Search results for: angle of arrival (AoA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 710

Search results for: angle of arrival (AoA)

440 Prevalence Study among University Students in Belarus: To What Extent Do Foreigners Experience Alcohol Problems?

Authors: M. O. Welcome, Y. E. Razvodovsky, V. A. Pereverzev

Abstract:

There is a paucity of data on the prevalence of alcohol use and related problems among foreign students in Belarus. We therefore screen for the prevalence of alcohol related problems among the general foreign students- population in Minsk, Belarus. Participants were 135 male university foreign students (average age – 21) from three major universities in Minsk, Belarus. All respondents were administered questionnaire, containing the AUDIT, CAGE, MAST and other alcohol related questions. Overall, 62.2% (n=84) alcohol users and 31.1% (n=42) problem drinkers were identified on the AUDIT. There was a significant increase (from 39.3% to 60.7%) of the total alcohol users after arrival in Belarus (¤ç2 = 7.714, p<0.02). This study shows that the prevalence of alcohol related problems is high among the foreign students- population in Minsk, Belarus.

Keywords: Alcohol related problems, Male foreign students, Prevalence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
439 Feasibility Study of Friction Stir Welding Application for Kevlar Material

Authors: Ahmet Taşan, Süha Tirkeş, Yavuz Öztürk, Zafer Bingül

Abstract:

Friction stir welding (FSW) is a joining process in the solid state, which eliminates problems associated with the material melting and solidification, such as cracks, residual stresses and distortions generated during conventional welding. Among the most important advantages of FSW are; easy automation, less distortion, lower residual stress and good mechanical properties in the joining region. FSW is a recent approach to metal joining and although originally intended for aluminum alloys, it is investigated in a variety of metallic materials. The basic concept of FSW is a rotating tool, made of non-consumable material, specially designed with a geometry consisting of a pin and a recess (shoulder). This tool is inserted as spinning on its axis at the adjoining edges of two sheets or plates to be joined and then it travels along the joining path line. The tool rotation axis defines an angle of inclination with which the components to be welded. This angle is used for receiving the material to be processed at the tool base and to promote the gradual forge effect imposed by the shoulder during the passage of the tool. This prevents the material plastic flow at the tool lateral, ensuring weld closure on the back of the pin. In this study, two 4 mm Kevlar® plates which were produced with the Kevlar® fabrics, are analyzed with COMSOL Multiphysics in order to investigate the weldability via FSW. Thereafter, some experimental investigation is done with an appropriate workbench in order to compare them with the analysis results.

Keywords: Analytical modeling, composite materials welding, friction stir welding, heat generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
438 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant Kumar Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986 and 0.9214 respectively at HHpolarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373 and 0.9428 respectively.

Keywords: Bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3171
437 An Agent-Based Scheduling Framework for Flexible Manufacturing Systems

Authors: Iman Badr

Abstract:

The concept of flexible manufacturing is highly appealing in gaining a competitive edge in the market by quickly adapting to the changing customer needs. Scheduling jobs on flexible manufacturing systems (FMSs) is a challenging task of managing the available flexibility on the shop floor to react to the dynamics of the environment in real-time. In this paper, an agent-oriented scheduling framework that can be integrated with a real or a simulated FMS is proposed. This framework works in stochastic environments with a dynamic model of job arrival. It supports a hierarchical cooperative scheduling that builds on the available flexibility of the shop floor. Testing the framework on a model of a real FMS showed the capability of the proposed approach to overcome the drawbacks of the conventional approaches and maintain a near optimal solution despite the dynamics of the operational environment.

Keywords: Autonomous agents, Flexible manufacturing systems(FMS), Manufacturing scheduling, Real-time systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
436 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine

Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels

Abstract:

This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.

Keywords: Axial flux permanent magnet, CFD, magnet parameters, stator heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
435 Providing On-Demand Path and Arrival Time Information Considering Realtime Delays of Buses

Authors: Yoshifumi Ishizaki, Naoki Kanatani, Masaki Ito, Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara

Abstract:

This paper demonstrates the bus location system for the route bus through the experiment in the real environment. A bus location system is a system that provides information such as the bus delay and positions. This system uses actual services and positions data of buses, and those information should match data on the database. The system has two possible problems. One, the system could cost high in preparing devices to get bus positions. Two, it could be difficult to match services data of buses. To avoid these problems, we have developed this system at low cost and short time by using the smart phone with GPS and the bus route system. This system realizes the path planning considering bus delay and displaying position of buses on the map. The bus location system was demonstrated on route buses with smart phones for two months.

Keywords: Route Bus, Path Planning System, GPS, Smart Phone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
434 Effect of Acids with Different Chain Lengths Modified by Methane Sulfonic Acid and Temperature on the Properties of Thermoplastic Starch/Glycerin Blends

Authors: Chi-Yuan Huang, Mei-Chuan Kuo, Ching-Yi Hsiao

Abstract:

In this study, acids with various chain lengths (C6, C8, C10 and C12) modified by methane sulfonic acid (MSA) and temperature were used to modify tapioca starch (TPS), then the glycerol (GA) were added into modified starch, to prepare new blends. The mechanical properties, thermal properties and physical properties of blends were studied. This investigation was divided into two parts.  First, the biodegradable materials were used such as starch and glycerol with hexanedioic acid (HA), suberic acid (SBA), sebacic acid (SA), decanedicarboxylic acid (DA) manufacturing with different temperatures (90, 110 and 130 °C). And then, the solution was added into modified starch to prepare the blends by using single-screw extruder. The FT-IR patterns indicated that the characteristic peak of C=O in ester was observed at 1730 cm-1. It is proved that different chain length acids (C6, C8, C10 and C12) reacted with glycerol by esterification and these are used to plasticize blends during extrusion. In addition, the blends would improve the hydrolysis and thermal stability. The water contact angle increased from 43.0° to 64.0°.  Second, the HA (110 °C), SBA (110 °C), SA (110 °C), and DA blends (130 °C) were used in study, because they possessed good mechanical properties, water resistances and thermal stability. On the other hand, the various contents (0, 0.005, 0.010, 0.020 g) of MSA were also used to modify the mechanical properties of blends. We observed that the blends were added to MSA, and then the FT-IR patterns indicated that the C=O ester appeared at 1730 cm-1. For this reason, the hydrophobic blends were produced. The water contact angle of the MSA blends increased from 55.0° to 71.0°. Although break elongation of the MSA blends reduced from the original 220% to 128%, the stress increased from 2.5 MPa to 5.1 MPa. Therefore, the optimal composition of blends was the DA blend (130 °C) with adding of MSA (0.005 g).

Keywords: Chain length acids, methane sulfonic acid, tapioca starch, tensile stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
433 Mapping of Alteration Zones in Mineral Rich Belt of South-East Rajasthan Using Remote Sensing Techniques

Authors: Mrinmoy Dhara, Vivek K. Sengar, Shovan L. Chattoraj, Soumiya Bhattacharjee

Abstract:

Remote sensing techniques have emerged as an asset for various geological studies. Satellite images obtained by different sensors contain plenty of information related to the terrain. Digital image processing further helps in customized ways for the prospecting of minerals. In this study, an attempt has been made to map the hydrothermally altered zones using multispectral and hyperspectral datasets of South East Rajasthan. Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion (Level1R) dataset have been processed to generate different Band Ratio Composites (BRCs). For this study, ASTER derived BRCs were generated to delineate the alteration zones, gossans, abundant clays and host rocks. ASTER and Hyperion images were further processed to extract mineral end members and classified mineral maps have been produced using Spectral Angle Mapper (SAM) method. Results were validated with the geological map of the area which shows positive agreement with the image processing outputs. Thus, this study concludes that the band ratios and image processing in combination play significant role in demarcation of alteration zones which may provide pathfinders for mineral prospecting studies.

Keywords: Advanced space-borne thermal emission and reflection radiometer, ASTER, Hyperion, Band ratios, Alteration zones, spectral angle mapper.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
432 Numerical Studies on Thrust Vectoring Using Shock-Induced Self Impinging Secondary Jets

Authors: S. Vignesh, N. Vishnu, S. Vigneshwaran, M. Vishnu Anand, Dinesh Kumar Babu, V. R. Sanal Kumar

Abstract:

Numerical studies have been carried out using a validated two-dimensional standard k-omega turbulence model for the design optimization of a thrust vector control system using shock induced self-impinging supersonic secondary double jet. Parametric analytical studies have been carried out at different secondary injection locations to identifying the highest unsymmetrical distribution of the main gas flow due to shock waves, which produces a desirable side force more lucratively for vectoring. The results from the parametric studies of the case on hand reveal that the shock induced self-impinging supersonic secondary double jet is more efficient in certain locations at the divergent region of a CD nozzle than a case with supersonic single jet with same mass flow rate. We observed that the best axial location of the self-impinging supersonic secondary double jet nozzle with a given jet interaction angle, built-in to a CD nozzle having area ratio 1.797, is 0.991 times the primary nozzle throat diameter from the throat location. We also observed that the flexible steering is possible after invoking ON/OFF facility to the secondary nozzles for meeting the onboard mission requirements. Through our case studies we concluded that the supersonic self-impinging secondary double jet at predesigned jet interaction angle and location can provide more flexible steering options facilitating with 8.81% higher thrust vectoring efficiency than the conventional supersonic single secondary jet without compromising the payload capability of any supersonic aerospace vehicle.

Keywords: Fluidic thrust vectoring, rocket steering, self-impinging secondary supersonic jet, TVC in aerospace vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
431 Identifying Significant Factors of Brick Laying Process through Design of Experiment and Computer Simulation: A Case Study

Authors: M. H. Zarei, A. Nikakhtar, A. H. Roudsari, N. Madadi, K. Y. Wong

Abstract:

Improving performance measures in the construction processes has been a major concern for managers and decision makers in the industry. They seek for ways to recognize the key factors which have the largest effect on the process. Identifying such factors can guide them to focus on the right parts of the process in order to gain the best possible result. In the present study design of experiment (DOE) has been applied to a computer simulation model of brick laying process to determine significant factors while productivity has been chosen as the response of the experiment. To this end, four controllable factors and their interaction have been experimented and the best factor level has been calculated for each one. The results indicate that three factors, namely, labor of brick, labor of mortar and inter arrival time of mortar along with interaction of labor of brick and labor of mortar are significant.

Keywords: Brick laying process, computer simulation, design of experiment, significant factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
430 Investigation of Effective Parameters on Pullout Capacity in Soil Nailing with Special Attention to International Design Codes

Authors: R. Ziaie Moayed, M. Mortezaee

Abstract:

An important and influential factor in design and determining the safety factor in Soil Nailing is the ultimate pullout capacity, or, in other words, bond strength. This important parameter depends on several factors such as material and soil texture, method of implementation, excavation diameter, friction angle between the nail and the soil, grouting pressure, the nail depth (overburden pressure), the angle of drilling and the degree of saturation in soil. Federal Highway Administration (FHWA), a customary regulation in the design of nailing, is considered only the effect of the soil type (or rock) and the method of implementation in determining the bond strength, which results in non-economic design. The other regulations are each of a kind, some of the parameters affecting bond resistance are not taken into account. Therefore, in the present paper, at first the relationships and tables presented by several valid regulations are presented for estimating the ultimate pullout capacity, and then the effect of several important factors affecting on ultimate Pullout capacity are studied. Finally, it was determined, the effect of overburden pressure (in method of injection with pressure), soil dilatation and roughness of the drilling surface on pullout strength is incremental, and effect of degree of soil saturation on pullout strength to a certain degree of saturation is increasing and then decreasing. therefore it is better to get help from nail pullout-strength test results and numerical modeling to evaluate the effect of parameters such as overburden pressure, dilatation, and degree of soil saturation, and so on to reach an optimal and economical design.

Keywords: Soil nailing, pullout capacity, FHWA, grout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
429 Solar Tracking System: More Efficient Use of Solar Panels

Authors: J. Rizk, Y. Chaiko

Abstract:

This paper shows the potential system benefits of simple tracking solar system using a stepper motor and light sensor. This method is increasing power collection efficiency by developing a device that tracks the sun to keep the panel at a right angle to its rays. A solar tracking system is designed, implemented and experimentally tested. The design details and the experimental results are shown.

Keywords: Renewable Energy, Power Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7706
428 A Novel Approach for Scheduling Rescue Robot Mission Using Decision Analysis

Authors: Rana Soltani-Zarrin, Sohrab Khanmohammadi

Abstract:

In this paper, a new method for multi criteria decision making is represented whichspecifies a trajectory satisfying desired criteria including minimization of time. A rescue robot is defined to perform certain tasks before the arrival of rescue team, including evaluation of the probability of explosion in the area, detecting human-beings, and providing preliminary aidsin case of identifying signs of life, so that the security of the surroundings will have enhanced significantly for the individuals inside the disaster zone as well as the rescue team. The main idea behind our technique is using the Program Evaluation and Review Technique analysis along with Critical Path Method and use the Multi Criteria Decision Making (MCDM) method to decidewhich set of activities must be performed first. Since the disastrous event in one area may be well contagious to others, it is one of the robot's priorities to evaluate the relative adversity of the situation, using the above methods and prioritize its mission.

Keywords: PERT, CPM, MCDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
427 User Acceptance of Location-based Services

Authors: Neven Vrček, Goran Bubaš, Neven Bosilj

Abstract:

Location-based services (LBS) exploit the known location of a user to provide services dependent on their geographic context and personalized needs [1]. The development and arrival of broadband mobile data networks supported with mobile terminals equipped with new location technologies like GPS have finally created opportunities for implementation of LBS applications. But, from the other side, collecting location information data in general raises privacy concerns. This paper presents results from two surveys of LBS acceptance in Croatia. The first survey was administered on 181 students, and the second extended survey involved pattern of 180 Croatian citizens. We developed questionnaire which consists of descriptions of 15 different applications with scale which measures perceptions and attitudes of users towards these applications. We report the results to identify potential commercial applications for LBS in B2C segment. Our findings suggest that some types of applications like emergency&safety services and navigation have significantly higher rate of acceptance than other types.

Keywords: Acceptance, location-based services, m-application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
426 A Flexible Flowshop Scheduling Problem with Machine Eligibility Constraint and Two Criteria Objective Function

Authors: Bita Tadayon, Nasser Salmasi

Abstract:

This research deals with a flexible flowshop scheduling problem with arrival and delivery of jobs in groups and processing them individually. Due to the special characteristics of each job, only a subset of machines in each stage is eligible to process that job. The objective function deals with minimization of sum of the completion time of groups on one hand and minimization of sum of the differences between completion time of jobs and delivery time of the group containing that job (waiting period) on the other hand. The problem can be stated as FFc / rj , Mj / irreg which has many applications in production and service industries. A mathematical model is proposed, the problem is proved to be NPcomplete, and an effective heuristic method is presented to schedule the jobs efficiently. This algorithm can then be used within the body of any metaheuristic algorithm for solving the problem.

Keywords: flexible flowshop scheduling, group processing, machine eligibility constraint, mathematical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
425 Exploring SSD Suitable Allocation Schemes Incompliance with Workload Patterns

Authors: Jae Young Park, Hwansu Jung, Jong Tae Kim

Abstract:

In the Solid-State-Drive (SSD) performance, whether the data has been well parallelized is an important factor. SSD parallelization is affected by allocation scheme and it is directly connected to SSD performance. There are dynamic allocation and static allocation in representative allocation schemes. Dynamic allocation is more adaptive in exploiting write operation parallelism, while static allocation is better in read operation parallelism. Therefore, it is hard to select the appropriate allocation scheme when the workload is mixed read and write operations. We simulated conditions on a few mixed data patterns and analyzed the results to help the right choice for better performance. As the results, if data arrival interval is long enough prior operations to be finished and continuous read intensive data environment static allocation is more suitable. Dynamic allocation performs the best on write performance and random data patterns.

Keywords: Dynamic allocation, NAND Flash based SSD, SSD parallelism, static allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
424 Issues in Deploying Smart Antennas in Mobile Radio Networks

Authors: Rameshwar Kawitkar

Abstract:

With the exponentially increasing demand for wireless communications the capacity of current cellular systems will soon become incapable of handling the growing traffic. Since radio frequencies are diminishing natural resources, there seems to be a fundamental barrier to further capacity increase. The solution can be found in smart antenna systems. Smart or adaptive antenna arrays consist of an array of antenna elements with signal processing capability, that optimize the radiation and reception of a desired signal, dynamically. Smart antennas can place nulls in the direction of interferers via adaptive updating of weights linked to each antenna element. They thus cancel out most of the co-channel interference resulting in better quality of reception and lower dropped calls. Smart antennas can also track the user within a cell via direction of arrival algorithms. This implies that they are more advantageous than other antenna systems. This paper focuses on few issues about the smart antennas in mobile radio networks.

Keywords: Smart/Adaptive Antenna, Multipath fading, Beamforming, Radio propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2630
423 Design of an Authentication Protocol for Secure Electronic Seals

Authors: Seongsoo Park, Mun-Kyu Lee, Dong Kyue Kim, Kunsoo Park, Yousung Kang, Sokjoon Lee, Howon Kim, Kyoil Chung

Abstract:

Electronic seal is an electronic device to check the authenticity and integrity of freight containers at the point of arrival. While RFID-based eSeals are gaining more acceptances and there are also some standardization processes for these devices, a recent research revealed that the current RFID-based eSeals are vulnerable to various attacks. In this paper, we provide a feasible solution to enhance the security of active RFID-based eSeals. Our approach is to use an authentication and key agreement protocol between eSeal and reader device, enabling data encryption and integrity check. Our protocol is based on the use of block cipher AES, which is reasonable since a block cipher can also be used for many other security purposes including data encryption and pseudo-random number generation. Our protocol is very simple, and it is applicable to low-end active RFID eSeals.

Keywords: Authentication, Container Security, Electronic seal, RFID

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
422 A Subjective Scheduler Based on Backpropagation Neural Network for Formulating a Real-life Scheduling Situation

Authors: K. G. Anilkumar, T. Tanprasert

Abstract:

This paper presents a subjective job scheduler based on a 3-layer Backpropagation Neural Network (BPNN) and a greedy alignment procedure in order formulates a real-life situation. The BPNN estimates critical values of jobs based on the given subjective criteria. The scheduler is formulated in such a way that, at each time period, the most critical job is selected from the job queue and is transferred into a single machine before the next periodic job arrives. If the selected job is one of the oldest jobs in the queue and its deadline is less than that of the arrival time of the current job, then there is an update of the deadline of the job is assigned in order to prevent the critical job from its elimination. The proposed satisfiability criteria indicates that the satisfaction of the scheduler with respect to performance of the BPNN, validity of the jobs and the feasibility of the scheduler.

Keywords: Backpropagation algorithm, Critical value, Greedy alignment procedure, Neural network, Subjective criteria, Satisfiability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
421 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on spring back for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for spring back in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in Uchannel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24 ). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on spring back of flange angle (β2 ) and wall opening angle (β1 ), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the spring back behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for spring back was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values.  

Keywords: Advance high strength steel, U-channel process, Springback, Design of Experiment, Optimization, Response Surface Methodology (RSM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
420 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array

Authors: Lei Qi, Rongxin Yan, Lichen Sun

Abstract:

With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.

Keywords: Acoustic sensor array, spacecraft, damage assessment, leakage location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
419 Study of Atmospheric System and its Effect on Flood in Isfahan

Authors: Amir Gandomkar

Abstract:

Heavy rains are one of the features of arid and semi arid climates which result in flood. This kind of rainfall originates from environmental and synoptic conditions. Mediterranean cyclones are the major factor in heavy rainfall in Iran, but these cyclones do not happen in some parts of Iran such as Southern and Southeastern areas. In this study, it has been tried to pinpoint the synoptic reasons of heavy rainfall in Isfahan through the analysis of the relationship between this rainfall in Isfahan and atmospheric system over Iran and the areas around it. The findings of this study show that the major factor have is the arrival of Sudanese low pressure system in this region from the southwest, of course if the ascent local conditions such as heat occur, the heaviest rains happen in Isfahan. In fact this kind of rainfall in Isfahan has a Sudanese origin and if it is accompanied by Mediterranean system, heavier rain falls.

Keywords: Flood, Atmospheric Systems, Synoptic Study, Geopotential Height, Sudanese Low Pressure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
418 Investigation of Boll Properties on Cotton Picker Machine Performance

Authors: Shahram Nowrouzieh, Abbas Rezaei Asl, Mohamad Ali Jafari

Abstract:

Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels.

Keywords: Cotton, bract, harvester, carpel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
417 Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics

Authors: Yao Jie, Yeo Khoon Seng

Abstract:

In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments.

Keywords: Aerodynamics, flight control, computational fluid dynamics, flapping-wing flight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
416 Social Relation between the Malays and Chinese Communities from a Civilizational Perspectives

Authors: Wan Norhasniah Wan Husin, Mohd Ridhuan Tee Abdullah

Abstract:

Towards the end of 19th century, the discovery of tin and the growing importance of rubber, had led Malaya to once again become the centre of attraction to western colonization, which later on caused the region to be influxed by cheap labour from China and India. One of the factors which attracted the alien communities was the characteristics of social relation offered by the Malays. If one analyzes the history of social relation of the Malays either among themselves or their relation with alien communities, it is apparent that the community places high regards to values such as tolerant, cooperative, respectful and helpful with each other. In fact, all these values are deeply rooted in the value of 'budi'. With the arrival of Islam, the value of 'budi' had been well assimilated with Islamic values thus giving birth to the value of 'budi-Islam'. Through 'budi- Islam', the Malay conducted their dealings with British as well the other communities during the time of peace or conflict. This value is well nurtured due to the geographical circumstances like the fertile, naturally rich land and bountiful marine life. Besides, a set of Malay customs known as 'adat' custom contributed in enhancing the values of budi.

Keywords: Adat System, budi and Islam, Chinese community, Malay community

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
415 Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil

Authors: Wei-Hsin Sun, Jr-Ming Miao, Chang-Hsien Tai, Chien-Chun Hung

Abstract:

The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.

Keywords: biomimetic, MAVs, aerodynamic, ANOVA analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
414 Selective Excitation of Circular Helical Modes in Graded Index Fibers

Authors: S. Al-Sowayan

Abstract:

The impact of selective excitation of circular helical modes of graded-index fibers on its capacity is analyzed using a model for propagation delay variation with launch offset and angle that resulted from misalignment of source and fiber axis. Results show promising technique to improve graded-index fiber capacities.

Keywords: Fiber measurements, Fiber optic communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
413 Microstructure Parameters of a Super-Ionic Sample (Csag2i3)

Authors: Samir Osman M., Mohammed Hassan S.

Abstract:

Sample of CsAg2I3 was prepared by solid state reaction. Then, microstructure parameters of this sample have been determined using wide angle X-ray scattering WAXS method. As well as, Cell parameters of crystal structure have been refined using CHEKCELL program. This analysis states that the lattice intrinsic strainof the sample is so small and the crystal size is on the order of 559Å.

Keywords: WAXS, Microstructure parameters, super-ionic conductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
412 SURF Based Image Matching from Different Angle of Viewpoints using Rectification and Simplified Orientation Correction

Authors: K.M.Goh, M.M.Mokji, S.A.R. Abu-Bakar

Abstract:

Speeded-Up Robust Feature (SURF) is commonly used for feature matching in stereovision because of their robustness towards scale changes and rotational changes. However, SURF feature cannot cope with large viewpoint changes or skew distortion. This paper introduces a method which can help to improve the wide baseline-s matching performance in term of accuracy by rectifying the image using two vanishing points. Simplified orientation correction was used to remove the false matching..

Keywords: Affine, orientation, projective, SURF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
411 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: Slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582