Search results for: Sanchita B. Sarma
27 Assamese Numeral Corpus for Speech Recognition using Cooperative ANN Architecture
Authors: Mousmita Sarma, Krishna Dutta, Kandarpa Kumar Sarma
Abstract:
Speech corpus is one of the major components in a Speech Processing System where one of the primary requirements is to recognize an input sample. The quality and details captured in speech corpus directly affects the precision of recognition. The current work proposes a platform for speech corpus generation using an adaptive LMS filter and LPC cepstrum, as a part of an ANN based Speech Recognition System which is exclusively designed to recognize isolated numerals of Assamese language- a major language in the North Eastern part of India. The work focuses on designing an optimal feature extraction block and a few ANN based cooperative architectures so that the performance of the Speech Recognition System can be improved.Keywords: Filter, Feature, LMS, LPC, Cepstrum, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238526 Forecasting Issues in Energy Markets within a Reg-ARIMA Framework
Authors: Ilaria Lucrezia Amerise
Abstract:
Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.Keywords: Forecasting problem, interval forecasts, time series, electricity prices, reg-plus-SARMA methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81325 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart
Authors: Y. Areepong
Abstract:
The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).
Keywords: Average Run Length1, Optimal parameters, Exponentially Weighted Moving Average (EWMA) control chart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198424 Clinical Comparative Study Comparing Efficacy of Intrathecal Fentanyl and Magnesium as an Adjuvant to Hyperbaric Bupivacaine in Mild Pre-Eclamptic Patients Undergoing Caesarean Section
Authors: Sanchita B. Sarma, M. P. Nath
Abstract:
Adequate analgesia following caesarean section decreases morbidity, hastens ambulation, improves patient outcome and facilitates care of the newborn. Intrathecal magnesium, an NMDA antagonist, has been shown to prolong analgesia without significant side effects in healthy parturients. The aim of this study was to evaluate the onset and duration of sensory and motor block, hemodynamic effect, postoperative analgesia, and adverse effects of magnesium or fentanyl given intrathecally with hyperbaric 0.5% bupivacaine in patients with mild preeclampsia undergoing caesarean section. Sixty women with mild preeclampsia undergoing elective caesarean section were included in a prospective, double blind, controlled trial. Patients were randomly assigned to receive spinal anesthesia with 2 mL 0.5% hyperbaric bupivacaine with 12.5 μg fentanyl (group F) or 0.1 ml of 50% magnesium sulphate (50 mg) (group M) with 0.15ml preservative free distilled water. Onset, duration and recovery of sensory and motor block, time to maximum sensory block, duration of spinal anaesthesia and postoperative analgesic requirements were studied. Statistical comparison was carried out using the Chi-square or Fisher’s exact tests and Independent Student’s t-test where appropriate. The onset of both sensory and motor block was slower in the magnesium group. The duration of spinal anaesthesia (246 vs. 284) and motor block (186.3 vs. 210) were significantly longer in the magnesium group. Total analgesic top up requirement was less in group M. Hemodynamic parameters were similar in both the groups. Intrathecal magnesium caused minimal side effects. Since Fentanyl and other opioid congeners are not available throughout the country easily, magnesium with its easy availability and less side effect profile can be a cost effective alternative to fentanyl in managing pregnancy induced hypertension (PIH) patients given along with Bupivacaine intrathecally in caesarean section.Keywords: Analgesia, magnesium, preeclampsia, spinal anaesthesia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219623 Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures
Authors: Manash Pratim Sarma, Kandarpa Kumar Sarma
Abstract:
A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.Keywords: Assamese, Recognition, LPC, Spectral, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199122 Modeling Converters during the Warm-up Period for Hydrocarbon Oxidation
Authors: Sanchita Chauhan, V.K. Srivastava
Abstract:
Catalytic converters are used for minimizing the release of pollutants to the atmosphere. It is during the warm-up period that hydrocarbons are seen to be released in appreciable quantities from these converters. In this paper the conversion of a fast oxidizing hydrocarbon propylene is analysed using two numerical methods. The quasi steady state method assumes the accumulation terms to be negligible in the gas phase mass and energy balance equations, however this term is present in the solid phase energy balance. The unsteady state model accounts for the accumulation term to be present in the gas phase mass and energy balance and in the solid phase energy balance. The results derived from the two models for gas concentration, gas temperature and solid temperature are compared.
Keywords: Propylene, catalyst, quasi steady state, unsteady state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159221 Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications
Authors: V. V. Reddy, N. V. S. N. Sarma
Abstract:
A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x- axis, yaxis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel polyfractal antenna are demonstrated.
Keywords: Circular polarization, Fractal, Koch, Minkowski.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250620 Bi-lingual Handwritten Character and Numeral Recognition using Multi-Dimensional Recurrent Neural Networks (MDRNN)
Authors: Kandarpa Kumar Sarma
Abstract:
The key to the continued success of ANN depends, considerably, on the use of hybrid structures implemented on cooperative frame-works. Hybrid architectures provide the ability to the ANN to validate heterogeneous learning paradigms. This work describes the implementation of a set of Distributed and Hybrid ANN models for Character Recognition applied to Anglo-Assamese scripts. The objective is to describe the effectiveness of Hybrid ANN setups as innovative means of neural learning for an application like multilingual handwritten character and numeral recognition.Keywords: Assamese, Feature, Recurrent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153219 Preparation and Bioevaluation of DOTA-Cyclic RGD Peptide Dimer Labeled with 68Ga
Authors: Archana Mukherjee, Aruna Korde, Sudipta Chakraborty, H. D. Sarma, Grace Samuel, M. R. A. Pillai
Abstract:
Radiolabeled cyclic RGD peptides targeting integrin αvβ3 are reported as promising agents for the early diagnosis of metastatic tumors. With an aim to improve tumor uptake and retention of the peptide, cyclic RGD peptide dimer E[c (RGDfK)] 2 (E = Glutamic acid, f = phenyl alanine, K = lysine) coupled to the bifunctional chelator DOTA was custom synthesized and radiolabelled with 68Ga. Radiolabelling of cyclic RGD peptide dimer with 68Ga was carried out using HEPES buffer and biological evaluation of the complex was done in nude mice bearing HT29 tumors.
Keywords: 68Ga peptides, Angiogenesis imaging, Cyclic RGD peptides, PET Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 236318 Application of Fluorescent Pseudomonads Inoculant Formulations on Vigna mungo through Field Trial
Authors: Sarma. M.V.R.K, Saharan. K, Prakash. A, Bisaria. V. S, Sahai.V
Abstract:
Vermiculite was used to develop inorganic carrier-based formulations of fluorescent pseudomonad strains R62 and R81. The effect of bio-inoculation of fluorescent pseudomonad strains R62 and R81 (plant growth promoting and biocontrol agent) on growth responses of Vigna-mungo under field condition was enumerated. The combined bioinoculation of these two organisms in a formuation increased the pods yield by 300% in comparison to the control crop. There was also significant increment in the other plant growth responses such as dry root weight, dry shoot weight, shoot length and number of branches per plant.Keywords: Bio-inoculants formulation, Fluorescent pseudomonad, Plant growth promotion activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205017 E-Learning Methodology Development using Modeling
Authors: Sarma Cakula, Maija Sedleniece
Abstract:
Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.Keywords: E-learning, modeling, E-learning methods development, personal knowledge management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199016 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130615 Artificial Neural Network based Parameter Estimation and Design Optimization of Loop Antenna
Authors: Kumaresh Sarmah, Kandarpa Kumar Sarma
Abstract:
Artificial Neural Network (ANN)s are best suited for prediction and optimization problems. Trained ANNs have found wide spread acceptance in several antenna design systems. Four parameters namely antenna radiation resistance, loss resistance, efficiency, and inductance can be used to design an antenna layout though there are several other parameters available. An ANN can be trained to provide the best and worst case precisions of an antenna design problem defined by these four parameters. This work describes the use of an ANN to generate the four mentioned parameters for a loop antenna for the specified frequency range. It also provides insights to the prediction of best and worst-case design problems observed in applications and thereby formulate a model for physical layout design of a loop antenna.Keywords: MLP, ANN, parameter, prediction, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155714 Survival of Neutrino Mass Models in Nonthermal Leptogenesis
Authors: Amal Kr Sarma, H Zeen Devi, N Nimai Singh
Abstract:
The Constraints imposed by non-thermal leptogenesis on the survival of the neutrino mass models describing the presently available neutrino mass patterns, are studied numerically. We consider the Majorana CP violating phases coming from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models namely quasi-degenerate, inverted hierarchical and normal hierarchical models, with tribimaximal mixings. Considering two possible diagonal forms of Dirac neutrino mass matrix as either charged lepton or up-quark mass matrix, the heavy right-handed mass matrices are constructed from the light neutrino mass matrix. Only the normal hierarchical model leads to the best predictions of baryon asymmetry of the universe, consistent with observations in non-thermal leptogenesis scenario.Keywords: Thermal leptogenesis, Non-thermal leptogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128613 Cell Growth and Metabolites Produced by Fluorescent Pseudomonad R62 in Modified Chemically Defined Medium
Authors: K. Saharan, M.V. R. K. Sarma, A. S. Roesti, A. Prakash, B. N. Johri, M. Aragno, V. S. Bisaria, V. Sahai
Abstract:
Chemically defined Schlegel-s medium was modified to improve production of cell growth and other metabolites that are produced by fluorescent pseudomonad R62 strain. The modified medium does not require pH control as pH changes are kept within ± 0.2 units of the initial pH 7.1 during fermentation. The siderophore production was optimized for the fluorescent pseudomonad strain in the modified medium containing 1% glycerol as a major carbon source supplemented with 0.05% succinic acid and 0.5% Ltryptophan. Indole-3 acetic acid (IAA) production was higher when L-tryptophan was used at 0.5%. The 2,4- diacetylphloroglucinol (DAPG) was higher with amended three trace elements in medium. The optimized medium produced 2.28 g/l of dry cell mass and 900 mg/l of siderophore at the end of 36 h cultivation, while the production levels of IAA and DAPG were 65 mg/l and 81 mg/l respectively at the end of 48 h cultivation.Keywords: Fluorescent pseudomonad, Fermentation, Metabolites production, PGPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200112 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN
Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma
Abstract:
Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.Keywords: Rotation, Face, Recognition, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206211 Process Optimization for Enhanced Production of Cell Biomass and Metabolites of Fluorescent Pseudomonad R81
Authors: M.V.R.K Sarma, Krishna Saharan, Lalit Kumar, Ashwani Gautam, Avhijeet Kapoor, Nishant Srivastava, Vikram Sahai, V.S Bisaria
Abstract:
The fluorescent pseudomonad strain R81 is a root colonizing rhizobacteria which promotes the growth of many plants by various mechanisms. Its broth containing siderophore (ironchelating compound) and 2,4- diacetyl phloroglucinol (DAPG) is used for preparing bioinoculant formulations for agronomical applications. Glycerol was found to be the best carbon source for improved biomass production. Splitting of nitrogen source to NH4Cl and urea had a stabilizing effect on pH during batch cultivation. Ltryptophan at 0.5 % in the medium increased the siderophore production to 850 mg/l. During batch cultivation of the strain in a bioreactor, a maximum of 4 g/l of dry cell mass, 1.8 g/l of siderophore and 20 mg/l of DAPG was achieved when glycerol was 15 g/l and C/N ratio was maintained at 12.5. In case of intermittent feeding of fresh medium during fed-batch cultivation, the dry cell mass was increased to 25 g/l with improved production of DAPG to 70 mg/l.Keywords: Batch cultivation, Fed-batch cultivation, fluorescent pseudomonad, Metabolites
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229110 Signature Recognition and Verification using Hybrid Features and Clustered Artificial Neural Network(ANN)s
Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma, Hirendra Das
Abstract:
Signature represents an individual characteristic of a person which can be used for his / her validation. For such application proper modeling is essential. Here we propose an offline signature recognition and verification scheme which is based on extraction of several features including one hybrid set from the input signature and compare them with the already trained forms. Feature points are classified using statistical parameters like mean and variance. The scanned signature is normalized in slant using a very simple algorithm with an intention to make the system robust which is found to be very helpful. The slant correction is further aided by the use of an Artificial Neural Network (ANN). The suggested scheme discriminates between originals and forged signatures from simple and random forgeries. The primary objective is to reduce the two crucial parameters-False Acceptance Rate (FAR) and False Rejection Rate (FRR) with lesser training time with an intension to make the system dynamic using a cluster of ANNs forming a multiple classifier system.Keywords: offline, algorithm, FAR, FRR, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17809 MIMO-OFDM Channel Tracking Using a Dynamic ANN Topology
Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma
Abstract:
All the available algorithms for blind estimation namely constant modulus algorithm (CMA), Decision-Directed Algorithm (DDA/DFE) suffer from the problem of convergence to local minima. Also, if the channel drifts considerably, any DDA looses track of the channel. So, their usage is limited in varying channel conditions. The primary limitation in such cases is the requirement of certain overhead bits in the transmit framework which leads to wasteful use of the bandwidth. Also such arrangements fail to use channel state information (CSI) which is an important aid in improving the quality of reception. In this work, the main objective is to reduce the overhead imposed by the pilot symbols, which in effect reduces the system throughput. Also we formulate an arrangement based on certain dynamic Artificial Neural Network (ANN) topologies which not only contributes towards the lowering of the overhead but also facilitates the use of the CSI. A 2×2 Multiple Input Multiple Output (MIMO) system is simulated and the performance variation with different channel estimation schemes are evaluated. A new semi blind approach based on dynamic ANN is proposed for channel tracking in varying channel conditions and the performance is compared with perfectly known CSI and least square (LS) based estimation.
Keywords: MIMO, Artificial Neural Network (ANN), CMA, LS, CSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23718 Identification of Industrial Health Using ANN
Authors: Deepak Goswami, Padma Lochan Hazarika, Kandarpa Kumar Sarma
Abstract:
The customary practice of identifying industrial sickness is a set traditional techniques which rely upon a range of manual monitoring and compilation of financial records. It makes the process tedious, time consuming and often are susceptible to manipulation. Therefore, certain readily available tools are required which can deal with such uncertain situations arising out of industrial sickness. It is more significant for a country like India where the fruits of development are rarely equally distributed. In this paper, we propose an approach based on Artificial Neural Network (ANN) to deal with industrial sickness with specific focus on a few such units taken from a less developed north-east (NE) Indian state like Assam. The proposed system provides decision regarding industrial sickness using eight different parameters which are directly related to the stages of sickness of such units. The mechanism primarily uses certain signals and symptoms of industrial health to decide upon the state of a unit. Specifically, we formulate an ANN based block with data obtained from a few selected units of Assam so that required decisions related to industrial health could be taken. The system thus formulated could become an important part of planning and development. It can also contribute towards computerization of decision support systems related to industrial health and help in better management.
Keywords: Industrial, Health, Classification, ANN, MLP, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16937 Evaluation of Nutritional Potential of Five Unexplored Wild Edible Food Plants from Eastern Himalayan Biodiversity Hotspot Region (India)
Authors: Pallabi Kalita, Hui Tag, H. N. Sarma, A. K. Das.
Abstract:
Wild edible food plants contain a number of organic phytochemical that have been linked to the promotion of good health. These plants used by the local people of Arunachal Pradesh (Northeast India) are found to have high nutritional potential to maintain general balance diet. A study was conducted to evaluate the nutritional potential of five commonly found, unexplored wild food plants namely, Piper pedicellatum C. DC (leaves), Gonostegia hirta (Blume ex Hassk.) Miq. (leaves), Mussaenda roxburghii Hook.f (leaves), Solanum spirale Roxb. (leaves and fruits) and Cyathea spinulosa Wall. ex Hook. (pith portion and tender rachis) from East Siang District of Arunachal Pradesh Northeast (India) for ascertaining their suitability for utilization as supplementary food. Results of study revealed that P. pedicellatum, C. spinulosa, and S. spirale (leaves) are the most promising species which have high nutritional content out of the five wild food plants investigated which is required for the normal growth and development of human.
Keywords: Wild edible plants, Gross energy, Gonostegia hirta, Cyathea spinulosa,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32656 Investigation of Grid Supply Harmonic Effects in Wound Rotor Induction Machines
Authors: Nur Sarma, Paul M. Tuohy, Siniša Djurović
Abstract:
This paper presents an in-depth investigation of the effects of several grid supply harmonic voltages on the stator currents of an example wound rotor induction machine. The observed effects of higher order grid supply harmonics are identified using a finite element time stepping transient model, as well as a time-stepping electromagnetic model. In addition, a number of analytical equations to calculate the spectral content of the stator currents are presented in the paper. The presented equations are validated through comparison with the obtained spectra predicted using the finite element and electromagnetic models. The presented study provides a better understanding of the origin of supply harmonic effects identified in the stator currents of the example wound rotor induction machine. Furthermore, the study helps to understand the effects of higher order supply harmonics on the harmonic emissions of the wound rotor induction machine.
Keywords: Wound rotor induction machine, supply harmonics, current spectrum, power spectrum, power quality, harmonic emissions, finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9585 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16084 GCM Based Fuzzy Clustering to Identify Homogeneous Climatic Regions of North-East India
Authors: Arup K. Sarma, Jayshree Hazarika
Abstract:
The North-eastern part of India, which receives heavier rainfall than other parts of the subcontinent, is of great concern now-a-days with regard to climate change. High intensity rainfall for short duration and longer dry spell, occurring due to impact of climate change, affects river morphology too. In the present study, an attempt is made to delineate the North-eastern region of India into some homogeneous clusters based on the Fuzzy Clustering concept and to compare the resulting clusters obtained by using conventional methods and nonconventional methods of clustering. The concept of clustering is adapted in view of the fact that, impact of climate change can be studied in a homogeneous region without much variation, which can be helpful in studies related to water resources planning and management. 10 IMD (Indian Meteorological Department) stations, situated in various regions of the North-east, have been selected for making the clusters. The results of the Fuzzy C-Means (FCM) analysis show different clustering patterns for different conditions. From the analysis and comparison it can be concluded that nonconventional method of using GCM data is somehow giving better results than the others. However, further analysis can be done by taking daily data instead of monthly means to reduce the effect of standardization.
Keywords: Climate change, conventional and nonconventional methods of clustering, FCM analysis, homogeneous regions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22113 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13022 Impact of Climate Change on Sea Level Rise along the Coastline of Mumbai City, India
Authors: Chakraborty Sudipta, A. R. Kambekar, Sarma Arnab
Abstract:
Sea-level rise being one of the most important impacts of anthropogenic induced climate change resulting from global warming and melting of icebergs at Arctic and Antarctic, the investigations done by various researchers both on Indian Coast and elsewhere during the last decade has been reviewed in this paper. The paper aims to ascertain the propensity of consistency of different suggested methods to predict the near-accurate future sea level rise along the coast of Mumbai. Case studies at East Coast, Southern Tip and West and South West coast of India have been reviewed. Coastal Vulnerability Index of several important international places has been compared, which matched with Intergovernmental Panel on Climate Change forecasts. The application of Geographic Information System mapping, use of remote sensing technology, both Multi Spectral Scanner and Thematic Mapping data from Landsat classified through Iterative Self-Organizing Data Analysis Technique for arriving at high, moderate and low Coastal Vulnerability Index at various important coastal cities have been observed. Instead of data driven, hindcast based forecast for Significant Wave Height, additional impact of sea level rise has been suggested. Efficacy and limitations of numerical methods vis-à-vis Artificial Neural Network has been assessed, importance of Root Mean Square error on numerical results is mentioned. Comparing between various computerized methods on forecast results obtained from MIKE 21 has been opined to be more reliable than Delft 3D model.
Keywords: Climate change, coastal vulnerability index, global warming, sea level rise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15651 Mechanical Behavior of Recycled Pet Fiber Reinforced Concrete Matrix
Authors: Comingstarful Marthong, Deba Kumar Sarma
Abstract:
Concrete is strong in compression however weak in tension. The tensile strength as well as ductile property of concrete could be improved by addition of short dispersed fibers. Polyethylene terephthalate (PET) fiber obtained from hand cutting or mechanical slitting of plastic sheets generally used as discrete reinforcement in substitution of steel fiber. PET fiber obtained from the former process is in the form of straight slit sheet pattern that impart weaker mechanical bonding behavior in the concrete matrix. To improve the limitation of straight slit sheet fiber the present study considered two additional geometry of fiber namely (a) flattened end slit sheet and (b) deformed slit sheet. The mix for plain concrete was design for a compressive strength of 25 MPa at 28 days curing time with a watercement ratio of 0.5. Cylindrical and beam specimens with 0.5% fibers volume fraction and without fibers were cast to investigate the influence of geometry on the mechanical properties of concrete. The performance parameters mainly studied include flexural strength, splitting tensile strength, compressive strength and ultrasonic pulse velocity (UPV). Test results show that geometry of fiber has a marginal effect on the workability of concrete. However, it plays a significant role in achieving a good compressive and tensile strength of concrete. Further, significant improvement in term of flexural and energy dissipation capacity were observed from other fibers as compared to the straight slit sheet pattern. Also, the inclusion of PET fiber improved the ability in absorbing energy in the post-cracking state of the specimen as well as no significant porous structures.Keywords: Concrete matrix, polyethylene terephthalate (PET) fibers, mechanical bonding, mechanical properties, UPV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052