Search results for: Methane Mitigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 261

Search results for: Methane Mitigation

171 Development of Corn (Zea mays L.) Stalk Geotextile Net for Soil Erosion Mitigation

Authors: Cristina S. Decano, Vitaliana U. Malamug, Melissa E. Agulto, Helen F. Gavino

Abstract:

This study aimed to introduce new natural fiber to be used in the production of geotextile net for mitigation of soil erosion. Fiber extraction from the stalks was the main challenge faced during the processing of stalks to ropes. Thus, an investigation on the extraction procedures of corn (Zea mays L.) stalk under biological and chemical retting was undertaken. Results indicated significant differences among percent fiber yield as affected by the retting methods used with values of 15.07%, 12.97%, 11.60%, and 9.01%, for dew, water, chemical (1 day after harvest and15 days after harvest), respectively, with the corresponding average extracting duration of 70, 82, 89, and 94 minutes. Physical characterization of the developed corn stalk geotextile net resulted to average mass per unit area of 806.25 g/m2 and 241% water absorbing capacity. The effect of corn stalk geotextile net in mitigating soil erosion was evaluated in a laboratory experiment for 30o and 60o inclinations with three treatments: bare soil (A1), corn stalk geotextile net (A2) and combined cornstalk geotextile net and vegetation cover (A3). Results revealed that treatment A2 and A3 significantly decreased sediment yield and an increase in terms of soil loss reduction efficiency. The cost of corn stalk geotextile net is Php 62.41 per square meter.

Keywords: Corn stalk, natural geotextile, retting, soil erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
170 Trees for Air Pollution Tolerance to Develop Green Belts as an Ecological Mitigation

Authors: Rahma Al Maawali, Hameed Sulaiman

Abstract:

Air pollution both from point and non-point sources is difficult to control once released in to the atmosphere. There is no engineering method known available to ameliorate the dispersed pollutants. The only suitable approach is the ecological method of constructing green belts in and around the pollution sources. Air pollution in Muscat, Oman is a serious concern due to ever increasing vehicles on roads. Identifying the air pollution tolerance levels of species is important for implementing pollution control strategies in the urban areas of Muscat. Hence, in the present study, Air Pollution Tolerance Index (APTI) for ten avenue tree species was evaluated by analyzing four bio-chemical parameters, plus their Anticipated Performance Index (API) in field conditions. Based on the two indices, Ficus benghalensis was the most suitable one with the highest performance score. Conocarpus erectuse, Phoenix dactylifera, and Pithcellobium dulce were found to be good performers and are recommended for extensive planting. Azadirachta indica which is preferred for its dense canopy is qualified in the moderate category. The rest of the tree species expressed lower API score of less than 51, hence cannot be considered as suitable species for pollution mitigation plantation projects.

Keywords: Air pollution tolerance index, avenue tree species, bio-chemical parameters, Muscat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
169 Experimental and Numerical Study on the Effects of Oxygen Methane Flames with Water Dilution for Different Pressures

Authors: J. P. Chica Cano, G. Cabot, S. de Persis, F. Foucher

Abstract:

Among all possibilities to combat global warming, CO2 capture and sequestration (CCS) is presented as a great alternative to reduce greenhouse gas (GHG) emission. Several strategies for CCS from industrial and power plants are being considered. The concept of combined oxy-fuel combustion has been the most alternative solution. Nevertheless, due to the high cost of pure O2 production, additional ways recently emerged. In this paper, an innovative combustion process for a gas turbine cycle was studied: it was composed of methane combustion with oxygen enhanced air (OEA), exhaust gas recirculation (EGR) and H2O issuing from STIG (Steam Injection Gas Turbine), and the CO2 capture was realized by membrane separator. The effect on this combustion process was emphasized, and it was shown that a study of the influence of H2O dilution on the combustion parameters by experimental and numerical approaches had to be carried out. As a consequence, the laminar burning velocities measurements were performed in a stainless steel spherical combustion from atmospheric pressure to high pressure (up to 0.5 MPa), at 473 K for an equivalence ratio at 1. These experimental results were satisfactorily compared with Chemical Workbench v.4.1 package in conjunction with GRIMech 3.0 reaction mechanism. The good correlations so obtained between experimental and calculated flame speed velocities showed the validity of the GRIMech 3.0 mechanism in this domain of combustion: high H2O dilution, low N2, medium pressure. Finally, good estimations of flame speed and pollutant emissions were determined in other conditions compatible with real gas turbine. In particular, mixtures (composed of CH4/O2/N2/H2O/ or CO2) leading to the same adiabatic temperature were investigated. Influences of oxygen enrichment and H2O dilution (compared to CO2) were disused.

Keywords: CO2 capture, oxygen enrichment, water dilution, laminar burning velocity, pollutants emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
168 Transient Analysis and Mitigation of Capacitor Bank Switching on a Standalone Wind Farm

Authors: Ajibola O. Akinrinde, Andrew Swanson, Remy Tiako

Abstract:

There exist significant losses on transmission lines due to distance, as power generating stations could be located far from some isolated settlements. Standalone wind farms could be a good choice of alternative power generation for such settlements that are far from the grid due to factors of long distance or socio-economic problems. However, uncompensated wind farms consume reactive power since wind turbines are induction generators. Therefore, capacitor banks are used to compensate reactive power, which in turn improves the voltage profile of the network. Although capacitor banks help improving voltage profile, they also undergo switching actions due to its compensating response to the variation of various types of load at the consumer’s end. These switching activities could cause transient overvoltage on the network, jeopardizing the end-life of other equipment on the system. In this paper, the overvoltage caused by these switching activities is investigated using the IEEE bus 14-network to represent a standalone wind farm, and the simulation is done using ATP/EMTP software. Scenarios involving the use of pre-insertion resistor and pre-insertion inductor, as well as controlled switching was also carried out in order to decide the best mitigation option to reduce the overvoltage.

Keywords: Capacitor banks, IEEE bus 14-network, Pre-insertion resistor, Standalone wind farm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
167 Vulnerability of Indian Agriculture to Climate Change: A Study of the Himalayan Region State

Authors: Rajendra Kumar Isaac, Monisha Isaac

Abstract:

Climate variability and changes are the emerging challenges for Indian agriculture with the growing population to ensure national food security. A study was conducted to assess the Climatic Change effects in medium to low altitude areas of the Himalayan region causing changes in land use and cereal crop productivity with the various climatic parameters. The rainfall and temperature changes from 1951 to 2013 were studied at four locations of varying altitudes, namely Hardwar, Rudra Prayag, Uttar Kashi and Tehri Garwal. It was observed that there is noticeable increment in temperature on all the four locations. It was surprisingly observed that the mean rainfall intensity of 30 minutes duration has increased at the rate of 0.1 mm/hours since 2000. The study shows that the combined effect of increasing temperature, rainfall, runoff and urbanization at the mid-Himalayan region is causing an increase in various climatic disasters and changes in agriculture patterns. A noticeable change in cropping patterns, crop productivity and land use change was observed. Appropriate adaptation and mitigation strategies are necessary to ensure that sustainable and climate-resilient agriculture. Appropriate information is necessary for farmers, as well as planners and decision makers for developing, disseminating and adopting climate-smart technologies.

Keywords: Climate variability, agriculture, land use, mitigation strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
166 Earthquake Vulnerability and Repair Cost Estimation of Masonry Buildings in the Old City Center of Annaba, Algeria

Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente

Abstract:

The seismic risk mitigation from the perspective of the old buildings stock is truly essential in Algerian urban areas, particularly those located in seismic prone regions, such as Annaba city, and which the old buildings present high levels of degradation associated with no seismic strengthening and/or rehabilitation concerns. In this sense, the present paper approaches the issue of the seismic vulnerability assessment of old masonry building stocks through the adaptation of a simplified methodology developed for a European context area similar to that of Annaba city, Algeria. Therefore, this method is used for the first level of seismic vulnerability assessment of the masonry buildings stock of the old city center of Annaba. This methodology is based on a vulnerability index that is suitable for the evaluation of damage and for the creation of large-scale loss scenarios. Over 380 buildings were evaluated in accordance with the referred methodology and the results obtained were then integrated into a Geographical Information System (GIS) tool. Such results can be used by the Annaba city council for supporting management decisions, based on a global view of the site under analysis, which led to more accurate and faster decisions for the risk mitigation strategies and rehabilitation plans.

Keywords: Damage scenarios, masonry buildings, old city center, seismic vulnerability, vulnerability index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
165 Analysis of a Secondary Autothermal Reformer Using a Thermodynamic POX Model

Authors: Akbar Zamaniyan, Alireza Behroozsarand, Hadi Ebrahimi

Abstract:

Partial oxidation (POX) of light hydrocarbons (e.g. methane) is occurred in the first part of the autothermal reformer (ATR). The results of the detailed modeling of the reformer based on the thermodynamic model of the POX and 1D heterogeneous catalytic model for the fixed bed section are considered here. According to the results, the overall performance of the ATR can be improved by changing the important feed parameters.

Keywords: Autothermal Reformer, Partial Oxidation, Mathematical Modeling, Process Simulation, Syngas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
164 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia

Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan

Abstract:

In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.

Keywords: Cushion coarse-grained sediments, expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
163 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals

Authors: Fahad Alhussein, Huaping Liu

Abstract:

This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.

Keywords: Correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
162 Comparison between Deterministic and Probabilistic Stability Analysis, Featuring Consequent Risk Assessment

Authors: Isabela Moreira Queiroz

Abstract:

Slope stability analyses are largely carried out by deterministic methods and evaluated through a single security factor. Although it is known that the geotechnical parameters can present great dispersal, such analyses are considered fixed and known. The probabilistic methods, in turn, incorporate the variability of input key parameters (random variables), resulting in a range of values of safety factors, thus enabling the determination of the probability of failure, which is an essential parameter in the calculation of the risk (probability multiplied by the consequence of the event). Among the probabilistic methods, there are three frequently used methods in geotechnical society: FOSM (First-Order, Second-Moment), Rosenblueth (Point Estimates) and Monte Carlo. This paper presents a comparison between the results from deterministic and probabilistic analyses (FOSM method, Monte Carlo and Rosenblueth) applied to a hypothetical slope. The end was held to evaluate the behavior of the slope and consequent risk analysis, which is used to calculate the risk and analyze their mitigation and control solutions. It can be observed that the results obtained by the three probabilistic methods were quite close. It should be noticed that the calculation of the risk makes it possible to list the priority to the implementation of mitigation measures. Therefore, it is recommended to do a good assessment of the geological-geotechnical model incorporating the uncertainty in viability, design, construction, operation and closure by means of risk management. 

Keywords: Probabilistic methods, risk assessment, risk management, slope stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
161 Application of Biogas Technology in Turkey

Authors: B. Demirel, T.T. Onay, O. Yenigün

Abstract:

The potential, opportunities and drawbacks of biogas technology use in Turkey are evaluated in this paper. Turkey is dependent on foreign sources of energy. Therefore, use of biogas technology would provide a safe way of waste disposal and recovery of renewable energy, particularly from a sustainable domestic source, which is less unlikely to be influenced by international price or political fluctuations. Use of biogas technology would especially meet the cooking, heating and electricity demand in rural areas and protect the environment, additionally creating new job opportunities and improving social-economical conditions.

Keywords: anaerobic digestion, agricultural biogas plant, biogas, biomass, methane, waste

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3347
160 Projections of Climate Change in the Rain Regime of the Ibicui River Basin

Authors: Claudineia Brazil, Elison Eduardo Bierhals, Francisco Pereira, José Leandro Néris, Matheus Rippel, Luciane Salvi

Abstract:

The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The study of precipitation regime is fundamental for the development of research in several areas. Among them are hydrology, agriculture, and electric sector. Using the climatic projections of the models belonging to the CMIP5, the main objective of the paper was to present an analysis of the impacts of climate change without rainfall in the Uruguay River basin. After an analysis of the results, it can be observed that for the future climate, there is a tendency, in relation to the present climate, for larger numbers of dry events, mainly in the winter months, changing the pluviometric regime for wet summers and drier winters. Given this projected framework, it is important to note the importance of adequate management of the existing water sources in the river basin, since the value of rainfall is reduced for the next years, it may compromise the dynamics of the ecosystems in the region. Facing climate change is fundamental issue for regions and cities all around the world. Society must improve its resilience to phenomenon impacts, and spreading the knowledge among decision makers and citizens is also essential. So, these research results can be subsidies for the decision-making in planning and management of mitigation measures and/or adaptation in south Brazil.

Keywords: Climate change, hydrological potential, precipitation, mitigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1025
159 Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems

Authors: Alexander J. Severinsky

Abstract:

Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth's surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author’s skepticism that current changes cannot be explained by a "~1 oC" global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within ± 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m2 on average over the Earth’s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m2. In 2018, these radiative forces heated the atmosphere by approximately 5.1 oC, which will create a thermal equilibrium average ground surface temperature increase of 4.6 oC to 4.8 oC by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m2 causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 oC, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 oC increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere.

Keywords: GHG radiative forces, GHG air temperature, GHG thermodynamics, GHG historical, GHG experimental, GHG radiative force on ice, GHG radiative force on plants, GHG radiative force in air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 502
158 Analysis of the Black Sea Gas Hydrates

Authors: Sukru Merey, Caglar Sinayuc

Abstract:

Gas hydrate deposits which are found in deep ocean sediments and in permafrost regions are supposed to be a fossil fuel reserve for the future. The Black Sea is also considered rich in terms of gas hydrates. It abundantly contains gas hydrates as methane (CH4~80 to 99.9%) source. In this study, by using the literature, seismic and other data of the Black Sea such as salinity, porosity of the sediments, common gas type, temperature distribution and pressure gradient, the optimum gas production method for the Black Sea gas hydrates was selected as mainly depressurization method. Numerical simulations were run to analyze gas production from gas hydrate deposited in turbidites in the Black Sea by depressurization.

Keywords: Black Sea hydrates, depressurization, turbidites, HydrateResSim.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
157 Analysis of Delays during Initial Phase of Construction Projects and Mitigation Measures

Authors: Sunaitan Al Mutairi

Abstract:

A perfect start is a key factor for project completion on time. The study examined the effects of delayed mobilization of resources during the initial phases of the project. This paper mainly highlights the identification and categorization of all delays during the initial construction phase and their root cause analysis with corrective/control measures for the Kuwait Oil Company oil and gas projects. A relatively good percentage of the delays identified during the project execution (Contract award to end of defects liability period) attributed to mobilization/preliminary activity delays. Data analysis demonstrated significant increase in average project delay during the last five years compared to the previous period. Contractors had delays/issues during the initial phase, which resulted in slippages and progressively increased, resulting in time and cost overrun. Delays/issues not mitigated on time during the initial phase had very high impact on project completion. Data analysis of the delays for the past five years was carried out using trend chart, scatter plot, process map, box plot, relative importance index and Pareto chart. Construction of any project inside the Gathering Centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. Delay affects completion of projects and compromises quality, schedule and budget of project deliverables. Works executed as per plan during the initial phase and start-up duration of the project construction activities resulted in minor slippages/delays in project completion. In addition, there was a good working environment between client and contractor resulting in better project execution and management. Mainly, the contractor was on the front foot in the execution of projects, which had minimum/no delays during the initial and construction period. Hence, having a perfect start during the initial construction phase shall have a positive influence on the project success. Our research paper studies each type of delay with some real example supported by statistic results and suggests mitigation measures. Detailed analysis carried out with all stakeholders based on impact and occurrence of delays to have a practical and effective outcome to mitigate the delays. The key to improvement is to have proper control measures and periodic evaluation/audit to ensure implementation of the mitigation measures. The focus of this research is to reduce the delays encountered during the initial construction phase of the project life cycle.

Keywords: Construction activities delays, delay analysis for construction projects, mobilization delays, oil and gas projects delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
156 Exergetic Optimization on Solid Oxide Fuel Cell Systems

Authors: George N. Prodromidis, Frank A. Coutelieris

Abstract:

Biogas can be currently considered as an alternative option for electricity production, mainly due to its high energy content (hydrocarbon-rich source), its renewable status and its relatively low utilization cost. Solid Oxide Fuel Cell (SOFC) stacks convert fuel’s chemical energy to electricity with high efficiencies and reveal significant advantages on fuel flexibility combined with lower emissions rate, especially when utilize biogas. Electricity production by biogas constitutes a composite problem which incorporates an extensive parametric analysis on numerous dynamic variables. The main scope of the presented study is to propose a detailed thermodynamic model on the optimization of SOFC-based power plants’ operation based on fundamental thermodynamics, energy and exergy balances. This model named THERMAS (THERmodynamic MAthematical Simulation model) incorporates each individual process, during electricity production, mathematically simulated for different case studies that represent real life operational conditions. Also, THERMAS offers the opportunity to choose a great variety of different values for each operational parameter individually, thus allowing for studies within unexplored and experimentally impossible operational ranges. Finally, THERMAS innovatively incorporates a specific criterion concluded by the extensive energy analysis to identify the most optimal scenario per simulated system in exergy terms. Therefore, several dynamical parameters as well as several biogas mixture compositions have been taken into account, to cover all the possible incidents. Towards the optimization process in terms of an innovative OPF (OPtimization Factor), presented here, this research study reveals that systems supplied by low methane fuels can be comparable to these supplied by pure methane. To conclude, such an innovative simulation model indicates a perspective on the optimal design of a SOFC stack based system, in the direction of the commercialization of systems utilizing biogas.

Keywords: Biogas, Exergy, Optimization, SOFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
155 Natural Flickering of Methane Diffusion Flames

Authors: K. R. V. Manikantachari, Vasudevan Raghavan, K. Srinivasan

Abstract:

Present study focuses on studying the oscillatory behavior of jet diffusion flames. At a particular jet exit velocity, the flames are seen to exhibit natural flickering. Initially the flickering process is not continuous. In this transition region as well as in the continuous flickering regime, the flickering displays multiple frequency oscillations. The response of the flame to the exit velocity profile of the burner is also studied using three types of burners. The entire range of natural flickering is investigated by capturing high speed digital images and processing them using a MATLAB code.

Keywords: Diffusion flames, Natural flickering, flickering frequency, intermittent flickering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
154 Seismic Vulnerability Assessment of Masonry Buildings in Seismic Prone Regions: The Case of Annaba City, Algeria

Authors: Allaeddine Athmani, Abdelhacine Gouasmia, Tiago Ferreira, Romeu Vicente

Abstract:

Seismic vulnerability assessment of masonry buildings is a fundamental issue even for moderate to low seismic hazard regions. This fact is even more important when dealing with old structures such as those located in Annaba city (Algeria), which the majority of dates back to the French colonial era from 1830. This category of buildings is in high risk due to their highly degradation state, heterogeneous materials and intrusive modifications to structural and non-structural elements. Furthermore, they are usually shelter a dense population, which is exposed to such risk. In order to undertake a suitable seismic risk mitigation strategies and reinforcement process for such structures, it is essential to estimate their seismic resistance capacity at a large scale. In this sense, two seismic vulnerability index methods and damage estimation have been adapted and applied to a pilot-scale building area located in the moderate seismic hazard region of Annaba city: The first one based on the EMS-98 building typologies, and the second one derived from the Italian GNDT approach. To perform this task, the authors took the advantage of an existing data survey previously performed for other purposes. The results obtained from the application of the two methods were integrated and compared using a geographic information system tool (GIS), with the ultimate goal of supporting the city council of Annaba for the implementation of risk mitigation and emergency planning strategies.

Keywords: Annaba city, EMS98 concept, GNDT method, old city center, seismic vulnerability index, unreinforced masonry buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
153 La promoted Ni/α-Al2O3 Catalysts for Syngas Methanation

Authors: Anmin Zhao, Weiyong Yingı , Haitao Zhang, Hongfang Ma, Dingye Fang

Abstract:

The Ni/α-Al2O3 catalysts with different amounts of La as promoter from 0 to 4 wt % were prepared, characterized and their catalytic activity was investigated in syngas methanation reaction. Effects of reaction temperature and lanthanum loading on carbon oxides conversion and methane selectivity were also studied. Adding certain amount of lanthanum to 10Ni /α-Al2O3 catalysts can decrease the average NiO crystallite diameter which leads to higher activity and stability while excessive addition would cause deactivation quickly. Stability on stream towards deactivation was observed up to 800 min at 500 °C, 0.1MPa and 600000 mL·g-1·h-1.

Keywords: Methanation; Nickel catalysts; Syngas methanation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3587
152 Development of the Gas Safety Management System using an Intelligent Gasmeter with Wireless ZigBee Network

Authors: Gyou-tae Park, Young-gyu Kim, Jeong-rock Kwon, Yongwoo Lee, Hiesik Kim

Abstract:

The gas safety management system using an intelligent gas meter we proposed is to monitor flow and pressure of gas, earthquake, temperature, smoke and leak of methane. Then our system takes safety measures to protect a serious risk by the result of an event, to communicate with a wall-pad including a gateway by zigbee network in buildings and to report the event to user by the safety management program in a server. Also, the inner cutoff valve of an intelligent gas meter is operated if any event occurred or abnormal at each sensor.

Keywords: micom gas-meter, gas safety, zigbee, ubiquitous

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
151 Development of an Autonomous Greenhouse Gas Monitoring System

Authors: Breda M. Kiernan, Cormac Fay, Stephen Beirne, Dermot Diamond

Abstract:

This paper describes the designs of a first and second generation autonomous gas monitoring system and the successful field trial of the final system (2nd generation). Infrared sensing technology is used to detect and measure the greenhouse gases methane (CH4) and carbon dioxide (CO2) at point sources. The ability to monitor real-time events is further enhanced through the implementation of both GSM and Bluetooth technologies to communicate these data in real-time. These systems are robust, reliable and a necessary tool where the monitoring of gas events in real-time are needed.

Keywords: Environmental monitoring, infrared sensing, autonomous system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2206
150 Eco-Roof Systems in Subtropical Climates for Sustainable Development and Mitigation of Climate Change

Authors: M. O’Driscoll, M. Anwar, M. G. Rasul

Abstract:

The benefits of eco-roofs is quite well known, however there remains very little research conducted for the implementation of eco-roofs in subtropical climates such as Australia. There are many challenges facing Australia as it moves into the future, climate change is proving to be one of the leading challenges. In order to move forward with the mitigation of climate change, the impacts of rapid urbanization need to be offset. Eco-roofs are one way to achieve this; this study presents the energy savings and environmental benefits of the implementation of eco-roofs in subtropical climates. An experimental set-up was installed at Rockhampton campus of Central Queensland University, where two shipping containers were converted into small offices, one with an eco-roof and one without. These were used for temperature, humidity and energy consumption data collection. In addition, a computational model was developed using Design Builder software (state-of-the-art building energy simulation software) for simulating energy consumption of shipping containers and environmental parameters, this was done to allow comparison between simulated and real world data. This study found that eco-roofs are very effective in subtropical climates and provide energy saving of about 13% which agrees well with simulated results. 

Keywords: Climate Change, Eco/Green roof, Energy savings, Subtropical climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
149 Integrated Modeling of Transformation of Electricity and Transportation Sectors: A Case Study of Australia

Authors: T. Aboumahboub, R. Brecha, H. B. Shrestha, U. F. Hutfilter, A. Geiges, W. Hare, M. Schaeffer, L. Welder, M. Gidden

Abstract:

The proposed stringent mitigation targets require an immediate start for a drastic transformation of the whole energy system. The current Australian energy system is mainly centralized and fossil fuel-based in most states with coal and gas-fired plants dominating the total produced electricity over the recent past. On the other hand, the country is characterized by a huge, untapped renewable potential, where wind and solar energy could play a key role in the decarbonization of the Australia’s future energy system. However, integrating high shares of such variable renewable energy sources (VRES) challenges the power system considerably due to their temporal fluctuations and geographical dispersion. This raises the concerns about flexibility gap in the system to ensure the security of supply with increasing shares of such intermittent sources. One main flexibility dimension to facilitate system integration of high shares of VRES is to increase the cross-sectoral integration through coupling of electricity to other energy sectors alongside the decarbonization of the power sector and reinforcement of the transmission grid. This paper applies a multi-sectoral energy system optimization model for Australia. We investigate the cost-optimal configuration of a renewable-based Australian energy system and its transformation pathway in line with the ambitious range of proposed climate change mitigation targets. We particularly analyse the implications of linking the electricity and transport sectors in a prospective, highly renewable Australian energy system.

Keywords: Decarbonization, energy system modeling, sector coupling, variable renewable energies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
148 Game-Theory-Based on Downlink Spectrum Allocation in Two-Tier Networks

Authors: Yu Zhang, Ye Tian, Fang Ye Yixuan Kang

Abstract:

The capacity of conventional cellular networks has reached its upper bound and it can be well handled by introducing femtocells with low-cost and easy-to-deploy. Spectrum interference issue becomes more critical in peace with the value-added multimedia services growing up increasingly in two-tier cellular networks. Spectrum allocation is one of effective methods in interference mitigation technology. This paper proposes a game-theory-based on OFDMA downlink spectrum allocation aiming at reducing co-channel interference in two-tier femtocell networks. The framework is formulated as a non-cooperative game, wherein the femto base stations are players and frequency channels available are strategies. The scheme takes full account of competitive behavior and fairness among stations. In addition, the utility function reflects the interference from the standpoint of channels essentially. This work focuses on co-channel interference and puts forward a negative logarithm interference function on distance weight ratio aiming at suppressing co-channel interference in the same layer network. This scenario is more suitable for actual network deployment and the system possesses high robustness. According to the proposed mechanism, interference exists only when players employ the same channel for data communication. This paper focuses on implementing spectrum allocation in a distributed fashion. Numerical results show that signal to interference and noise ratio can be obviously improved through the spectrum allocation scheme and the users quality of service in downlink can be satisfied. Besides, the average spectrum efficiency in cellular network can be significantly promoted as simulations results shown.

Keywords: Femtocell networks, game theory, interference mitigation, spectrum allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
147 Landfill Gas Monitoring at Borehole Wells using an Autonomous Environmental Monitoring System

Authors: Breda M. Kiernan, Stephen Beirne, Cormac Fay, Dermot Diamond

Abstract:

An autonomous environmental monitoring system (Smart Landfill) has been constructed for the quantitative measurement of the components of landfill gas found at borehole wells at the perimeter of landfill sites. The main components of landfill gas are the greenhouse gases, methane and carbon dioxide and have been monitored in the range 0-5 % volume. This monitoring system has not only been tested in the laboratory but has been deployed in multiple field trials and the data collected successfully compared with on-site monitors. This success shows the potential of this system for application in environments where reliable gas monitoring is crucial.

Keywords: Environmental monitoring, greenhouse gas, landfill gas, sensor deployment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
146 Na Promoted Ni/γ-Al2O3 Catalysts Prepared by Solution Combustion Method for Syngas Methanation

Authors: Yan Zeng, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Ni-based catalysts with different amounts of Na as promoter from 2 to 6 wt % were prepared by solution combustion method. The catalytic activity was investigated in syngas methanation reaction. Carbon oxides conversion and methane selectivity are greatly influenced by sodium loading. Adding 2 wt% Na remarkably improves catalytic activity and long-term stability, attributed to its smaller mean NiO particle size, better distribution, and milder metal-support interaction. However, excess addition of Na results in deactivation distinctly due to the blockage of active sites.

Keywords: Nickel catalysts, Syngas methanation, Sodium, Solution combustion method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4244
145 Experimental Study on Effects of Addition of Rice Husk on Coal Gasification

Authors: M. Bharath, Vasudevan Raghavan, B. V. S. S. S. Prasad, S. R. Chakravarthy

Abstract:

In this experimental study, effects of addition of rice husk on coal gasification in a bubbling fluidized bed gasifier, operating at atmospheric pressure with air as gasifying agent, are reported. Rice husks comprising of 6.5% and 13% by mass are added to coal. Results show that, when rice husk is added the methane yield increases from volumetric percentage of 0.56% (with no rice husk) to 2.77% (with 13% rice husk). CO and H2 remain almost unchanged and CO2 decreases with addition of rice husk. The calorific value of the synthetic gas is around 2.73 MJ/Nm3. All performance indices, such as cold gas efficiency and carbon conversion, increase with addition of rice husk.

Keywords: Bubbling fluidized bed reactor, coal gasification, calorific value, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
144 The Using of Mixing Amines in an Industrial Gas Sweetening Plant

Authors: B. Sohbi, M. Meakaff, M. Emtir, M. Elgarni

Abstract:

Natural gas is defined as gas obtained from a natural underground reservoir. It generally contains a large quantity of methane along with heavier hydrocarbons such as ethane, propane, isobutene, normal butane; also in the raw state it often contains a considerable amount of non hydrocarbons, such as nitrogen and the acid gases (carbon dioxide and hydrogen sulfide). The acid gases must be removed from natural gas before use. One of the processes witch are use in the industry to remove the acid gases from natural gas is the use of alkanolamine process. In this present paper, a simulation study for an industrial gas sweetening plant has been investigated. The aim of the study is to investigate the effect of using mixing amines as solvent on the gas treatment process using the software Hysys.

Keywords: Natural gas, alkanolamine process, gas sweetening plant, simulation, mixing amines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3754
143 Biogas Potentiality of Agro-wastes Jatropha Fruit Coat

Authors: M.S. Dhanya, N. Gupta, H.C. Joshi, Lata

Abstract:

The present investigation was undertaken to explore the biogas potentiality of Jatropha (Jatropha curcas, Euphorbiaceae) Fruit Coat (JFC) alone and in combination with cattle dung (CD) in various proportions at 15 per cent total solids by batch phase anaerobic digestion for a period of ten weeks HRT (Hydraulic Retention Time) under a temperature of 35°C+1°C. The maximum biogas production was noticed in Cattle dung and Jatropha Fruit Coat in 2:1 ratio with 403.84 L/kg dry matter followed by 3:1,1:2, 1:1 and 1:3 having 329.66, 219.77, 217.79, 203.64 L /kg dm respectively as compared to 178.49 L/kg dm in CD alone. The JFC alone found to produce 91 per cent of total biogas that obtained from Cattle dung. The per cent methane content of the biogas in all the treatments was found on par with Cattle dung.

Keywords: Jatropha Fruit Coat, Cattle dung, Hydraulic Retention Time, Dry matter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
142 Case Study on Innovative Aquatic-Based Bioeconomy for Chlorella sorokiniana

Authors: Iryna Atamaniuk, Hannah Boysen, Nils Wieczorek, Natalia Politaeva, Iuliia Bazarnova, Kerstin Kuchta

Abstract:

Over the last decade due to climate change and a strategy of natural resources preservation, the interest for the aquatic biomass has dramatically increased. Along with mitigation of the environmental pressure and connection of waste streams (including CO2 and heat emissions), microalgae bioeconomy can supply food, feed, as well as the pharmaceutical and power industry with number of value-added products. Furthermore, in comparison to conventional biomass, microalgae can be cultivated in wide range of conditions without compromising food and feed production, thus addressing issues associated with negative social and the environmental impacts. This paper presents the state-of-the art technology for microalgae bioeconomy from cultivation process to production of valuable components and by-streams. Microalgae Chlorella sorokiniana were cultivated in the pilot-scale innovation concept in Hamburg (Germany) using different systems such as race way pond (5000 L) and flat panel reactors (8 x 180 L). In order to achieve the optimum growth conditions along with suitable cellular composition for the further extraction of the value-added components, process parameters such as light intensity, temperature and pH are continuously being monitored. On the other hand, metabolic needs in nutrients were provided by addition of micro- and macro-nutrients into a medium to ensure autotrophic growth conditions of microalgae. The cultivation was further followed by downstream process and extraction of lipids, proteins and saccharides. Lipids extraction is conducted in repeated-batch semi-automatic mode using hot extraction method according to Randall. As solvents hexane and ethanol are used at different ratio of 9:1 and 1:9, respectively. Depending on cell disruption method along with solvents ratio, the total lipids content showed significant variations between 8.1% and 13.9 %. The highest percentage of extracted biomass was reached with a sample pretreated with microwave digestion using 90% of hexane and 10% of ethanol as solvents. Proteins content in microalgae was determined by two different methods, namely: Total Kejadahl Nitrogen (TKN), which further was converted to protein content, as well as Bradford method using Brilliant Blue G-250 dye. Obtained results, showed a good correlation between both methods with protein content being in the range of 39.8–47.1%. Characterization of neutral and acid saccharides from microalgae was conducted by phenol-sulfuric acid method at two wavelengths of 480 nm and 490 nm. The average concentration of neutral and acid saccharides under the optimal cultivation conditions was 19.5% and 26.1%, respectively. Subsequently, biomass residues are used as substrate for anaerobic digestion on the laboratory-scale. The methane concentration, which was measured on the daily bases, showed some variations for different samples after extraction steps but was in the range between 48% and 55%. CO2 which is formed during the fermentation process and after the combustion in the Combined Heat and Power unit can potentially be used within the cultivation process as a carbon source for the photoautotrophic synthesis of biomass.

Keywords: Bioeconomy, lipids, microalgae, proteins, saccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838