Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31108
Endothelial-Cell-Mediated Displacement of Extracellular Matrix during Angiogenesis

Authors: Yue Du, Sahan C. B. Herath, Qing-Guo Wang, Harry Asada, Peter C. Y. Chen


Mechanical interaction between endothelial cells (ECs) and the extracellular matrix (or collagen gel) is known to influence the sprouting response of endothelial cells during angiogenesis. This influence is believed to impact on the capability of endothelial cells to sense soluble chemical cues. Quantitative analysis of endothelial-cell-mediated displacement of the collagen gel provides a means to explore this mechanical interaction. Existing analysis in this context is generally limited to 2D settings. In this paper, we investigate the mechanical interaction between endothelial cells and the extracellular matrix in terms of the endothelial-cellmediated displacement of the collagen gel in both 2D and 3D. Digital image correlation and Digital volume correlation are applied on confocal reflectance image stacks to analyze cell-mediated displacement of the gel. The skeleton of the sprout is extracted from phase contrast images and superimposed on the displacement field to further investigate the link between the development of the sprout and the displacement of the gel.

Keywords: angiogenesis, digital image correlation, digital volume correlation, interaction between ECs and ECM

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432


[1] P. Carmeliet, "Angiogenesis in health and disease," Nat. Med., vol. 9, No. 6, pp.653-660, Jun 2003.
[2] D. E. Ingber, "Can cancer be reversed by engineering the tumor microenvironment?" Semin. Cancer Biol., vol. 18, pp. 356-364, Apr 2008.
[3] N. C. Rivron, E. J. Vrij, J. Rouwkema, G. S. Le, van den Berg A, R. K. Truckenm├╝ller and C. A. van Blitterswijk, "Tissue deformation spatially modulates VEGF signaling and angiogenesis," Proc. Natl. Acad. Sci. U S A, vol. 109, no. 18, pp. 6886-6891, May 2012.
[4] A. Shay-salit, M. Shushy, E. Wolfovitz, H. Yahav, F. Breviario, E. Dejana and N. Resnick, "VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells," Proc. Natl. Acad. Sci. U S A, vol. 99, pp. 9462-9467, Jul. 2002.
[5] D. L. Christiansen, E. K. Huang and F. H. Silver, "Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties," Matrix Biol., vol. 19, pp. 409-420, Sep. 2000.
[6] S. Kanzawa, H. Endo and N. Shioya, "Improved in vitro angiogenesis model by collagen density reduction and the use of type III collagen," Ann. Plast. Surg., vol. 30, no. 3, pp. 244-251, Mar. 1993.
[7] A. L. Sieminski, R. P. Hebbel and K. J. Gooch, "The relative magnitude of endothelial force generation and matrix stiffness modulate capillary morphogenesis," Exp. Cell Res., vol. 297, no. 2, pp. 574-584, Jul 2004.
[8] A. Stéphanou, G. Meskaoui, B. Vailhé and P. Tracqui, "The rigidity in fibrin gels as a contributing factor to the dynamics of in vitro vascular cord formation," Microvasc. Res.,vol. 73, no. 3, pp. 182-190, Dec 2007.
[9] C. Y. Chen Peter, S. C. Herath, Dong-An Wang, K. Su, K. Liao and H. Asada, "Active manipulation of uniaxial ECM stiffness by magnetic anchoring of bio-conjugated beads," in Proc. ASME Summer Bioengin. Conf., Pennsylvania, 2011, pp. 1-14.
[10] M. C. Kim, C. Kim, L. Wood, D. Neal, R. D. Kamm and H. H. Asada, "Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix," Integr. Biol., vol. 4, pp. 1386-1397, Oct 2012.
[11] C. Franck, S. A. Masharinec, D. A. Tirrell and G. Ravichandran "Three- Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions," PLoS One, vol. 6, pp. e17833, Mar 2011.
[12] W. A. Farahat, L. B. Wood, I. K. Zervantonakis, A. Schor, S. Ong, D. Neal, R. D. Kamm and H. H. Asada, "Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures," PLoS One vol.7, pp. e37333, May 2012.
[13] Adrian RJ, "Twenty years of particle image velocimetry," Exp. Fluids, vol. 39, pp. 159-169, 2005.
[14] M. Raffel, C. Willert, S. Wereley and J. Kompenhans, Particle Image Velocimetry: A PracticleGuide. New York: Springer-Verlag, 2007, ch. 3.
[15] S. A. Maskarinec, C. Frank, D. A. Tirrell and G. Ravichandran, "Quantifying cellular traction forces in three dimensions," Proc. Natl. Acad. Sci. U S A, vol. 106, no.52, pp. 22108-22113, Dec 2009..
[16] N. D. Kirkpatrick, S. Andreou, J. B. Hoying and U. Utzinger, "Live imaging of collagen remodeling during angiogenesis," Am. J. Physiol. Heart Circ. Physiol., vol. 292, pp. H3198-H3206, Jun 2007.
[17] L. B. Wood, R. Ge, R. D. Kamn and H. H. Asada, "Nascent vessel elongation rate is inversely related to diameter in in vitro angiogenesis" Integr. Biol., vol. 4, pp. 1081-1089, Sep 2012.
[18] A. N. Stratman, W. B. Saunders, A. Sacharidou, W. Koh, K. E. Fisher, D. C. Zawieja, M. J. Davis and G. E. Davis, " Endothelial cell lumen and vascular guidance tunnel ormation requires MT1-MMP-dependent proteolysis in 3-dimensional collagen matrices," Blood, vol. 114, pp. 237-247, Apr 2009.
[19] T. H. Chun, F. Sabeh, I. Ota, H. Murphy, K. T. McDonagh, K. Holmbeck, H. Birkedal-Hansen, E. D. Allen and S. J. Weiss, "MT1- MMP-dependent neovessel formation within the confines of the threedimensional extracellular matrix," J. Cell Biol., vol. 167, pp. 757-767, Nov 2004.