Search results for: Schauder fixed point theorem
2409 Existence of Solutions for a Nonlinear Fractional Differential Equation with Integral Boundary Condition
Abstract:
This paper deals with a nonlinear fractional differential equation with integral boundary condition of the following form: Dαt x(t) = f(t, x(t),Dβ t x(t)), t ∈ (0, 1), x(0) = 0, x(1) = 1 0 g(s)x(s)ds, where 1 < α ≤ 2, 0 < β < 1. Our results are based on the Schauder fixed point theorem and the Banach contraction principle.
Keywords: Fractional differential equation, Integral boundary condition, Schauder fixed point theorem, Banach contraction principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16552408 A Constructive Proof of the General Brouwer Fixed Point Theorem and Related Computational Results in General Non-Convex sets
Authors: Menglong Su, Shaoyun Shi, Qing Xu
Abstract:
In this paper, by introducing twice continuously differentiable mappings, we develop an interior path following following method, which enables us to give a constructive proof of the general Brouwer fixed point theorem and thus to solve fixed point problems in a class of non-convex sets. Under suitable conditions, a smooth path can be proven to exist. This can lead to an implementable globally convergent algorithm. Several numerical examples are given to illustrate the results of this paper.
Keywords: interior path following method, general Brouwer fixed point theorem, non-convex sets, globally convergent algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14462407 Power Series Form for Solving Linear Fredholm Integral Equations of Second Order via Banach Fixed Point Theorem
Authors: Adil AL-Rammahi
Abstract:
In this paper, a new method for solution of second order linear Fredholm integral equation in power series form was studied. The result is obtained by using Banach fixed point theorem.
Keywords: Fredholm integral equation, power series, Banach fixed point theorem, Linear Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24892406 Constructive Proof of Tychonoff’s Fixed Point Theorem for Sequentially Locally Non-Constant Functions
Authors: Yasuhito Tanaka
Abstract:
We present a constructive proof of Tychonoff’s fixed point theorem in a locally convex space for uniformly continuous and sequentially locally non-constant functions.
Keywords: sequentially locally non-constant functions, Tychonoff’s fixed point theorem, constructive mathematics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15062405 The Positive Solution for Singular Eigenvalue Problem of One-dimensional p-Laplace Operator
Authors: Lv Yuhua
Abstract:
In this paper, by constructing a special cone and using fixed point theorem and fixed point index theorem of cone, we get the existence of positive solution for a class of singular eigenvalue value problems with p-Laplace operator, which improved and generalized the result of related paper.
Keywords: Cone, fixed point index, eigenvalue problem, p-Laplace operator, positive solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14292404 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem
Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit
Abstract:
We study the existence of positive solutions to the three points difference-summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.
Keywords: Positive solution, Boundary value problem, Fixed point theorem, Cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17292403 A Sum Operator Method for Unique Positive Solution to a Class of Boundary Value Problem of Nonlinear Fractional Differential Equation
Authors: Fengxia Zheng, Chuanyun Gu
Abstract:
By using a fixed point theorem of a sum operator, the existence and uniqueness of positive solution for a class of boundary value problem of nonlinear fractional differential equation is studied. An iterative scheme is constructed to approximate it. Finally, an example is given to illustrate the main result.Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14832402 The Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation Boundary Value Problem
Authors: Chuanyun Gu, Shouming Zhong
Abstract:
In this paper, the existence and uniqueness of positive solutions for nonlinear fractional differential equation boundary value problem is concerned by a fixed point theorem of a sum operator. Our results can not only guarantee the existence and uniqueness of positive solution, but also be applied to construct an iterative scheme for approximating it. Finally, the example is given to illustrate the main result.
Keywords: Fractional differential equation, Boundary value problem, Positive solution, Existence and uniqueness, Fixed point theorem of a sum operator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14902401 Almost Periodicity in a Harvesting Lotka-Volterra Recurrent Neural Networks with Time-Varying Delays
Authors: Yongzhi Liao
Abstract:
By using the theory of exponential dichotomy and Banach fixed point theorem, this paper is concerned with the problem of the existence and uniqueness of positive almost periodic solution in a delayed Lotka-Volterra recurrent neural networks with harvesting terms. To a certain extent, our work in this paper corrects some result in recent years. Finally, an example is given to illustrate the feasibility and effectiveness of the main result.
Keywords: positive almost periodic solution, Lotka-Volterra, neural networks, Banach fixed point theorem, harvesting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16242400 On the Maximum Theorem: A Constructive Analysis
Authors: Yasuhito Tanaka
Abstract:
We examine the maximum theorem by Berge from the point of view of Bishop style constructive mathematics. We will show an approximate version of the maximum theorem and the maximum theorem for functions with sequentially locally at most one maximum.Keywords: Maximum theorem, Constructive mathematics, Sequentially locally at most one maximum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19722399 2n Almost Periodic Attractors for Cohen-Grossberg Neural Networks with Variable and Distribute Delays
Abstract:
In this paper, we investigate dynamics of 2n almost periodic attractors for Cohen-Grossberg neural networks (CGNNs) with variable and distribute time delays. By imposing some new assumptions on activation functions and system parameters, we split invariant basin of CGNNs into 2n compact convex subsets. Then the existence of 2n almost periodic solutions lying in compact convex subsets is attained due to employment of the theory of exponential dichotomy and Schauder-s fixed point theorem. Meanwhile, we derive some new criteria for the networks to converge toward these 2n almost periodic solutions and exponential attracting domains are also given correspondingly.
Keywords: CGNNs, almost periodic solution, invariant basins, attracting domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13812398 Exponential Stability of Periodic Solutions in Inertial Neural Networks with Unbounded Delay
Authors: Yunquan Ke, Chunfang Miao
Abstract:
In this paper, the exponential stability of periodic solutions in inertial neural networks with unbounded delay are investigated. First, using variable substitution the system is transformed to first order differential equation. Second, by the fixed-point theorem and constructing suitable Lyapunov function, some sufficient conditions guaranteeing the existence and exponential stability of periodic solutions of the system are obtained. Finally, two examples are given to illustrate the effectiveness of the results.
Keywords: Inertial neural networks, unbounded delay, fixed-point theorem, Lyapunov function, periodic solutions, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15312397 Positive Solutions for Systems of Nonlinear Third-Order Differential Equations with p-Laplacian
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special set and utilizing fixed point theory, we study the existence and multiplicity of the positive solutions for systems of nonlinear third-order differential equations with p-laplacian, which improve and generalize the result of related paper.Keywords: p-Laplacian, cone, fixed point theorem, positive solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5922396 The Symmetric Solutions for Three-Point Singular Boundary Value Problems of Differential Equation
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14142395 Simulation Tools for Fixed Point DSP Algorithms and Architectures
Authors: K. B. Cullen, G. C. M. Silvestre, N. J. Hurley
Abstract:
This paper presents software tools that convert the C/Cµ floating point source code for a DSP algorithm into a fixedpoint simulation model that can be used to evaluate the numericalperformance of the algorithm on several different fixed pointplatforms including microprocessors, DSPs and FPGAs. The tools use a novel system for maintaining binary point informationso that the conversion from floating point to fixed point isautomated and the resulting fixed point algorithm achieves maximum possible precision. A configurable architecture is used during the simulation phase so that the algorithm can produce a bit-exact output for several different target devices.
Keywords: DSP devices, DSP algorithm, simulation model, software
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25502394 On Tarski’s Type Theorems for L-Fuzzy Isotone and L-Fuzzy Relatively Isotone Maps on L-Complete Propelattices
Authors: František Včelař, Zuzana Pátíková
Abstract:
Recently a new type of very general relational structures, the so called (L-)complete propelattices, was introduced. These significantly generalize complete lattices and completely lattice L-ordered sets, because they do not assume the technically very strong property of transitivity. For these structures also the main part of the original Tarski’s fixed point theorem holds for (L-fuzzy) isotone maps, i.e., the part which concerns the existence of fixed points and the structure of their set. In this paper, fundamental properties of (L-)complete propelattices are recalled and the so called L-fuzzy relatively isotone maps are introduced. For these maps it is proved that they also have fixed points in L-complete propelattices, even if their set does not have to be of an awaited analogous structure of a complete propelattice.Keywords: Fixed point, L-complete propelattice, L-fuzzy (relatively) isotone map, residuated lattice, transitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11102393 The Symmetric Solutions for Boundary Value Problems of Second-Order Singular Differential Equation
Authors: Li Xiguang
Abstract:
In this paper, by constructing a special operator and using fixed point index theorem of cone, we get the sufficient conditions for symmetric positive solution of a class of nonlinear singular boundary value problems with p-Laplace operator, which improved and generalized the result of related paper.
Keywords: Banach space, cone, fixed point index, singular differential equation, p-Laplace operator, symmetric solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13032392 Unique Positive Solution of Nonlinear Fractional Differential Equation Boundary Value Problem
Authors: Fengxia Zheng
Abstract:
By using two new fixed point theorems for mixed monotone operators, the positive solution of nonlinear fractional differential equation boundary value problem is studied. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it.
Keywords: Fractional differential equation, boundary value problem, positive solution, existence and uniqueness, fixed point theorem, mixed monotone operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15992391 Existence and Uniqueness of Positive Solution for Nonlinear Fractional Differential Equation with Integral Boundary Conditions
Authors: Chuanyun Gu
Abstract:
By using fixed point theorems for a class of generalized concave and convex operators, the positive solution of nonlinear fractional differential equation with integral boundary conditions is studied, where n ≥ 3 is an integer, μ is a parameter and 0 ≤ μ < α. Its existence and uniqueness is proved, and an iterative scheme is constructed to approximate it. Finally, two examples are given to illustrate our results.Keywords: Fractional differential equation, positive solution, existence and uniqueness, fixed point theorem, generalized concave and convex operator, integral boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11202390 A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion
Authors: Aki Happonen, Adrian Burian, Erwin Hemming
Abstract:
Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on simulations using different condition numbers and different matrix sizes. Simulation results show that 16 bits word length gives sufficient performance for small matrices with low condition number. Larger matrices and higher condition numbers require more dynamic range for a fixedpoint implementation.Keywords: Cholesky Decomposition, Fixed-point, Matrix inversion, Reconfigurable processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16932389 Fixed Point of Lipschitz Quasi Nonexpansive Mappings
Authors: M. Moosavi, H. Khatibzadeh
Abstract:
In this article, we study demiclosed and strongly quasi-nonexpansive of a sequence generated by the proximal point algorithm for a finite family of quasi-nonexpansive mappings in Hadamard spaces. Δ-convergence of iterations for the sequence of strongly quasi-nonexpansive mappings as well as the strong convergence of the Halpern type regularization of them to a common fixed point of sequence are also established. Our results generalize and improve several previously known results of the existing literature.
Keywords: Fixed point, Hadamard space, proximal point algorithm, quasi-nonexpansive sequence of mappings, resolvent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922388 A Reconfigurable Processing Element Implementation for Matrix Inversion Using Cholesky Decomposition
Authors: Aki Happonen, Adrian Burian, Erwin Hemming
Abstract:
Fixed-point simulation results are used for the performance measure of inverting matrices using a reconfigurable processing element. Matrices are inverted using the Cholesky decomposition algorithm. The reconfigurable processing element is capable of all required mathematical operations. The fixed-point word length analysis is based on simulations of different condition numbers and different matrix sizes.Keywords: Cholesky Decomposition, Fixed-point, Matrixinversion, Reconfigurable processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16252387 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11692386 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (I)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11942385 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (II)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10992384 IFS on the Multi-Fuzzy Fractal Space
Authors: Nadia M. G. AL-Sa'idi, Muhammad Rushdan Md. Sd., Adil M. Ahmed
Abstract:
The IFS is a scheme for describing and manipulating complex fractal attractors using simple mathematical models. More precisely, the most popular “fractal –based" algorithms for both representation and compression of computer images have involved some implementation of the method of Iterated Function Systems (IFS) on complete metric spaces. In this paper a new generalized space called Multi-Fuzzy Fractal Space was constructed. On these spases a distance function is defined, and its completeness is proved. The completeness property of this space ensures the existence of a fixed-point theorem for the family of continuous mappings. This theorem is the fundamental result on which the IFS methods are based and the fractals are built. The defined mappings are proved to satisfy some generalizations of the contraction condition.
Keywords: Fuzzy metric space, Fuzzy fractal space, Multi fuzzy fractal space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19722383 Common Fixed Point Theorems for Co-Cyclic Weak Contractions in Compact Metric
Authors: Alemayehu Geremew Negash
Abstract:
In this paper, we prove some common fixed point theorems for co-cyclic weak contractions in compact metric spaces.
Keywords: Cyclic weak contraction, Co-cyclic weak contraction, Co-cyclic representation, Common fixed point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22132382 Existence of Solution for Boundary Value Problems of Differential Equations with Delay
Authors: Xiguang Li
Abstract:
In this paper , by using fixed point theorem , upper and lower solution-s method and monotone iterative technique , we prove the existence of maximum and minimum solutions of differential equations with delay , which improved and generalize the result of related paper.
Keywords: Banach space, boundary value problem, differential equation, delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12312381 Error Propagation of the Hidden-Point Bar Method: Effect of Bar Geometry
Authors: Said M. Easa, Ahmed Shaker
Abstract:
The hidden-point bar method is useful in many surveying applications. The method involves determining the coordinates of a hidden point as a function of horizontal and vertical angles measured to three fixed points on the bar. Using these measurements, the procedure involves calculating the slant angles, the distances from the station to the fixed points, the coordinates of the fixed points, and then the coordinates of the hidden point. The propagation of the measurement errors in this complex process has not been fully investigated in the literature. This paper evaluates the effect of the bar geometry on the position accuracy of the hidden point which depends on the measurement errors of the horizontal and vertical angles. The results are used to establish some guidelines regarding the inclination angle of the bar and the location of the observed points that provide the best accuracy.Keywords: Hidden point, accuracy, error propagation, surveying, evaluation, simulation, geometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17202380 Fixed Point Theorems for Set Valued Mappings in Partially Ordered Metric Spaces
Authors: Ismat Beg, Asma Rashid Butt
Abstract:
Let (X,) be a partially ordered set and d be a metric on X such that (X, d) is a complete metric space. Assume that X satisfies; if a non-decreasing sequence xn → x in X, then xn x, for all n. Let F be a set valued mapping from X into X with nonempty closed bounded values satisfying; (i) there exists κ ∈ (0, 1) with D(F(x), F(y)) ≤ κd(x, y), for all x y, (ii) if d(x, y) < ε < 1 for some y ∈ F(x) then x y, (iii) there exists x0 ∈ X, and some x1 ∈ F(x0) with x0 x1 such that d(x0, x1) < 1. It is shown that F has a fixed point. Several consequences are also obtained.
Keywords: Fixed point, partially ordered set, metric space, set valued mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031