Search results for: antenna diversity.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 476

Search results for: antenna diversity.

386 Ultra-Wideband Slot Antenna with Notched Band for World Interoperability for Microwave Access

Authors: Rezaul Azim, A. Toaha Mobashsher, M. Tariqul Islam

Abstract:

In this paper a novel ultra-wideband (UWB) slot antenna with band notch characteristics for world interoperability for microwave access (WiMAX) is proposed. The designed antenna consists of a rectangular radiating patch and a ground plane with tapered shape slot. To realize a notch band, a curved parasitic element has been etched out along with the radiating patch. It is observed that by adjusting the length, thickness and position of the parasitic element, the proposed antenna can achieved an impedance bandwidth of 8.01GHz (2.84 to 10.85GHz) with a notched band of 3.28-3.85GHz. Compared to the recently reported band notch antennas, the proposed antenna has a simple configuration to realize band notch characteristics in order to mitigate the potential interference between WiMAX and UWB system. Furthermore, a stable radiation pattern and moderate gain except at the notched band makes the proposed antenna suitable for various UWB applications. 

Keywords: Band notch, Filter element, Ultra-wideband (UWB), WiMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
385 Effect on Bandwidth of Using Double Substrates Based Metamaterial Planar Antenna

Authors: Smrity Dwivedi

Abstract:

The present paper has revealed the effect of double substrates over a bandwidth performance for planar antennas. The used material has its own importance to get minimum return loss and improved directivity. The author has taken double substrates to enhance the efficiency in terms of gain of antenna. Metamaterial based antenna has its own specific structure which increased the performance of antenna. Improved return loss is -20 dB, and the voltage standing wave ratio (VSWR) is 1.2, which is better than single substrate having return loss of -15 dB and VSWR of 1.4. Complete results are obtained using commercial software CST microwave studio.

Keywords: Metamaterials, return loss, standing wave ratio, directivity, CST microwave studio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
384 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location

Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa

Abstract:

This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.

Keywords: Specific absorption rate (SAR), ultra wideband (UWB), coordinates and cancer detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
383 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell

Abstract:

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1x8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

Keywords: MM-wave communications, multi-sector array, patch antenna, small cell networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
382 Design and Optimization of Coplanar Waveguide-Fed Sensing Antennas for ISM Band Applications

Authors: Vivek Bharti, Inderpreet Kaur, Saurabh Verma, Renu Gangwar, Hari Kumar Singh

Abstract:

This work presents a dual-band Coplanar Waveguide (CPW) fed rectangular patch antenna designed for applications in Industrial, Scientific, and Medical (ISM) Band sensing. Fabricated on a cost-effective FR-4 substrate with specific dimensions, the antenna incorporates a rectangular slot and a copper patch, optimized through simulation to achieve desired characteristics, particularly focusing on the reflection coefficient. A unique feature is introduced through the integration of copper cells forming a Partially Reflecting Surface (PRS) to feed the antenna. Dual-band functionality is achieved, covering frequencies of 1.28 GHz-1.3 GHz and 4.9 GHz-5.2 GHz, catering to diverse communication needs within these frequency ranges. The addition of a superstrate enhances the antenna’s gain, resulting in 4.5 dBi at 1.28 GHz-1.3 GHz and 6.5 dBi at 4.9 GHz-5.2 GHz, with an efficiency of 58%.

Keywords: ISM, Coplanar waveguide fed, superstrate, circularly polarized.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60
381 Design, Analysis and Modeling of Dual Band Microstrip Loop Antenna Using Defective Ground Plane

Authors: R. Bansal, A. Jain, M. Kumar, R. S. Meena

Abstract:

Present wireless communication demands compact and intelligent devices with multitasking capabilities at affordable cost. The focus in the presented paper is on a dual band antenna for wireless communication with the capability of operating at two frequency bands with same structure. Two resonance frequencies are observed with the second operation band at 4.2GHz approximately three times the first resonance frequency at 1.5GHz. Structure is simple loop of microstrip line with characteristic impedance 50 ohms. The proposed antenna is designed using defective ground structure (DGS) and shows the nearly one third reductions in size as compared to without DGS. This antenna was simulated on electromagnetic (EM) simulation software and fabricated using microwave integrated circuit technique on RT-Duroid dielectric substrate (εr= 2.22) of thickness (H=15 mils). The designed antenna was tested on automatic network analyzer and shows the good agreement with simulated results. The proposed structure is modeled into an equivalent electrical circuit and simulated on circuit simulator. Subsequently, theoretical analysis was carried out and simulated. The simulated, measured, equivalent circuit response, and theoretical results shows good resemblance. The bands of operation draw many potential applications in today’s wireless communication.

Keywords: Defective Ground plane, Dual band, Loop Antenna, Microstrip antenna, Resonance frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3722
380 Investigation of Utilizing L-Band Horn Antenna in Landmine Detection

Authors: Ahmad H. Abdelgwad, Ahmed A. Nashat

Abstract:

Landmine detection is an important and yet challenging problem remains to be solved. Ground Penetrating Radar (GPR) is a powerful and rapidly maturing technology for subsurface threat identification. The detection methodology of GPR depends mainly on the contrast of the dielectric properties of the searched target and its surrounding soil. This contrast produces a partial reflection of the electromagnetic pulses that are being transmitted into the soil and then being collected by the GPR.  One of the most critical hardware components for the performance of GPR is the antenna system. The current paper explores the design and simulation of a pyramidal horn antenna operating at L-band frequencies (1- 2 GHz) to detect a landmine. A prototype model of the GPR system setup is developed to simulate full wave analysis of the electromagnetic fields in different soil types. The contrast in the dielectric permittivity of the landmine and the sandy soil is the most important parameter to be considered for detecting the presence of landmine. L-band horn antenna is proved to be well-versed in the investigation of landmine detection.

Keywords: Full wave analysis, ground penetrating radar, horn antenna design, landmine detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956
379 Connected Objects with Optical Rectenna for Wireless Information Systems

Authors: Chayma Bahar, Chokri Baccouch, Hedi Sakli, Nizar Sakli

Abstract:

Harvesting and transport of optical and radiofrequency signals are a topical subject with multiple challenges. In this paper, we present a Optical RECTENNA system. We propose here a hybrid system solar cell antenna for 5G mobile communications networks. Thus, we propose rectifying circuit. A parametric study is done to follow the influence of load resistance and input power on Optical RECTENNA system performance. Thus, we propose a solar cell antenna structure in the frequency band of future 5G standard in 2.45 GHz bands.

Keywords: Antenna, Rectenna, solar cell, 5G, optical RECTENNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 425
378 Plate-Laminated Slotted-Waveguide Fed 2×3 Planar Inverted F Antenna Array

Authors: Badar Muneer, Waseem Shabir, Faisal Karim Shaikh

Abstract:

Substrate Integrated waveguide based 6-element array of Planar Inverted F antenna (PIFA) has been presented and analyzed parametrically in this paper. The antenna is fed with coupled transverse slots on a plate laminated waveguide cavity to ensure wide bandwidth and simplicity of feeding network. The two-layer structure has one layer dedicated for feeding network and the top layer dedicated for radiating elements. It has been demonstrated that the presented feeding technique for feeding such class of array antennas can be far simple in structure and miniaturized in size when it comes to designing large phased array antenna systems. A good return loss and standing wave ratio of 2:1 has been achieved while maintaining properties of typical PIFA.

Keywords: Feeding network, laminated waveguide, PIFA, transverse slots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
377 Design the Bowtie Antenna for the Detection of the Tumor in Microwave Tomography

Authors: Muhammd Hassan Khalil, Xu Jiadong

Abstract:

Early breast cancer detection is an emerging field of research as it can save the women infected by malignant tumors. Microwave breast imaging is based on the electrical property contrast between healthy and malignant tumor. This contrast can be detected by use of microwave energy with an array of antennas that illuminate the breast through coupling medium and by measuring the scattered fields. In this paper, author has been presented the design and simulation results of the bowtie antenna. This bowtie antenna is designed for the detection of breast cancer detection.

Keywords: Breast cancer detection, Microwave Imaging, Tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
376 Proximity-Inset Fed Triple Band Antenna for Global Position System with High Gain

Authors: The Nan Chang, Ping-Tang Yu, Jyun-Ming Lin

Abstract:

A triple band circularly polarized antenna covering 1.17, 1.22, and 1.57 GHz is presented. To extend to the triple-band operation, we need to add one more ring while maintaining the mechanism to independently control each ring. The inset-part in the feeding scheme is used to excite the band at 1.22 GHz, while the proximate-part of the feeding scheme is used to excite not only the band at 1.57 GHz but also the band at 1.17 GHz. This is achieved by up-vertically coupled with one ring to radiate at 1.57 GHz and down-vertically coupled another ring to radiate at 1.17 GHz. It is also noted that the inset-part in our feeding scheme is by horizontal coupling. Furthermore, to increase the gain at all three bands, three air-layers are added to make the total height of the antenna be 7.8 mm. The total thickness of the three air-layers is 3 mm. The gains of the three bands are all greater than 5 dBiC after adding the air-layers.

Keywords: Circular polarization, global position system, triband antenna, high gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
375 Microstrip Patch Antenna Enhancement Techniques

Authors: Ahmad H. Abdelgwad

Abstract:

Microstrip patch antennas are widely used in many wireless communication applications because of their various advantages such as light weight, compact size, inexpensive, ease of fabrication and high reliability. However, narrow bandwidth and low gain are the major drawbacks of microstrip antennas. The radiation properties of microstrip antenna is affected by many designing factors like feeding techniques, manufacturing substrate, patch and ground structure. This manuscript presents a review of the most popular gain and bandwidth enhancement methods of microstrip antenna and reports a brief description of its feeding techniques.

Keywords: Gain and bandwidth enhancement, slotted patch, parasitic patch, electromagnetic band gap, defected ground, feeding techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
374 Design and Parametric Analysis of Pentaband Meander Line Antenna for Mobile Handset Applications

Authors: Shrinivas P. Mahajan, Aarti C. Kshirsagar

Abstract:

Wireless communication technology is rapidly changing with recent developments in portable devices and communication protocols. This has generated demand for more advanced and compact antenna structures and therefore, proposed work focuses on Meander Line Antenna (MLA) design. Here, Pentaband MLA is designed on a FR4 substrate (85 mm x 40 mm) with dielectric constant (ϵr) 4.4, loss tangent (tan ) 0.018 and height 1.6 mm with coplanar feed and open stub structure. It can be operated in LTE (0.670 GHz-0.696 GHz) GPS (1.564 GHz-1.579 GHz), WCDMA (1.920 GHz-2.135 GHz), LTE UL frequency band 23 (2-2.020 GHz) and 5G (3.10 GHz-3.550 GHz) application bands. Also, it gives good performance in terms of Return Loss (RL) which is < -10 dB, impedance bandwidth with maximum Bandwidth (BW) up to 0.21 GHz and realized gains with maximum gain up to 3.28 dBi. Antenna is simulated with open stub and without open stub structures to see the effect on impedance BW coverage. In addition to this, it is checked with human hand and head phantoms to assure that it falls within specified Specific Absorption Rate (SAR) limits.

Keywords: Coplanar feed, L shaped ground, MLA, phantom, SAR, stub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
373 Antenna for Energy Harvesting in Wireless Connected Objects

Authors: Nizar Sakli, Chayma Bahar, Chokri Baccouch, Hedi Sakli

Abstract:

If connected objects multiply, they are becoming a challenge in more than one way. In particular by their consumption and their supply of electricity. A large part of the new generations of connected objects will only be able to develop if it is possible to make them entirely autonomous in terms of energy. Some manufacturers are therefore developing products capable of recovering energy from their environment. Vital solutions in certain contexts, such as the medical industry. Energy recovery from the environment is a reliable solution to solve the problem of powering wireless connected objects. This paper presents and study a optically transparent solar patch antenna in frequency band of 2.4 GHz for connected objects in the future standard 5G for energy harvesting and RF transmission.

Keywords: 5G, IoT, wireless communications, antenna, solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740
372 The Effect of Diversity Sensitive Orientation on Job Satisfaction and Turnover Intention

Authors: Hyeondal Jeong, Yoonjung Baek

Abstract:

The main purpose of this paper is to examine the effect of diversity sensitive orientation on job satisfaction and turnover intention. Diversity sensitive orientation is the attitude of the individual to respect and accommodate diversity. This is focused on an individual’s perception of diversity. Although being made from the most diversity related research team and organizational level, this study deals with diversity issues at the individual level. To test the proposed research model and hypothesis, the data were collected from 291 Korean employees. The study conducted a confirmatory factor analysis for the validity test. Furthermore, structural equation modeling (SEM) was employed to test the hypothesized relationship in the conceptual model. The results of this paper were as followings: First, diversity sensitive orientation was positively related to job satisfaction. Second, diversity sensitive orientation was negatively related to turnover intention. In other words, the positive influence of the diversity sensitive orientation has been verified. Based on the findings, this study suggested implications and directions for future research.

Keywords: Diversity sensitive orientation, job satisfaction, turnover intention, perception, cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
371 An Automated Test Setup for the Characterization of Antenna in CATR

Authors: Faisal Amin, Abdul Mueed, Xu Jiadong

Abstract:

This paper describes the development of a fully automated measurement software for antenna radiation pattern measurements in a Compact Antenna Test Range (CATR). The CATR has a frequency range from 2-40 GHz and the measurement hardware includes a Network Analyzer for transmitting and Receiving the microwave signal and a Positioner controller to control the motion of the Styrofoam column. The measurement process includes Calibration of CATR with a Standard Gain Horn (SGH) antenna followed by Gain versus angle measurement of the Antenna under test (AUT). The software is designed to control a variety of microwave transmitter / receiver and two axis Positioner controllers through the standard General Purpose interface bus (GPIB) interface. Addition of new Network Analyzers is supported through a slight modification of hardware control module. Time-domain gating is implemented to remove the unwanted signals and get the isolated response of AUT. The gated response of the AUT is compared with the calibration data in the frequency domain to obtain the desired results. The data acquisition and processing is implemented in Agilent VEE and Matlab. A variety of experimental measurements with SGH antennas were performed to validate the accuracy of software. A comparison of results with existing commercial softwares is presented and the measured results are found to be within .2 dBm.

Keywords: Antenna measurement, calibration, time-domain gating, VNA, Positioner controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1928
370 Design and Development of Ferroelectric Material for Microstrip Patch Array Antenna

Authors: F.H.Wee, F. Malek

Abstract:

This paper presents the utilizing of ferroelectric material on antenna application. There are two different ferroelectric had been used on the proposed antennas which include of Barium Strontium Titanate (BST) and Bismuth Titanate (BiT), suitable for Access Points operating in the WLAN IEEE 802.11 b/g and WiMAX IEEE 802.16 within the range of 2.3 GHz to 2.5 GHz application. BST, which had been tested to own a dielectric constant of εr = 15 while BiT has a dielectric constant that higher than BST which is εr = 21 and both materials are in rectangular shaped. The influence of various parameters on antenna characteristics were investigated extensively using commercial electromagnetic simulations software by Communication Simulation Technology (CST). From theoretical analysis and simulation results, it was demonstrated that ferroelectric material used have not only improved the directive emission but also enhanced the radiation efficiency.

Keywords: Ferroelectric material, WLAN, WiMAX, dielectric constant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
369 Transmitter Design for LMS-MIMO-MCCDMA Systems with Pilot Channel Estimates and Zero Forcing Equalizer

Authors: S.M. Bahri, F.T. Bendimerad

Abstract:

We propose a downlink multiple-input multipleoutput (MIMO) multi-carrier code division multiple access (MCCDMA) system with adaptive beamforming algorithm for smart antennas. The algorithm used in this paper is based on the Least Mean Square (LMS), with pilot channel estimation (PCE) and the zero forcing equalizer (ZFE) in the receiver, requiring reference signal and no knowledge channel. MC-CDMA is studied in a multiple antenna context in order to efficiently exploit robustness against multipath effects and multi-user flexibility of MC-CDMA and channel diversity offered by MIMO systems for radio mobile channels. Computer simulations, considering multi-path Rayleigh Fading Channel, interference inter symbol and interference are presented to verify the performance. Simulation results show that the scheme achieves good performance in a multi-user system.

Keywords: Adaptive Beamforming, LMS Algorithm, MCCDMA, MIMO System, Smart Antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
368 Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction

Authors: Gopi Ram, Durbadal Mandal, Rajib Kar, Sakti Prasad Ghoshal

Abstract:

A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO and SA applied to the same problem.

Keywords: Circular arrays, First null beam width, Side lobe level, FFA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3125
367 A Microstrip Antenna Design and Performance Analysis for RFID High Bit Rate Applications

Authors: Ibrahim S. Alnomay, Jihad Y. Alhammad

Abstract:

Lately, an interest has grown greatly in the usages of RFID in an un-presidential applications. It is shown in the adaptation of major software companies such as Microsoft, IBM, and Oracle the RFID capabilities in their major software products. For example Microsoft SharePoints 2010 workflow is now fully compatible with RFID platform. In addition, Microsoft BizTalk server is also capable of all RFID sensors data acquisition. This will lead to applications that required high bit rate, long range and a multimedia content in nature. Higher frequencies of operation have been designated for RFID tags, among them are the 2.45 and 5.8 GHz. The higher the frequency means higher range, and higher bit rate, but the drawback is the greater cost. In this paper we present a single layer, low profile patch antenna operates at 5.8 GHz with pure resistive input impedance of 50 and close to directive radiation. Also, we propose a modification to the design in order to improve the operation band width from 8.7 to 13.8

Keywords: Microstrip Antenna, RFID, U-shaped, double layer, circular antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
366 Investigation of the Unbiased Characteristic of Doppler Frequency to Different Antenna Array Geometries

Authors: Somayeh Komeylian

Abstract:

Array signal processing techniques have been recently developing in a variety application of the performance enhancement of receivers by refraining the power of jamming and interference signals. In this scenario, biases induced to the antenna array receiver degrade significantly the accurate estimation of the carrier phase. Owing to the integration of frequency becomes the carrier phase, we have obtained the unbiased doppler frequency for the high precision estimation of carrier phase. The unbiased characteristic of Doppler frequency to the power jamming and the other interference signals allows achieving the highly accurate estimation of phase carrier. In this study, we have rigorously investigated the unbiased characteristic of Doppler frequency to the variation of the antenna array geometries. The simulation results have efficiently verified that the Doppler frequency remains also unbiased and accurate to the variation of antenna array geometries.

Keywords: Array signal processing, unbiased Doppler frequency, GNSS, carrier phase, slowly fluctuating point target.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
365 Bandwidth Efficient Diversity Scheme Using STTC Concatenated With STBC: MIMO Systems

Authors: Sameru Sharma, Sanjay Sharma, Derick Engles

Abstract:

Multiple-input multiple-output (MIMO) systems are widely in use to improve quality, reliability of wireless transmission and increase the spectral efficiency. However in MIMO systems, multiple copies of data are received after experiencing various channel effects. The limitations on account of complexity due to number of antennas in case of conventional decoding techniques have been looked into. Accordingly we propose a modified sphere decoder (MSD-1) algorithm with lower complexity and give rise to system with high spectral efficiency. With the aim to increase signal diversity we apply rotated quadrature amplitude modulation (QAM) constellation in multi dimensional space. Finally, we propose a new architecture involving space time trellis code (STTC) concatenated with space time block code (STBC) using MSD-1 at the receiver for improving system performance. The system gains have been verified with channel state information (CSI) errors.

Keywords: Channel State Information , Diversity, Multi-Antenna, Rotated Constellation, Space Time Codes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
364 A Novel Low-Profile Coupled-Fed Printed Twelve-Band Mobile Phone Antenna with Slotted Ground Plane for LTE/GSM/UMTS/WIMAX/WLAN Operations

Authors: Omar A. Saraereh, M. A. Smadi, A. K. S. Al-Bayati, Jasim A. Ghaeb, Qais H. Alsafasfeh

Abstract:

A low profile planar antenna for twelve-band operation in the mobile phone is presented. The proposed antenna radiating elements occupy an area equals 17 × 50 mm2 are mounted on the compact no-ground portion of the system circuit board to achieve a simple low profile structure. In order to overcome the shortcoming of narrow bandwidth for conventional planar printed antenna, a novel bandwidth enhancement approach for multiband handset antennas is proposed here. The technique used in this study shows that by using a coupled-fed mechanism and a slotted ground structure, a multiband operation with wideband characteristic can be achieved. The influences of the modifications introduced into the ground plane improved significantly the bandwidths of the designed antenna. The slotted ground plane structure with the coupled-fed elements contributes their lowest, middle and higher-order resonant modes to form four operating modes. The generated modes are able to cover LTE 700/2300/2500, GSM 850/900/1800/1900, UMTS, WiMAX 3500, WLAN 2400/5200/5800 operations. Parametric studies via simulation are provided and discussed. Proposed antenna’s gain, efficiency and radiation pattern characteristics over the desired operating bands are obtained and discussed. The reasonable results observed can meet the requirements of practical mobile phones.

Keywords: Antenna, handset, LTE, Mobile, Multiband, Slotted ground, specific absorption rate (SAR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
363 Enhanced Interference Management Technique for Multi-Cell Multi-Antenna System

Authors: Simon E. Uguru, Victor E. Idigo, Obinna S. Oguejiofor, Naveed Nawaz

Abstract:

As the deployment of the Fifth Generation (5G) mobile communication networks take shape all over the world, achieving spectral efficiency, energy efficiency, and dealing with interference are among the greatest challenges encountered so far. The aim of this study is to mitigate inter-cell interference (ICI) in a multi-cell multi-antenna system while maximizing the spectral efficiency of the system. In this study, a system model was devised that showed a miniature representation of a multi-cell multi-antenna system. Based on this system model, a convex optimization problem was formulated to maximize the spectral efficiency of the system while mitigating the ICI. This optimization problem was solved using CVX, which is a modeling system for constructing and solving discipline convex programs. The solutions to the optimization problem are sub-optimal coordinated beamformers. These coordinated beamformers direct each data to the served user equipments (UEs) in each cell without interference during downlink transmission, thereby maximizing the system-wide spectral efficiency.

Keywords: coordinated beamforming, convex optimization, inter-cell interference, multi-antenna, multi-cell, spectral efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 368
362 High Directivity and Gain Enhancement for Small Planar Dipole Antenna at 11 GHz Using Symmetrical Pyramidal Block Based On Epsilon Negative Medium

Authors: V. Kesornpatumanun, P. Boonek, W. Silabut, N. Homsup, W. Kuhirun

Abstract:

This paper increases directivity and gain of Small Planar Dipole Antenna (SPDA) by using Symmetrical Pyramidal Block (SPB) which operates in X band at 11 GHz. The SPB consists four sides; each of which is metamaterial with Epsilon Negative Medium (ENG) and Epsilon Near-Zero (ENZ). The results simulated using the High Frequency Structure Simulator (HFSS) show that the SPB is capable of enhancing directivity and gain for the SPDA with maximum gain of 2.46 dB. The reflection coefficient is -13.7037 dB with narrow beam width.

Keywords: Small Planar Dipole Antenna, Symmetrical Pyramidal Block, metamaterials, Epsilon Near-Zero, Epsilon Negative Medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
361 Optimized Detection in Multi-Antenna System using Particle Swarm Algorithm

Authors: A. A. Khan, M. Naeem, S. Bashir, S. I. Shah

Abstract:

In this paper we propose a Particle Swarm heuristic optimized Multi-Antenna (MA) system. Efficient MA systems detection is performed using a robust stochastic evolutionary computation algorithm based on movement and intelligence of swarms. This iterative particle swarm optimized (PSO) detector significantly reduces the computational complexity of conventional Maximum Likelihood (ML) detection technique. The simulation results achieved with this proposed MA-PSO detection algorithm show near optimal performance when compared with ML-MA receiver. The performance of proposed detector is convincingly better for higher order modulation schemes and large number of antennas where conventional ML detector becomes non-practical.

Keywords: Multi Antenna (MA), Multi-input Multi-output(MIMO), Particle Swarm Optimization (PSO), ML detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
360 MIMO Antenna Selections using CSI from Reciprocal Channel

Authors: P. Uthansakul, K. Attakitmongkol, N. Promsuvana, M. Uthansakul

Abstract:

It is well known that the channel capacity of Multiple- Input-Multiple-Output (MIMO) system increases as the number of antenna pairs between transmitter and receiver increases but it suffers from multiple expensive RF chains. To reduce the cost of RF chains, Antenna Selection (AS) method can offer a good tradeoff between expense and performance. In a transmitting AS system, Channel State Information (CSI) feedback is necessarily required to choose the best subset of antennas in which the effects of delays and errors occurred in feedback channels are the most dominant factors degrading the performance of the AS method. This paper presents the concept of AS method using CSI from channel reciprocity instead of feedback method. Reciprocity technique can easily archive CSI by utilizing a reverse channel where the forward and reverse channels are symmetrically considered in time, frequency and location. In this work, the capacity performance of MIMO system when using AS method at transmitter with reciprocity channels is investigated by own developing Testbed. The obtained results show that reciprocity technique offers capacity close to a system with a perfect CSI and gains a higher capacity than a system without AS method from 0.9 to 2.2 bps/Hz at SNR 10 dB.

Keywords: Antenna Selection, Capacity, Channel, Measurement, MIMO, Reciprocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
359 Design and Optimization of a Microstrip Patch Antenna for Increased Bandwidth

Authors: Ankit Jain, Archana Agrawal

Abstract:

With the ever-increasing need for wireless communication and the emergence of many systems, it is important to design broadband antennas to cover a wide frequency range. The aim of this paper is to design a broadband patch antenna, employing the three techniques of slotting, adding directly coupled parasitic elements, and fractal EBG structures. The bandwidth is improved from 9.32% to 23.77%. A wideband ranging from 4.15 GHz to 5.27 GHz is obtained. Also a comparative analysis of embedding EBG structures at different heights is also done. The composite effect of integrating these techniques in the design provides a simple and efficient method for obtaining low profile, broadband, high gain antenna. By the addition of parasitic elements the bandwidth was increased to only 18.04%. Later on by embedding EBG structures the bandwidth was increased up to 23.77%. The design is suitable for variety of wireless applications like WLAN and Radar Applications.

Keywords: Bandwidth, broadband, EBG structures, parasitic elements, Slotting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3348
358 Performance Assessment of GSO Satellite before and after Enhancing Pointing Effect

Authors: A. E. Emam, Joseph Victor, M. Abd Elghany

Abstract:

This paper presents the effect of the orbit inclination on the pointing error of the satellite antenna and consequently on its footprint on earth for a typical Ku- band payload system. The performance assessment is examined using both analytical simulations and practical measurements, taking into account all the additional sources of the pointing errors, such as East-West station keeping, orbit eccentricity, and actual attitude control performance. An implementation and computation of the sinusoidal biases in satellite roll and pitch used to compensate the pointing error of the satellite antenna coverage is studied and evaluated before and after the pointing corrections performed. A method for evaluation of the performance of the implemented biases has been introduced through measuring satellite received level from a mono-pulse tracking 11.1m transmitting antenna before and after the implementation of the pointing corrections.

Keywords: Satellite, inclined orbit, pointing errors, coverage optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
357 MAS Simulations of Optical Antenna Structures

Authors: K.Tavzarashvili, G.Ghvedashili

Abstract:

A semi-analytic boundary discretization method, the Method of Auxiliary Sources (MAS) is used to analyze Optical Antennas consisting of metallic parts. In addition to standard dipoletype antennas, consisting of two pieces of metal, a new structure consisting of a single metal piece with a tiny groove in the center is analyzed. It is demonstrated that difficult numerical problems are caused because optical antennas exhibit strong material dispersion, loss, and plasmon-polariton effects that require a very accurate numerical simulation. This structure takes advantage of the Channel Plasmon-Polariton (CPP) effect and exhibits a strong enhancement of the electric field in the groove. Also primitive 3D antenna model with spherical nano particles is analyzed.

Keywords: optical antenna, channel plasmon-polariton, computational physics, Method of Auxiliary Sources

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866