Search results for: X-ray diffractometry.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17

Search results for: X-ray diffractometry.

17 Investigation of Physicochemical Properties of the Bacterial Cellulose Produced by Gluconacetobacter xylinus from Date Syrup

Authors: Marzieh Moosavi-Nasab, Ali R. Yousefi

Abstract:

Bacterial cellulose, a biopolysaccharide, is produced by the bacterium, Gluconacetobacter xylinus. Static batch fermentation for bacterial cellulose production was studied in sucrose and date syrup solutions (Bx. 10%) at 28 °C using G. xylinus (PTCC, 1734). Results showed that the maximum yields of bacterial cellulose (BC) were 4.35 and 1.69 g/l00 ml for date syrup and sucrose medium after 336 hours fermentation period, respectively. Comparison of FTIR spectrum of cellulose with BC indicated appropriate coincidence which proved that the component produced by G. xylinus was cellulose. Determination of the area under X-ray diffractometry patterns demonstrated that the crystallinity amount of cellulose (83.61%) was more than that for the BC (60.73%). The scanning electron microscopy imaging of BC and cellulose were carried out in two magnifications of 1 and 6K. Results showed that the diameter ratio of BC to cellulose was approximately 1/30 which indicated more delicacy of BC fibers relative to cellulose.

Keywords: Gluconacetobacter xylinus, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy, X-ray diffractometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3139
16 Fermentative Production and Characterization of Carboxymethyl Bacterial Cellulose Using Date Syrup

Authors: Marzieh Moosavi-Nasab, Ali R. Yousefi, Hamed Askari, Maryam Bakhtiyari

Abstract:

In this study, static batch fermentation was used for bacterial cellulose production in date syrup solution (Bx. 10%) at 28°C using Gluconacetobacter. xylinus (PTCC 1734). The physicochemical properties of standard Sigma CMC and the produced carboxymethyl bacterial cellulose (CMBC) were studied using FT-IR spectroscopy, X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM). According to the FT-IR spectra the bands at 1664 and 1431 cm-1 indicate that carboxylic acid groups and carboxylate groups exist on the surface. The SEM imaging of CMBC and CMC carried out in magnification of 1K. Comparing the SEM imaging obviously showed that the ribbon shape in CMC remained but the length of ribbons became shorter while that shape changed to flake shape for CMBC. Determination of the area under XRD patterns demonstrated that the crystallinity amount of CMC was more than that for CMBC (51.08% and 81.84% for CMBC and CMC, respectively).

Keywords: Carboxymethyl bacterial cellulose, Fourier Transform Infrared spectroscopy, Scanning Electron Microscopy, X-ray diffractometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
15 Temperature Effect on the Solid-State Synthesis of Dehydrated Zinc Borates

Authors: N. Tugrul, N. Baran Acarali, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Turkey has 72 % of total world boron reserves on the basis of B2O3.Borates that is a refined form of boron minerals have a wide range of applications. Zinc borates can be used as multifunctional synergistic additives. The most important properties are low solubility in water and high dehydration temperature. Zinc borates dehydrate above 290°C and anhydrous zinc borate has thermal resistance about 400°C. Zinc borates can be synthesized using several methods such as hydrothermal and solid-state processes. In this study, the solid-state method was applied between 500 and 800°C using the starting materials of ZnO and H3BO3 with 1:4 mole ratio. The reaction time was determined as 4 hours after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by XRay Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectrometer. As a result the form of ZnB4O7 was synthesized with the highest crystal score at 800°C.

Keywords: Raman, solid-state method, zinc borate, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
14 Synthesis and Characterization of Silver/Polylactide Nanocomposites

Authors: Kamyar Shameli, Mansor Bin Ahmad, Wan Md Zin Wan Yunus, Nor Azowa Ibrahim, Maryam Jokar, Majid Darroudi

Abstract:

Silver/polylactide nanocomposites (Ag/PLA-NCs) were synthesized via chemical reduction method in diphase solvent. Silver nitrate and sodium borohydride were used as a silver precursor and reducing agent in the polylactide (PLA). The properties of Ag/PLA-NCs were studied as a function of the weight percentages of silver nanoparticles (8, 16 and 32 wt% of Ag-NPs) relative to the weight of PLA. The Ag/PLA-NCs were characterized by Xray diffraction (XRD), transmission electron microscopy (TEM), electro-optical microscopy (EOM), UV-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). XRD patterns confirmed that Ag-NPs crystallographic planes were face centered cubic (fcc) type. TEM images showed that mean diameters of Ag-NPs were 3.30, 3.80 and 4.80 nm. Electro-optical microscopy revealed excellent dispersion and interaction between Ag-NPs and PLA films. The generation of silver nanoparticles was confirmed from the UVvisible spectra. FT-IR spectra showed that there were no significant differences between PLA and Ag/PLA-NCs films. The synthesized Ag/PLA-NCs were stable in organic solution over a long period of time without sign of precipitation.

Keywords: Nanocomposites, Polylactide, Silver Nanoparticles, Sodium Borohydride, Transmission Electron Microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3554
13 Hydrogen Sensor Based on Surface Activated WO3 Films by Pd Nanoclusters

Authors: S.Fardindoost, A. Iraji Zad, S.M.Mahdavi

Abstract:

Tungsten trioxide has been prepared by using P-PTA as a precursor on alumina substrates by spin coating method. Palladium introduced on WO3 film via electrolysis deposition by using palladium chloride as catalytic precursor. The catalytic precursor was introduced on the series of films with different morphologies. X-ray diffractometry (XRD), Scanning electron microscopy (SEM) and XPS were applied to analyze structure and morphology of the fabricated thin films. Then we measured variation of samples- electrical conductivity of pure and Pd added films in air and diluted hydrogen. Addition of Pd resulted in a remarkable improvement of the hydrogen sensing properties of WO3 by detection of Hydrogen below 1% at room temperature. Also variation of the electrical conductivity in the presence of diluted hydrogen revealed that response of samples depends rather strongly on the palladium configuration on the surface.

Keywords: Electrolysis, Hydrogen sensing, Palladium, WO3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
12 Promising Immobilization of Cadmium and Lead inside Ca-rich Glass-ceramics

Authors: A. Karnis, L. Gautron

Abstract:

Considering toxicity of heavy metals and their accumulation in domestic wastes, immobilization of lead and cadmium is envisaged inside glass-ceramics. We particularly focused this work on calcium-rich phases embedded in a glassy matrix. Glass-ceramics were synthesized from glasses doped with 12 wt% and 16 wt% of PbO or CdO. They were observed and analyzed by Electron MicroProbe Analysis (EMPA) and Analytical Scanning Electron Microscopy (ASEM). Structural characterization of the samples was performed by powder XRay Diffraction. Diopside crystals of CaMgSi2O6 composition are shown to incorporate significant amounts of cadmium (up to 9 wt% of CdO). Two new crystalline phases are observed with very high Cd or Pb contents: about 40 wt% CdO for the cadmiumrich phase and near 60 wt% PbO for the lead-rich phase. We present complete chemical and structural characterization of these phases. They represent a promising way for the immobilization of toxic elements like Cd or Pb since glass ceramics are known to propose a “double barrier" protection (metal-rich crystals embedded in a glass matrix) against metal release in the environment.

Keywords: Cadmium, Calcium-rich phases, Diopside, Domesticwastes, Fly ashes, Glass-ceramics, Lead, Municipal Solid WasteIncineration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
11 Photodegradation of Phenol Red in the Presence of ZnO Nanoparticles

Authors: T.K. Tan, P.S. Khiew, W.S. Chiu, S.Radiman, R.Abd-Shukor, N.M. Huang, H.N. Lim

Abstract:

In our recent study, we have used ZnO nanoparticles assisted with UV light irradiation to investigate the photocatalytic degradation of Phenol Red (PR). The ZnO photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area analysis (BET) and UVvisible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures, with the space group of P63mc. There are no other impurities in the diffraction peak. In addition, TEM measurement shows that most of the nanoparticles are rod-like and spherical in shape and fairly monodispersed. A significant degradation of the PR was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photodegradation increases with the photocatalyst loading. The surface area of the ZnO nanomaterials from the BET measurement was 11.9 m2/g. Besides the photocatalyst loading, the effect of some parameters on the photodegradation efficiency such as initial PR concentration and pH were also studied.

Keywords: Nanostructures, phenol red, zinc oxide, heterogeneous photocatalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3164
10 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method

Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj

Abstract:

Two Lithium Disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through a glass melting method. The glass rods were then fabricated into dental crowns via a hot pressing at 900˚C and 850˚C in order to study the effect of the pressing temperatures on the phase formation and microstructure of the glasses. Different samples of as cast glass and heat treated samples (600˚C and 700˚C) were used to press for investigating the effect of an initial microstructure on the hot pressing technique. Xray diffraction (XRD) and scanning electron microscopy (SEM) were performed to determine the phase formation and microstructure of the samples, respectively. XRD results show that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F and SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formations but have less effect during pressing. SEM micrographs showed the microstructure of Li2Si2O5 as lath-like shape in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by the hot pressing and compiled microstructure.

Keywords: Lithium disilicate, Hot pressing, Dental crown, Microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4193
9 Zinc Oxide Nanoparticles Modified with Galactose as Potential Drug Carrier with Reduced Releasing of Zinc Ions

Authors: Jolanta Pulit-Prociak, Olga Długosz, Marcin Banach

Abstract:

The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. Releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate.

Keywords: Nanomaterials, zinc oxide, drug delivery system, toxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
8 Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation

Authors: Farid Jamali Sheini, Dilip S. Joag, Mahendra A. More

Abstract:

A simple approach is demonstrated for growing large scale, nearly vertically aligned ZnO nanowire arrays by thermal oxidation method. To reveal effect of temperature on growth and physical properties of the ZnO nanowires, gold coated zinc substrates were annealed at 300 °C and 400 °C for 4 hours duration in air. Xray diffraction patterns of annealed samples indicated a set of well defined diffraction peaks, indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscopy studies show formation of ZnO nanowires having length of several microns and average of diameter less than 500 nm. It is found that the areal density of wires is relatively higher, when the annealing is carried out at higher temperature i.e. at 400°C. From the field emission studies, the values of the turn-on and threshold field, required to draw emission current density of 10 μA/cm2 and 100 μA/cm2 are observed to be 1.2 V/μm and 1.7 V/μm for the samples annealed at 300 °C and 2.9 V/μm and 3.7 V/μm for that annealed at 400 °C, respectively. The field emission current stability, investigated over duration of more than 2 hours at the preset value of 1 μA, is found to be fairly good in both cases. The simplicity of the synthesis route coupled with the promising field emission properties offer unprecedented advantage for the use of ZnO field emitters for high current density applications.

Keywords: ZnO, Nanowires, Thermal oxidation, FieldEmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
7 Structural Characterization and Physical Properties of Antimicrobial (AM) Starch-Based Films

Authors: Eraricar Salleh, Ida Idayu Muhamad, Nozieanna Khairuddin

Abstract:

Antimicrobial (AM) starch-based films were developed by incorporating chitosan and lauric acid as antimicrobial agent into starch-based film. Chitosan has wide range of applications as a biomaterial, but barriers still exist to its broader use due to its physical and chemical limitations. In this work, a series of starch/chitosan (SC) blend films containing 8% of lauric acid was prepared by casting method. The structure of the film was characterized by Fourier transform infrared spectroscopy (FTIR), Xray diffraction (XRD), and scanning electron microscopy (SEM). The results indicated that there were strong interactions were present between the hydroxyl groups of starch and the amino groups of chitosan resulting in a good miscibility between starch and chitosan in the blend films. Physical properties and optical properties of the AM starch-based film were evaluated. The AM starch-based films incorporated with chitosan and lauric acid showed an improvement in water vapour transmission rate (WVTR) and addition of starch content provided more transparent films while the yellowness of the film attributed to the higher chitosan content. The improvement in water barrier properties was mainly attributed to the hydrophobicity of lauric acid and optimum chitosan or starch content. AM starch based film also showed excellent oxygen barrier. Obtaining films with good oxygen permeability would be an indication of the potential use of these antimicrobial packaging as a natural packaging and an alternative packaging to the synthetic polymer to protect food from oxidation reactions

Keywords: Antimicrobial starch-based films, chitosan, lauric acid, starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2807
6 Characterization of Ajebo Kaolinite Clay for Production of Natural Pozzolan

Authors: Gbenga M. Ayininuola, Olasunkanmi A. Adekitan

Abstract:

Calcined kaolinite clay (CKC) is a pozzolanic material that is current drawing research attention. This work investigates the conditions for the best performance of a CKC from a kaolinite clay source in Ajebo, Abeokuta (southwest Nigeria) known for its commercial availability. Samples from this source were subjected to X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). XRD shows that kaolinite is the main mineral in the clay source. This mineral is responsible for the pozzolanic behavior of CKC. DSC indicates that the transformation from the clay to CKC occurred between 550 and 750 oC. Using this temperature range, clay samples were milled and different CKC samples were produced in an electric muffle furnace using temperatures of 550, 600, 650, 700, 750 and 800 oC respectively for 1 hour each. This was also repeated for 2 hours. The degree of de-hydroxylation (dtg) and strength activity index (SAI) were also determined for each of the CKC samples. The dtg and SAI tests were repeated two more times for each sample and averages were taken. Results showed that peak dtg occurred at 750 oC for 1 hour calcining combination (94.27%) whereas marginal differences were recorded at some lower temperatures (90.97% for 650 oC for 2 hours; 91.05% for 700 oC for 1 hour and 92.77% for 700 oC for 2 hours). Optimum SAI was reported at 700 oC for 1 hour (99.05%). Rating SAI as a better parameter than dtg, 700 oC for 1 hour combination was adopted as the best calcining condition. The paper recommends the adoption of this clay source for pozzolan production by adopting the calcining conditions established in this work.

Keywords: Calcined kaolinite clay, calcination, optimum-calcining conditions, pozzolanity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
5 Traumatic Ankle Pain: Adequacy of Clinical Information in X-Ray Request with Reference to the Ottawa Ankle Rule

Authors: Rania Mustafa

Abstract:

This audit was conducted at Manchester University NHS Foundation Trust, Wythenshawe Hospital Radiology and Accident and Emergency [A&E] Department to assess the appropriateness of clinical information in X-ray requests, specifically in cases of acute ankle injuries. As per the Ottawa Ankle Rules and the recommendations of National Institute for Health and Care Excellence [NICE] and the Royal College of Radiology, we aimed to evaluate the appropriateness of referrals and the thoroughness of clinical information provided by Emergency Department [ED] clinicians for ankle radiography. Our goal was to achieve 100% compliance with these guidelines. The audit involved a comprehensive analysis spanning the period from August 2022 to January 2023, encompassing patient records, radiographic orders, and clinical assessments. Data collection included patient demographics, presenting complaints, clinical assessments, adherence to Ottawa Ankle Rules criteria, and subsequent radiography orders. Here we conducted two audit cycles, involving 38 patients in the first cycle and 86 patients in the second cycle. The data were furtherly filtered to include all patients who were referred from the ED for an ankle Xray with a history of acute trauma and age of more than 18 years. The key finding was that in August 2022, 60% of cases met the Ottawa Ankle Rules criteria accurately, indicating a need for improvement in adherence. However, by January 2023, there was a notable improvement, with 95% of cases accurately meeting the criteria. This significant change reflects an increased alignment with best practices for ankle radiography referrals.

Keywords: Ankle, injuries, Ottawa Ankle Rule, X-rays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288
4 Feasibility Investigation of Near Infrared Spectrometry for Particle Size Estimation of Nano Structures

Authors: A. Bagheri Garmarudi, M. Khanmohammadi, N. Khoddami, K. Shabani

Abstract:

Determination of nano particle size is substantial since the nano particle size exerts a significant effect on various properties of nano materials. Accordingly, proposing non-destructive, accurate and rapid techniques for this aim is of high interest. There are some conventional techniques to investigate the morphology and grain size of nano particles such as scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffractometry (XRD). Vibrational spectroscopy is utilized to characterize different compounds and applied for evaluation of the average particle size based on relationship between particle size and near infrared spectra [1,4] , but it has never been applied in quantitative morphological analysis of nano materials. So far, the potential application of nearinfrared (NIR) spectroscopy with its ability in rapid analysis of powdered materials with minimal sample preparation, has been suggested for particle size determination of powdered pharmaceuticals. The relationship between particle size and diffuse reflectance (DR) spectra in near infrared region has been applied to introduce a method for estimation of particle size. Back propagation artificial neural network (BP-ANN) as a nonlinear model was applied to estimate average particle size based on near infrared diffuse reflectance spectra. Thirty five different nano TiO2 samples with different particle size were analyzed by DR-FTNIR spectrometry and the obtained data were processed by BP- ANN.

Keywords: near infrared, particle size, chemometrics, neuralnetwork, nano structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
3 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation

Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher

Abstract:

This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.

Keywords: Physicochemical characterization of MFI, Ceramic hollow fibre, CO2, Ion-exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
2 Computer Aided X-Ray Diffraction Intensity Analysis for Spinels: Hands-On Computing Experience

Authors: Ashish R. Tanna, Hiren H. Joshi

Abstract:

The mineral having chemical compositional formula MgAl2O4 is called “spinel". The ferrites crystallize in spinel structure are known as spinel-ferrites or ferro-spinels. The spinel structure has a fcc cage of oxygen ions and the metallic cations are distributed among tetrahedral (A) and octahedral (B) interstitial voids (sites). The X-ray diffraction (XRD) intensity of each Bragg plane is sensitive to the distribution of cations in the interstitial voids of the spinel lattice. This leads to the method of determination of distribution of cations in the spinel oxides through XRD intensity analysis. The computer program for XRD intensity analysis has been developed in C language and also tested for the real experimental situation by synthesizing the spinel ferrite materials Mg0.6Zn0.4AlxFe2- xO4 and characterized them by X-ray diffractometry. The compositions of Mg0.6Zn0.4AlxFe2-xO4(x = 0.0 to 0.6) ferrites have been prepared by ceramic method and powder X-ray diffraction patterns were recorded. Thus, the authenticity of the program is checked by comparing the theoretically calculated data using computer simulation with the experimental ones. Further, the deduced cation distributions were used to fit the magnetization data using Localized canting of spins approach to explain the “recovery" of collinear spin structure due to Al3+ - substitution in Mg-Zn ferrites which is the case if A-site magnetic dilution and non-collinear spin structure. Since the distribution of cations in the spinel ferrites plays a very important role with regard to their electrical and magnetic properties, it is essential to determine the cation distribution in spinel lattice.

Keywords: Spinel ferrites, Localized canting of spins, X-ray diffraction, Programming in Borland C.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3806
1 Production of Pre-Reduction of Iron Ore Nuggets with Lesser Sulphur Intake by Devolatisation of Boiler Grade Coal

Authors: Chanchal Biswas, Anrin Bhattacharyya, Gopes Chandra Das, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Boiler coals with low fixed carbon and higher ash content have always challenged the metallurgists to develop a suitable method for their utilization. In the present study, an attempt is made to establish an energy effective method for the reduction of iron ore fines in the form of nuggets by using ‘Syngas’. By devolatisation (expulsion of volatile matter by applying heat) of boiler coal, gaseous product (enriched with reducing agents like CO, CO2, H2, and CH4 gases) is generated. Iron ore nuggets are reduced by this syngas. For that reason, there is no direct contact between iron ore nuggets and coal ash. It helps to control the minimization of the sulphur intake of the reduced nuggets. A laboratory scale devolatisation furnace designed with reduction facility is evaluated after in-depth studies and exhaustive experimentations including thermo-gravimetric (TG-DTA) analysis to find out the volatile fraction present in boiler grade coal, gas chromatography (GC) to find out syngas composition in different temperature and furnace temperature gradient measurements to minimize the furnace cost by applying one heating coil. The nuggets are reduced in the devolatisation furnace at three different temperatures and three different times. The pre-reduced nuggets are subjected to analytical weight loss calculations to evaluate the extent of reduction. The phase and surface morphology analysis of pre-reduced samples are characterized using X-ray diffractometry (XRD), energy dispersive x-ray spectrometry (EDX), scanning electron microscopy (SEM), carbon sulphur analyzer and chemical analysis method. Degree of metallization of the reduced nuggets is 78.9% by using boiler grade coal. The pre-reduced nuggets with lesser sulphur content could be used in the blast furnace as raw materials or coolant which would reduce the high quality of coke rate of the furnace due to its pre-reduced character. These can be used in Basic Oxygen Furnace (BOF) as coolant also.

Keywords: Alternative ironmaking, coal devolatisation, extent of reduction, nugget making, syngas based DRI, solid state reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487