kalaiselvan, A. Elango, N.M. Nagarajan, N. Mathiazhagan

Abstract:

Dissimilar joining of Titanium and Aluminum thin sheets has potential applications in aerospace and automobile industry which can reduce weight and cost and improve strength, corrosion resistance and high temperature properties. However successful welding of Titanium/Aluminium sheets is of challenge due to differences in physical, chemical and metallurgical properties between the two. This paper describes research results of Laser Beam Welding (LBW) of Ti/Al thin sheets in which many researchers have recently performed and critically reviewed from different perspectives. Also some of notable works in the field of laser welding with changes in mechanical properties, crack propagation, diffusion behavior, chemical potential, interfacial reaction and the microstructure are reported.

Keywords: Laser Beam Welding (LBW), Mechanical properties, Titanium and Aluminium thin sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2863
9178 Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-LiClO4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity

Authors: C. S. Wong, K. H. Badri, N. Ataollahi, K. P. Law, M. S. Su’ait, N. I. Hassan

Abstract:

Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via prepolymerization method with different NCO/OH ratios and labelled them as PU1, PU2, PU3 and PU4. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1. Differential scanning calorimetry (DSC) analysis indicates PU1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity and the lowest activation energy, Ea. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.

Keywords: Ionic conductivity, Palm kernel oil-based monoester polyol, polyurethane, solid polymer electrolyte.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3088
9177 Preparation and Characterisation of Chemically Activated Almond Shells by Optimization of Adsorption Parameters for Removal of Chromium VI from Aqueous Solutions

Authors: Inamullah Bhatti, Khadija Qureshi, R. A. Kazi, Abdul Khalique Ansari

Abstract:

Activated carbon was prepared from agricultural waste “almond (Prunus amygdalus) nut shells" by chemical activation with phosphoric acid as an activating agent at 450 °C for 24 hr soaking time. The physical and chemical properties were analyzed. The adsorption of chromium VI from aqueous solution on almond nut shell activated carbon (ASAC) was investigated. The adsorption process parameters pH, agitation speed, agitation time, adsorbent dose were optimized. 98% of Cr VI was sorbed at pH 2 and stirring speed 200 rpm.. Surface structure showed that ASAC has a spongy type structure showing large number of pores

Keywords: adsorption, sorbent , sorbate and activation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
9176 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility

Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata

Abstract:

Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.

Keywords: Chemical Processing Facility, medium- and long-term management plan of JAEA Facilities, STRAD project, treatment of radioactive waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808
9175 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
9174 Optimization of NaOH Thermo-Chemical Pretreatment to Enhance Solubilisation of Organic Food Waste by Response Surface Methodology

Authors: H. Junoh, K. Palanisamy, C. H. Yip, F. L. Pua

Abstract:

This study investigates the influence of low temperature thermo-chemical pretreatment of organic food waste on performance of COD solubilisation. Both temperature and alkaline agent were reported to have effect on solubilizing any possible biomass including organic food waste. The three independent variables considered in this pretreatment were temperature (50-90oC), pretreatment time (30-120 minutes) and alkaline concentration, sodium hydroxide, NaOH (0.7-15 g/L). The maximal condition obtained were 90oC, 15 g/L NaOH for 2 hours. Solubilisation has potential in enhancing methane production by providing high amount of soluble components at early stage during anaerobic digestion.

Keywords: Food waste, pretreatments, respond surface methodology, ANOVA, anaerobic digestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
9173 Endothelial-Cell-Mediated Displacement of Extracellular Matrix during Angiogenesis

Authors: Yue Du, Sahan C. B. Herath, Qing-Guo Wang, Harry Asada, Peter C. Y. Chen

Abstract:

Mechanical interaction between endothelial cells (ECs) and the extracellular matrix (or collagen gel) is known to influence the sprouting response of endothelial cells during angiogenesis. This influence is believed to impact on the capability of endothelial cells to sense soluble chemical cues. Quantitative analysis of endothelial-cell-mediated displacement of the collagen gel provides a means to explore this mechanical interaction. Existing analysis in this context is generally limited to 2D settings. In this paper, we investigate the mechanical interaction between endothelial cells and the extracellular matrix in terms of the endothelial-cellmediated displacement of the collagen gel in both 2D and 3D. Digital image correlation and Digital volume correlation are applied on confocal reflectance image stacks to analyze cell-mediated displacement of the gel. The skeleton of the sprout is extracted from phase contrast images and superimposed on the displacement field to further investigate the link between the development of the sprout and the displacement of the gel.

Keywords: Angiogenesis, digital image correlation, digital volume correlation, interaction between ECs and ECM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
9172 Study of Methylene Blue Dye Adsorption on to Activated Carbons from Olive Stones

Authors: L. Temdrara, A. Khelifi, A. Addoun

Abstract:

Activated carbons were produced from olive stones by a chemical process. The activated carbon (AC) were modified by nitric acid and used as adsorbents for the removal of methylene blue dye from aqueous solution. The activated carbons were characterized by nitrogen adsorption and enthalpy of immersion. Batch adsorption experiments were carried out to study the effect of initial different concentrations solution on dye adsorption properties. Isotherms were fitted to Langmuir model, and corresponding parameters were determined. The results showed that the increase of ration of ZnCl2 leads to increase in apparent surface areas and produces activated carbons with pore structure more developed. However, the maximum MB uptakes for all carbons were determined and correlated with activated carbons characteristics. 

Keywords: Adsorption, activated carbon, chemical activation, enthalpy of immersion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
9171 Determination of Some Chemical Properties of Uncommon Flours

Authors: Sónia C. Andrade, Solange F. Oliveira, Raquel P. F. Guiné, Paula M. R. Correia

Abstract:

Flours of wheat, chestnut, acorn and lupin were evaluated in relation to phenolic compounds, antioxidant activity, and oxalate content. At the chemical level the results show some variability between samples by type of flour, and the sample of chestnut flour presented the higher value of oxalate (0.00348 mg/100g) when compared to the other samples in the study. Considering the content of phenolic compounds, the sample that stood out was the acorn flour, having a high value of 0.812 g AGE/100 g. All the samples presented intermediate content of antioxidant activity and the sample that showed a slightly higher value was the wheat flour with a value of 0.746 mM TRE/g sample.

Keywords: Wheat, Acorn, Lupine, Chestnut, Flour, Antioxidant properties, Oxalate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2389
9170 Single-Walled Carbon Nanotube Synthesis by Chemical Vapor Deposition Using Platinum-Group Metal Catalysts

Authors: T. Maruyama, T. Saida, S. Naritsuka, S. Iijima

Abstract:

Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (>2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 °C and 600 °C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 °C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth.

Keywords: Carbon nanotube, chemical vapor deposition, catalyst, Pt, Rh, Pd.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
9169 Effects of Gamma Irradiation on Chemical and Antioxidant Properties of Iranian Native Fresh Barberry Fruit

Authors: Samira Berenji Ardestani, Hamid Reza Akhavan

Abstract:

Gamma irradiation greatly reduces the potential microbiological risk of fresh fruits, resulting in improved microbial safety as well as extending their shelf life. The effects of 0.5-2 kGy gamma doses on some physicochemical, microbial and sensory properties of fresh barberry fruits (Berberis vulgaris) during refrigerated storage for 40 days were evaluated. The total anthocyanin and total phenolic contents of barberry fruits decreased in a dose-dependent manner immediately after irradiation and after subsequent storage. In general, it is recommended that, according to the effect of gamma radiation on physicochemical, microbial and sensorial characteristics, doses of 1.25-2 kGy could be used.

Keywords: Antioxidant property, barberry fruit, chemical properties, gamma irradiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672
9168 Production of Natural Gas Hydrate by Using Air and Carbon Dioxide

Authors: Yun-Ho Ahn, Hyery Kang, Dong-Yeun Koh, Huen Lee

Abstract:

In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.

Keywords: Air injection, Carbon dioxide sequestration, Hydrate production, Natural gas hydrate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
9167 Statistical Analysis of the Factors that Influence the Properties of Blueberries from Cultivar Bluecrop

Authors: Raquel P. F. Guiné, Susana R. Matos, Daniela V. T. A. Costa, Fernando J. Gonçalves

Abstract:

Because blueberries are worldwide recognized as a good source of beneficial components, their consumption has increased in the past decades, and so have the scientific works about their properties. Hence, this work was undertaken to evaluate the effect of some production and conservation factors on the properties of blueberries from cultivar Bluecrop. The physical and chemical analyses were done according to established methodologies and then all data was treated using software SPSS for assessment of the possible differences among the factors investigated and/or the correlations between the variables at study. The results showed that location of production influenced some of the berries properties (caliber, sugars, antioxidant activity, color and texture) and that the age of the bushes was correlated with moisture, sugars and acidity, as well as lightness. On the other hand, altitude of the farm only was correlated to sugar content. With regards to conservation, it influenced only anthocyanins content and DPPH antioxidant activity. Finally, the type of extract and the order of extraction had a pronounced influence on all the phenolic properties evaluated.

Keywords: Antioxidant activity, blueberry, conservation, geographical origin, phenolic compounds, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
9166 Benzpyrimoxan: An Insecticide for the Control of Rice Plant Hoppers

Authors: E. Satoh, R. Kasahara, T. Aoki, K. Fukatsu, D. Venkata Ramanarao, H. Harayama, T. Murata, A. Suwa

Abstract:

Rice plant hoppers (Hemiptera: Delphacidae) have been causing extensive economic damage in rice and are considered as serious threat in rice producing countries of Asia. They have developed resistance to major groups of chemical insecticide, and severe outbreaks occur commonly throughout Asia. To control these nuisance pests, Nihon Nohyaku Co., Ltd., recently discovered an insecticide, benzpyrimoxan (proposed ISO name), which is under development as NNI-1501 (development code). Benzpyrimoxan has a unique chemical structure which contains benzyloxy and cyclic acetal groups on pyrimidine moiety (5-(1,3-dioxan-2-yl)-4-[4- (trifluoromethyl)benzyloxy]pyrimidine). In order to clarify the biological properties of benzpyrimoxan, we conducted several experiments and found the following results. Benzpyrimoxan has high activity against nymphal stages of rice plant hoppers without any adulticidal activity. It provides excellent and long lasting control against rice plant hoppers, including populations that have developed resistance to several other chemical groups of insecticide. The study on its mode of action is undergoing. These features highlight the versatility of this insecticide as an effective and valuable tool from the viewpoints of insecticide resistance management and integrated pest management program. With the use of benzpyrimoxan, farmers shall be able to lead the best yield potential by keeping the population density of rice plant hoppers and associated virus diseases under control.

Keywords: Acetal, benzpyrimoxan, insecticide, NNI-1501, pyrimidine, rice plant hoppers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3519
9165 Partial Oxidation of Methane in the Pulsed Compression Reactor: Experiments and Simulation

Authors: Timo Roestenberg, Maxim Glushenkov, Alexander Kronberg, Anton A. Verbeek, Theo H. vd Meer

Abstract:

The Pulsed Compression Reactor promises to be a compact, economical and energy efficient alternative to conventional chemical reactors. In this article, the production of synthesis gas using the Pulsed Compression Reactor is investigated. This is done experimentally as well as with simulations. The experiments are done by means of a single shot reactor, which replicates a representative, single reciprocation of the Pulsed Compression Reactor with great control over the reactant composition, reactor temperature and pressure and temperature history. Simulations are done with a relatively simple method, which uses different models for the chemistry and thermodynamic properties of the species in the reactor. Simulation results show very good agreement with the experimental data, and give great insight into the reaction processes that occur within the cycle.

Keywords: Chemical reactors, Energy, Pulsed compressionreactor, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590