Search results for: Robust regression.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1426

Search results for: Robust regression.

1426 Robust Regression and its Application in Financial Data Analysis

Authors: Mansoor Momeni, Mahmoud Dehghan Nayeri, Ali Faal Ghayoumi, Hoda Ghorbani

Abstract:

This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.

Keywords: Financial data analysis, Influential data, Outliers, Robust regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
1425 Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories

Authors: Arkady Bolotin

Abstract:

Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.

Keywords: Categorization, Uncertain medical categories, Binomial regression model, Fuzzy dependent variable, Robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1424 A Robust LS-SVM Regression

Authors: József Valyon, Gábor Horváth

Abstract:

In comparison to the original SVM, which involves a quadratic programming task; LS–SVM simplifies the required computation, but unfortunately the sparseness of standard SVM is lost. Another problem is that LS-SVM is only optimal if the training samples are corrupted by Gaussian noise. In Least Squares SVM (LS–SVM), the nonlinear solution is obtained, by first mapping the input vector to a high dimensional kernel space in a nonlinear fashion, where the solution is calculated from a linear equation set. In this paper a geometric view of the kernel space is introduced, which enables us to develop a new formulation to achieve a sparse and robust estimate.

Keywords: Support Vector Machines, Least Squares SupportVector Machines, Regression, Sparse approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
1423 Relationship between Sums of Squares in Linear Regression and Semi-parametric Regression

Authors: Dursun Aydın, Bilgin Senel

Abstract:

In this paper, the sum of squares in linear regression is reduced to sum of squares in semi-parametric regression. We indicated that different sums of squares in the linear regression are similar to various deviance statements in semi-parametric regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the semi-parametric regression model. Then, it is made an application in order to support the theory of the linear regression and semi-parametric regression. In this way, study is supported with a simulated data example.

Keywords: Semi-parametric regression, Penalized LeastSquares, Residuals, Deviance, Smoothing Spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1422 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree

Authors: S. A. Gayvoronsky, T. A. Ezangina

Abstract:

The robust control system objects with interval- undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.

Keywords: An interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
1421 Dichotomous Logistic Regression with Leave-One-Out Validation

Authors: Sin Yin Teh, Abdul Rahman Othman, Michael Boon Chong Khoo

Abstract:

In this paper, the concepts of dichotomous logistic regression (DLR) with leave-one-out (L-O-O) were discussed. To illustrate this, the L-O-O was run to determine the importance of the simulation conditions for robust test of spread procedures with good Type I error rates. The resultant model was then evaluated. The discussions included 1) assessment of the accuracy of the model, and 2) parameter estimates. These were presented and illustrated by modeling the relationship between the dichotomous dependent variable (Type I error rates) with a set of independent variables (the simulation conditions). The base SAS software containing PROC LOGISTIC and DATA step functions can be making used to do the DLR analysis.

Keywords: Dichotomous logistic regression, leave-one-out, testof spread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
1420 Robust Adaptive ELS-QR Algorithm for Linear Discrete Time Stochastic Systems Identification

Authors: Ginalber L. O. Serra

Abstract:

This work proposes a recursive weighted ELS algorithm for system identification by applying numerically robust orthogonal Householder transformations. The properties of the proposed algorithm show it obtains acceptable results in a noisy environment: fast convergence and asymptotically unbiased estimates. Comparative analysis with others robust methods well known from literature are also presented.

Keywords: Stochastic Systems, Robust Identification, Parameter Estimation, Systems Identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1419 Advanced Robust PDC Fuzzy Control of Nonlinear Systems

Authors: M. Polanský

Abstract:

This paper introduces a new method called ARPDC (Advanced Robust Parallel Distributed Compensation) for automatic control of nonlinear systems. This method improves a quality of robust control by interpolating of robust and optimal controller. The weight of each controller is determined by an original criteria function for model validity and disturbance appreciation. ARPDC method is based on nonlinear Takagi-Sugeno (T-S) fuzzy systems and Parallel Distributed Compensation (PDC) control scheme. The relaxed stability conditions of ARPDC control of nominal system have been derived. The advantages of presented method are demonstrated on the inverse pendulum benchmark problem. From comparison between three different controllers (robust, optimal and ARPDC) follows, that ARPDC control is almost optimal with the robustness close to the robust controller. The results indicate that ARPDC algorithm can be a good alternative not only for a robust control, but in some cases also to an adaptive control of nonlinear systems.

Keywords: Robust control, optimal control, Takagi–Sugeno (TS) fuzzy models, linear matrix inequality (LMI), observer, Advanced Robust Parallel Distributed Compensation (ARPDC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
1418 A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line

Authors: Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping, Mohsen Mohammadzadeh

Abstract:

Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.

Keywords: ARIMA, multiple polynomial regression, production throughput, uncertainties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
1417 A Comparison of the Sum of Squares in Linear and Partial Linear Regression Models

Authors: Dursun Aydın

Abstract:

In this paper, estimation of the linear regression model is made by ordinary least squares method and the partially linear regression model is estimated by penalized least squares method using smoothing spline. Then, it is investigated that differences and similarity in the sum of squares related for linear regression and partial linear regression models (semi-parametric regression models). It is denoted that the sum of squares in linear regression is reduced to sum of squares in partial linear regression models. Furthermore, we indicated that various sums of squares in the linear regression are similar to different deviance statements in partial linear regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the partial linear regression model. For this aim, it is made two different applications. A simulated and a real data set are considered to prove the claim mentioned here. In this way, this study is supported with a simulation and a real data example.

Keywords: Partial Linear Regression Model, Linear RegressionModel, Residuals, Deviance, Smoothing Spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1416 Robust ANOVA: An Illustrative Study in Horticultural Crop Research

Authors: Dinesh Inamadar, R. Venugopalan, K. Padmini

Abstract:

An attempt has been made in the present communication to elucidate the efficacy of robust ANOVA methods to analyse horticultural field experimental data in the presence of outliers. Results obtained fortify the use of robust ANOVA methods as there was substantiate reduction in error mean square, and hence the probability of committing Type I error, as compared to the regular approach.

Keywords: Outliers, robust ANOVA, horticulture, Cook distance, Type I error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
1415 Optimized Calculation of Hourly Price Forward Curve (HPFC)

Authors: Ahmed Abdolkhalig

Abstract:

This paper examines many mathematical methods for molding the hourly price forward curve (HPFC); the model will be constructed by numerous regression methods, like polynomial regression, radial basic function neural networks & a furrier series. Examination the models goodness of fit will be done by means of statistical & graphical tools. The criteria for choosing the model will depend on minimize the Root Mean Squared Error (RMSE), using the correlation analysis approach for the regression analysis the optimal model will be distinct, which are robust against model misspecification. Learning & supervision technique employed to determine the form of the optimal parameters corresponding to each measure of overall loss. By using all the numerical methods that mentioned previously; the explicit expressions for the optimal model derived and the optimal designs will be implemented.

Keywords: Forward curve, furrier series, regression, radial basic function neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4228
1414 On the Noise Distance in Robust Fuzzy C-Means

Authors: M. G. C. A. Cimino, G. Frosini, B. Lazzerini, F. Marcelloni

Abstract:

In the last decades, a number of robust fuzzy clustering algorithms have been proposed to partition data sets affected by noise and outliers. Robust fuzzy C-means (robust-FCM) is certainly one of the most known among these algorithms. In robust-FCM, noise is modeled as a separate cluster and is characterized by a prototype that has a constant distance δ from all data points. Distance δ determines the boundary of the noise cluster and therefore is a critical parameter of the algorithm. Though some approaches have been proposed to automatically determine the most suitable δ for the specific application, up to today an efficient and fully satisfactory solution does not exist. The aim of this paper is to propose a novel method to compute the optimal δ based on the analysis of the distribution of the percentage of objects assigned to the noise cluster in repeated executions of the robust-FCM with decreasing values of δ . The extremely encouraging results obtained on some data sets found in the literature are shown and discussed.

Keywords: noise prototype, robust fuzzy clustering, robustfuzzy C-means

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
1413 Design of a Reduced Order Robust Convex Controller for Flight Control System

Authors: S. Swain, P. S. Khuntia

Abstract:

In this paper an optimal convex controller is designed to control the angle of attack of a FOXTROT aircraft. Then the order of the system model is reduced to a low-dimensional state space by using Balanced Truncation Model Reduction Technique and finally the robust stability of the reduced model of the system is tested graphically by using Kharitonov rectangle and Zero Exclusion Principle for a particular range of perturbation value. The same robust stability is tested theoretically by using Frequency Sweeping Function for robust stability.

Keywords: Convex Optimization, Kharitonov Stability Criterion, Model Reduction, Robust Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
1412 Robust Stabilization against Unknown Consensus Network

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper studies a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. From an existing robust stabilization result, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.

Keywords: Multi-agent System, Robust Stabilization, Transfer Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
1411 Improved Robust Stability and Stabilization Conditions of Discrete-time Delayed System

Authors: Zixin Liu

Abstract:

The problem of robust stability and robust stabilization for a class of discrete-time uncertain systems with time delay is investigated. Based on Tchebychev inequality, by constructing a new augmented Lyapunov function, some improved sufficient conditions ensuring exponential stability and stabilization are established. These conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. Compared with some previous results derived in the literature, the new obtained criteria have less conservatism. Two numerical examples are provided to demonstrate the improvement and effectiveness of the proposed method.

Keywords: Robust stabilization, robust stability, discrete-time system, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
1410 A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression

Authors: Dursun Aydin

Abstract:

This paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smoothing spline regression estimators are better than those of the kernel regression.

Keywords: Kernel regression, Nonparametric models, Prediction, Smoothing spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101
1409 Combining Bagging and Additive Regression

Authors: Sotiris B. Kotsiantis

Abstract:

Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.

Keywords: Regressors, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
1408 Parameter Selections of Fuzzy C-Means Based on Robust Analysis

Authors: Kuo-Lung Wu

Abstract:

The weighting exponent m is called the fuzzifier that can have influence on the clustering performance of fuzzy c-means (FCM) and mÎ[1.5,2.5] is suggested by Pal and Bezdek [13]. In this paper, we will discuss the robust properties of FCM and show that the parameter m will have influence on the robustness of FCM. According to our analysis, we find that a large m value will make FCM more robust to noise and outliers. However, if m is larger than the theoretical upper bound proposed by Yu et al. [14], the sample mean will become the unique optimizer. Here, we suggest to implement the FCM algorithm with mÎ[1.5,4] under the restriction when m is smaller than the theoretical upper bound.

Keywords: Fuzzy c-means, robust, fuzzifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
1407 Robust Quadratic Stabilization of Uncertain Impulsive Switched Systems

Authors: Xiu Liu, Shouming Zhong, Xiuyong Ding

Abstract:

This paper focuses on the quadratic stabilization problem for a class of uncertain impulsive switched systems. The uncertainty is assumed to be norm-bounded and enters both the state and the input matrices. Based on the Lyapunov methods, some results on robust stabilization and quadratic stabilization for the impulsive switched system are obtained. A stabilizing state feedback control law realizing the robust stabilization of the closed-loop system is constructed.

Keywords: Impulsive systems, switched systems, quadratic stabilization, robust stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1406 CACSC tool for Automatic Design of Robust Controllers for Hydropower Plants

Authors: Jose J.CarreñoZagarra, Rodolfo Villamizar Mejía

Abstract:

This work describes a CACSD tool for automatic design of robust controllers for hydraulic turbines. The tool calculates the optimal  controller using the MATLAB hinfopt function and it serves as a practical and effective solution for the laborious task of designing a different controller for each type of turbine and generator, and different parameters and conditions of the plant. Results of the simulation of a generating unit subject to parameters variation show the accuracy and efficiency of the obtained robust controllers.

Keywords: Robust Control, Hydroelectric System Turbine, Control H∞, CACSD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
1405 A Model-Free Robust Control Approach for Robot Manipulator

Authors: A. Izadbakhsh, M. M. Fateh

Abstract:

A model-free robust control (MFRC) approach is proposed for position control of robot manipulators in the state space. The control approach is verified analytically to be robust subject to uncertainties including external disturbances, unmodeled dynamics, and parametric uncertainties. There is a high flexibility to work on different systems including actuators by the use of the proposed control approach. The proposed control approach can guarantee the robustness of control system. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a satisfactory performance for control system under technical specifications. KeywordsModel-free, robust control, position control, PUMA 560.

Keywords: Model-free, robust control, position control, PUMA 560.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
1404 Robust Integrated Navigation of a Low Cost System

Authors: Saman M. Siddiqui, Fang Jiancheng

Abstract:

Robust nonlinear integrated navigation of GPS and low cost MEMS is a hot topic of research these days. A robust filter is required to cope up with the problem of unpredictable discontinuities and colored noises associated with low cost sensors. H∞ filter is previously used in Extended Kalman filter and Unscented Kalman filter frame. Unscented Kalman filter has a problem of Cholesky matrix factorization at each step which is a very unstable operation. To avoid this problem in this research H∞ filter is designed in Square root Unscented filter framework and found 50% more robust towards increased level of colored noises.

Keywords: H∞ filter, MEMS, GPS, Nonlinear system, robust system, Square root unscented filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1403 Variogram Fitting Based on the Wilcoxon Norm

Authors: Hazem Al-Mofleh, John Daniels, Joseph McKean

Abstract:

Within geostatistics research, effective estimation of the variogram points has been examined, particularly in developing robust alternatives. The parametric fit of these variogram points which eventually defines the kriging weights, however, has not received the same attention from a robust perspective. This paper proposes the use of the non-linear Wilcoxon norm over weighted non-linear least squares as a robust variogram fitting alternative. First, we introduce the concept of variogram estimation and fitting. Then, as an alternative to non-linear weighted least squares, we discuss the non-linear Wilcoxon estimator. Next, the robustness properties of the non-linear Wilcoxon are demonstrated using a contaminated spatial data set. Finally, under simulated conditions, increasing levels of contaminated spatial processes have their variograms points estimated and fit. In the fitting of these variogram points, both non-linear Weighted Least Squares and non-linear Wilcoxon fits are examined for efficiency. At all levels of contamination (including 0%), using a robust estimation and robust fitting procedure, the non-weighted Wilcoxon outperforms weighted Least Squares.

Keywords: Non-Linear Wilcoxon, robust estimation, Variogram estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 969
1402 A Robust STATCOM Controller for a Multi-Machine Power System Using Particle Swarm Optimization and Loop-Shaping

Authors: S.F. Faisal, A.H.M.A. Rahim, J.M. Bakhashwain

Abstract:

Design of a fixed parameter robust STATCOM controller for a multi-machine power system through an H-? based loop-shaping procedure is presented. The trial and error part of the graphical loop-shaping procedure has been eliminated by embedding a particle swarm optimization (PSO) technique in the design loop. Robust controllers were designed considering the detailed dynamics of the multi-machine system and results were compared with reduced order models. The robust strategy employing loop-shaping and PSO algorithms was observed to provide very good damping profile for a wide range of operation and for various disturbance conditions. 

Keywords: STATCOM, Robust control, Power system damping, Particle Swarm Optimization, Loop-shaping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
1401 ILMI Approach for Robust Output Feedback Control of Induction Machine

Authors: Abdelwahed Echchatbi, Adil Rizki, Ali Haddi, Nabil Mrani, Noureddine Elalami

Abstract:

In this note, the robust static output feedback stabilisation of an induction machine is addressed. The machine is described by a non homogenous bilinear model with structural uncertainties, and the feedback gain is computed via an iterative LMI (ILMI) algorithm.

Keywords: Induction machine, Static output feedback, robust stabilisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
1400 Orthogonal Regression for Nonparametric Estimation of Errors-in-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: Grade point average, orthogonal regression, penalized regression spline, locally weighted regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
1399 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities

Authors: J. P. P. Andrade, V. A. F. Campos

Abstract:

This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.

Keywords: F-16 Aircraft, linear matrix inequalities, pole placement, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
1398 Robust Nonlinear Control of Two Links Robot Manipulator and Computing Maximum Load

Authors: Hasanifard Goran, Habib Nejad Korayem Moharam, Nikoobin Amin

Abstract:

A new robust nonlinear control scheme of a manipulator is proposed in this paper which is robust against modeling errors and unknown disturbances. It is based on the principle of variable structure control, with sliding mode control (SMC) method. The variable structure control method is a robust method that appears to be well suited for robotic manipulators because it requers only bounds on the robotic arm parameters. But there is no single systematic procedure that is guaranteed to produce a suitable control law. Also, to reduce chattring of the control signal, we replaced the sgn function in the control law by a continuous approximation such as tangant function. We can compute the maximum load with regard to applied torque into joints. The effectivness of the proposed approach has been evaluated analitically demonstrated through computer simulations for the cases of variable load and robot arm parameters.

Keywords: Variable structure control, robust control, switching surface, robot manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
1397 On the outlier Detection in Nonlinear Regression

Authors: Hossein Riazoshams, Midi Habshah, Jr., Mohamad Bakri Adam

Abstract:

The detection of outliers is very essential because of their responsibility for producing huge interpretative problem in linear as well as in nonlinear regression analysis. Much work has been accomplished on the identification of outlier in linear regression, but not in nonlinear regression. In this article we propose several outlier detection techniques for nonlinear regression. The main idea is to use the linear approximation of a nonlinear model and consider the gradient as the design matrix. Subsequently, the detection techniques are formulated. Six detection measures are developed that combined with three estimation techniques such as the Least-Squares, M and MM-estimators. The study shows that among the six measures, only the studentized residual and Cook Distance which combined with the MM estimator, consistently capable of identifying the correct outliers.

Keywords: Nonlinear Regression, outliers, Gradient, LeastSquare, M-estimate, MM-estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3179