Search results for: M¨ossbauer spectroscopy
373 Stability Analysis and Controller Design of Further Development of MIMOS II for Space Applications with Focus on the Extended Lyapunov Method: Part I
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized M¨ossbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the M¨ossbauer spectroscopy is further developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, an additional method for analysing the stability of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.
Keywords: Controller design for MIMOS II, stability analysis, M¨ossbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, transimpedance amplifier, extended Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47372 Introduction to Electron Spectroscopy for Surfaces Characterization
Authors: Abdelkader Benzian
Abstract:
Spectroscopy is the study of the spectrum produced by the radiation-matter interaction which requires the study of electromagnetic radiation (or electrons) emitted, absorbed, or scattered by matter. Thus, the spectral analysis is using spectrometers which enables us to obtain curves that express the distribution of the energy emitted (spectrum). Analysis of emission spectra can therefore constitute several methods depending on the range of radiation energy. The most common methods used are Auger electron spectroscopy (AES) and Electron Energy Losses Spectroscopy (EELS), which allow the determination of the atomic structure on the surface. This paper focalized essentially on the Electron Energy Loss Spectroscopy.
Keywords: Dielectric, plasmon, mean free path, spectroscopy of electron energy losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769371 Basic Evaluation for Polyetherimide Membrane Using Spectroscopy Techniques
Authors: Hanan Alenezi
Abstract:
Membrane performance depends on the kind of solvent used in preparation. A membrane made by Polyetherimide (PEI) was evaluated for gas separation using X-Ray Diffraction (XRD), Scanning electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). The purity and the thickness are detected to evaluate the membrane in order to optimize PEI membrane preparation.
Keywords: Energy Dispersive X-Ray Spectroscopy, EDS, membrane, Polyetherimide, PEI, Scanning electron microscope, SEM, Solvent, X-Ray Diffraction, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897370 Study of Optical Properties of a Glutathione Capped Gold Nanoparticles Using Linker (MHDA) by Fourier Transform Infra Red Spectroscopy and Surface Enhanced Raman Scattering
Authors: A. Deręgowska, J. Depciuch, R. Wojnarowska, J. Polit, D. Broda, H. Nechai, M. Gonchar, and E. Sheregii
Abstract:
16-Mercaptohexadecanoic acid (MHDA) and tripeptide glutathione conjugated with gold nanoparticles (Au-NPs) are characterized by Fourier Transform InfaRared (FTIR) spectroscopy combined with Surface-enhanced Raman scattering (SERS) spectroscopy. Surface Plasmon Resonance (SPR) technique based on FTIR spectroscopy has become an important tool in biophysics, which is perspective for the study of organic compounds. FTIR-spectra of MHDA shows the line at 2500 cm-1 attributed to thiol group which is modified by presence of Au-NPs, suggesting the formation of bond between thiol group and gold. We also can observe the peaks originate from characteristic chemical group. A Raman spectrum of the same sample is also promising. Our preliminary experiments confirm that SERS-effect takes place for MHDA connected with Au-NPs and enable us to detected small number (less than 106 cm-2) of MHDA molecules. Combination of spectroscopy methods: FTIR and SERS – enable to study optical properties of Au- NPs and immobilized bio-molecules in context of a bio-nano-sensors.
Keywords: Glutathione; gold nanoparticles, Fourier transform infrared spectroscopy, MHDA, surface-enhanced Raman scattering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3987369 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network
Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon
Abstract:
In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are class balancing, data shuffling, and standardization, were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the sequential model and ReLU activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.
Keywords: Spectroscopy, soluble solid content, pineapple, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119368 Investigation and Identification of a Number of Precious and Semi-Precious Stones Related to Bam Historical Citadel Using Micro Raman Spectroscopy and Scanning Electron Microscopy
Authors: Nazli Darkhal
Abstract:
The use of gems and ornaments has been common in Iran since the beginning of history. The prosperity of the country, the wealth, and the interest of the people of this land in a luxurious and glorious life, combined with beauty, have always attracted the attention of Iranian people to gems and jewelry. Iranians are famous in the world for having a long history of collecting and recognizing precious stones. In this case, we can use the unique treasure of national jewelry. Raman spectroscopy method is one of the oscillating spectroscopy methods that is classified in the group of nondestructive study methods, and like other methods, in addition to several advantages, it also has disadvantages and problems. Micro Raman spectroscopy is one of the different types of Raman spectroscopy in which an optical microscope is combined with a Raman device to provide more capabilities and advantages than its original method. In this way, with the help of Raman spectroscopy and a light microscope, while observing more details from different parts of the historical sample, natural or artificial pigments can be identified in a small part of it. The EDX (Energy Dispersive X ray) electron microscope also functions as the basis for the interaction of the electron beam with the matter. The beams emitted from this interaction can be used to examine samples. In this article, in addition to introducing the micro-Raman spectroscopy method, studies have been conducted on the structure of three samples of existing stones in the historic citadel of Bam. Using this method of study on precious and semi-precious stones, in addition to requiring a short time, can provide us with complete information about the structure and theme of these samples. The results of experiments and gemology of the stones showed that the selected beads are agate and jasper, and they can be placed in the chalcedony group.
Keywords: Bam citadel, precious stones, semi-precious stones, Raman spectroscopy, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 409367 Design and Realization of an Electronic Load for a PEM Fuel Cell
Authors: Arafet Bouaicha, Hatem Allegui, Amar Rouane, El-Hassane Aglzim, Abdelkader Mami
Abstract:
In order to further understand the behavior of PEM fuel cell and optimize their performance, it is necessary to perform measurements in real time. The internal impedance measurement by electrochemical impedance spectroscopy (EIS) is of great importance. In this work, we present the impedance measurement method of a PEM fuel cell by electrochemical impedance spectroscopy method and the realization steps of electronic load for this measuring technique implementation. The theoretical results are obtained from the simulation of software PSPICE® and experimental tests are carried out using the Ballard Nexa™ PEM fuel cell system.
Keywords: Electronic load, MOS transistor, PEM fuel cell, Impedance measurement, Electrochemical Impedance Spectroscopy (EIS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368366 Identification and Classification of Plastic Resins using Near Infrared Reflectance Spectroscopy
Authors: Hamed Masoumi, Seyed Mohsen Safavi, Zahra Khani
Abstract:
In this paper, an automated system is presented for identification and separation of plastic resins based on near infrared (NIR) reflectance spectroscopy. For identification and separation among resins, a "Two-Filter" identification method is proposed that is capable to distinguish among polyethylene terephthalate (PET), high density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP) and polystyrene (PS). Through surveying effects of parameters such as surface contamination, sample thickness, label and cap existence, it was obvious that the "Two-Filter" method has a high efficiency in identification of resins. It is shown that accurate identification and separation of five major resins can be obtained through calculating the relative reflectance at two wavelengths in the NIR region.Keywords: Identification, Near Infrared, Plastic, Separation, Spectroscopy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10012365 Optimization of Laser-Induced Breakdown Spectroscopy (LIBS) for Determination of Quantum Dots (Qds) in Liquid Solutions
Authors: David Prochazka, Ľudmila Ballová, Karel Novotný, Jan Novotný, Radomír Malina, Petr Babula, Vojtěch Adam, René Kizek, Klára Procházková, Jozef Kaiser
Abstract:
Here we report on the utilization of Laser-Induced Breakdown Spectroscopy (LIBS) for determination of Quantum Dots (QDs) in liquid solution. The process of optimization of experimental conditions from choosing the carrier medium to application of colloid QDs is described. The main goal was to get the best possible signal to noise ratio. The results obtained from the measurements confirmed the capability of LIBS technique for qualitative and afterwards quantitative determination of QDs in liquid solution.Keywords: Laser-Induced Breakdown Spectroscopy, liquid analysis, nanocrystals, nanotechnology, Quantum dots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262364 STM Spectroscopy of Alloyed Nanocrystal Composite CdSxSe1-X
Authors: T. Abdallah, K. Easawi, A. Khalid, S. Negm, H. Talaat
Abstract:
Nanocrystals (NC) alloyed composite CdSxSe1-x(x=0 to 1) have been prepared using the chemical solution deposition technique. The energy band gap of these alloyed nanocrystals of approximately the same size, have been determined by scanning tunneling spectroscopy (STS) technique at room temperature. The values of the energy band gap obtained directly using STS are compared to those measured by optical spectroscopy. Increasing the molar fraction ratio x from 0 to 1 causes clearly observed increase in the band gap of the alloyed composite nanocrystal. Vegard-s law was applied to calculate the parameters of the effective mass approximation (EMA) model and the dimension obtained were compared to the values measured by STM. The good agreement of the calculated and measured values is a direct result of applying Vegard's law in the nanocomposites.Keywords: Alloy semiconductor nanocrystals, STM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466363 Study of Intergranular Corrosion in Austenitic Stainless Steels Using Electrochemical Impedance Spectroscopy
Authors: Satish Kolli, Adriana Ferancova, David Porter, Jukka Kömi
Abstract:
Electrochemical impedance spectroscopy (EIS) has been used to detect sensitization in austenitic stainless steels that are heat treated in the temperature regime 600-820 °C to produce different degrees of sensitization in the material. The tests were conducted at five different DC potentials in the transpassive region. The quantitative determination of degree of sensitization has been done using double loop electrochemical potentiokinetic reactivation tests (DL-EPR). The correlation between EIS Nyquist diagrams and DL-EPR degree of sensitization values has been studied. The EIS technique can be used as a qualitative tool in determining the intergranular corrosion in austenitic stainless steels that are heat treated at a given temperature.
Keywords: Electrochemical impedance spectroscopy, intergranular corrosion, sensitization, stainless steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869362 Polydopamine Nanoparticle as a Stable and Capacious Nano-Reservoir of Rifampicin
Authors: Tasnuva Tamanna, Aimin Yu
Abstract:
Application of nanoscience in biomedical field has come across as a new era. This study involves the synthesis of nano drug carrier with antibiotic loading. Based on the founding that polydopamine (PDA) nanoparticles could be formed via self-polymerization of dopamine at alkaline pH, one-step synthesis of rifampicin coupled polydopamine (PDA-R) nanoparticles was achieved by adding rifampicin into the dopamine solution. The successful yield of PDA nanoparticles with or without the presence of rifampicin during the polymerization process was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Drug loading was monitored by UV-vis spectroscopy and the loading efficiency of rifampicin was calculated to be 76%. Such highly capacious nano-reservoir was found very stable with little drug leakage at pH 3.
Keywords: Drug loading, nanoparticles, polydopamine, rifampicin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669361 Characterization of Lactose Consumption during the Biogas Production from Acid Whey by FT-IR Spectroscopy
Authors: K. Rugele, M. Gavare, M. Grube, K. Tihomirova, E. Skripsts, S. Larsson, J. Rubulis
Abstract:
The consumption of lactose in acid cheese whey anaerobic fermentation process under fed-batch conditions was studied. During fermentation for 100 hours the biogas production (CO2 and CH4) was analyzed online. Among the standard analyses FT-IR spectroscopy was used to follow the consumption of lactose by bacteria. The absorption bands at 990, 894 and 787 cm-1 in the 2nd derivative spectra were shown to be characteristic for lactose and were used to follow the lactose conversion. It was shown that acid cheese whey lactose was converted by bacteria in first 7 hours. In the spectra of 17, 18 and 95 hour fermentation samples lactose was not identified and these results correlated with the HPLC data.Keywords: Acid whey, anaerobic digestion, biogas, FT-IR spectroscopy, lactose consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491360 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.
Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy, micro Raman spectroscopy, UV-Visible absorption spectroscopy, Photoluminescence spectroscopy, Field Effect Scanning Electron Microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4274359 In situ Observation of the State and Stability of Hemoglobin Adsorbed onto Glass Surface by Slab Optical Waveguide (SOWG) Spectroscopy
Authors: Masayoshi Matsui, Akiko Nakahara, Akiko Takatsu, Kenji Kato, Naoki Matsuda
Abstract:
The state and stability of hemoglobin adsorbed on the glass surface was investigated using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of hemoglobin adsorbed on the glass surface was same as that of the hemoglobin in solution. This result suggests that no significant denaturation occurred by adsorption. The adsorption of hemoglobin is relatively strong that the hemoglobin molecules even remained adsorbed after rinsing the cell with buffer solution. The peak shift caused by the reduction of adsorbed hemoglobin was also observed.Keywords: hemoglobin, reduction, slab optical waveguide spectroscopy, solid/liquid interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617358 Mercury Removing Capacity of Multiwall Carbon Nanotubes as Detected by Cold Vapor Atomic Absorption Spectroscopy: Kinetic & Equilibrium Studies
Authors: Yasser M. Moustafa, Rania E. Morsi, Mohammed Fathy
Abstract:
Multiwall carbon nanotubes, prepared by chemical vapor deposition, have an average diameter of 60-100 nm as shown by High Resolution Transmittance Electron Microscope, HR-TEM. The Multiwall carbon nanotubes (MWCNTs) were further characterized using X-ray Diffraction and Raman Spectroscopy. Mercury uptake capacity of MWCNTs was studied using batch adsorption method at different concentration ranges up to 150 ppm. Mercury concentration (before and after the treatment) was measured using cold vapor atomic absorption spectroscopy. The effect of time, concentration, pH and adsorbent dose were studied. MWCNT were found to perform complete absorption in the sub-ppm concentrations (parts per billion levels) while for high concentrations, the adsorption efficiency was 92% at the optimum conditions; 0.1 g of the adsorbent at 150 ppm mercury (II) solution. The adsorption of mercury on MWCNTs was found to follow the Freundlich adsorption isotherm and the pseudo-second order kinetic model.
Keywords: Cold Vapor Atomic Absorption Spectroscopy, Hydride System, Mercury Removing, Multi Wall Carbon Nanotubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417357 Synthesis and Characterization of Gallosilicate Sodalite Containing NO2- Ions
Authors: Ashok V. Borhade, Sanjay G. Wakchaure
Abstract:
Pure phase gallosilicate nitrite sodalite has been synthesized in a single step by low temperature (373 oK) hydrothermal technique. The product obtained was characterized using a combination of techniques including X-ray powder diffraction, IR, Raman spectroscopy, SEM, MAS NMR spectroscopy as well as thermogravimetry. Sodalite with an ideal composition was obtained after synthesis at 3730K and seven days duration using alkaline medium. The structural features of the Na8[GaSiO4]6(NO2)2 sodalite were investigated by IR, MAS NMR spectroscopy of 29Si and 23Na nuclei and by Reitveld refinement of X-ray powder diffraction data. The crystal structure of this sodalite has been refined in the space group P 4 3n; with a cell parameter 8.98386Å, V= 726.9 Å, (Rwp= 0.077 and Rp=0.0537) and Si-O-Ga angle is found to be 132.920 . MAS NMR study confirms complete ordering of Si and Ga in the gallosilicate framework. The surface area of single entity with stoichiometry Na8[GaSiO4]6(NO2)2 was found to be 8.083 x10-15 cm2/g.
Keywords: Gallosilicate, hydrothermal, nitrite, Reitveldrefinement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620356 Reflectance Imaging Spectroscopy Data (Hyperspectral) for Mineral Mapping in the Orientale Basin Region on the Moon Surface
Authors: V. Sivakumar, R. Neelakantan
Abstract:
Mineral mapping on the Moon surface provides the clue to understand the origin, evolution, stratigraphy and geological history of the Moon. Recently, reflectance imaging spectroscopy plays a significant role in identifying minerals on the planetary surface in the Visible to NIR region of the electromagnetic spectrum. The Moon Mineralogy Mapper (M3) onboard Chandrayaan-1 provides unprecedented spectral data of lunar surface to study about the Moon surface. Here we used the M3 sensor data (hyperspectral imaging spectroscopy) for analysing mineralogy of Orientale basin region on the Moon surface. Reflectance spectrums were sampled from different locations of the basin and continuum was removed using ENvironment for Visualizing Images (ENVI) software. Reflectance spectra of unknown mineral composition were compared with known Reflectance Experiment Laboratory (RELAB) spectra for discriminating mineralogy. Minerals like olivine, Low-Ca Pyroxene (LCP), High-Ca Pyroxene (HCP) and plagioclase were identified. In addition to these minerals, an unusual type of spectral signature was identified, which indicates the probable Fe-Mg-spinel lithology in the basin region.Keywords: Chandrayaan-1, moon mineralogy mapper, orientale basin, moon, spectroscopy, hyperspectral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853355 Synthesis, Investigation, DFT Study and Biological Activity of Zirconium (IV) Complexes
Authors: Salem El-t. Ashoor, Ibtisam M. Ediab
Abstract:
Zirconium diamine and triamine complexes can possess biological activities. These complexes were synthesised via the reaction of equimolar quantities of 1,10-phenanthroline {NC3H3(C6H2)NC3H3} (L1) or 4-4-amino phenazone {ONC6H5(NH)CH(NH2} (L2) or diphenyl carbizon {HNNCO(NH)2(C6H5)} (L3) with a Zirconium Salt {ZrOCl2} in a 1:1 ratio to form complexes [{NC3H3(C6H2)NC3H3}ZrOCl2}] [ZrOCl2L1], [{(O2NC6H4(NH)(NH2)}ZrOCl2] [ZrOCl2L2] and [{HNNCO(NH)2(C6H5)ZrOCl2}] [ZrOCl2L3] respectively. They were characterised using Fourier Transform Infrared (FT-IR) and UV-Visible spectroscopy. Also a variable temperature study of these complexes was completed, using UV-Visible spectroscopy to observe electronic transitions under temperature control. Also a DFT study was done on these complexes via the information from FT-IR and UV-Visible spectroscopy.
These complexes were found to show different inhibition to the growth of bacterial strains of Bacillus spp. & Klebsiella spp. & E. coli & Proteus spp. & Pseudomona spp. at different concentrations (0.001, 0.2 and 1M). For better understanding these complexes were examined by using a Density Functional Theory (DFT) calculation.
Keywords: (1:10-phenanthroline) (L1), 4-4-amino phenazone (L2), diphenyl carbizon (L3), DFT study, antibacterial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860354 Global and Local Structure of Supported Pd Catalysts
Authors: V. Rednic, N. Aldea, P. Marginean, D. Macovei, C. M. Teodorescu, E. Dorolti, F. Matei
Abstract:
The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.Keywords: metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorption spectroscopy, X-raydiffraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534353 Vibratinal Spectroscopic Identification of Beta-Carotene in Usnic Acid and PAHs as a Potential Martian Analogue
Authors: A. I. Alajtal, H. G. M. Edwards, M. A. Elbagermi
Abstract:
Raman spectroscopy is currently a part of the instrumentation suite of the ESA ExoMars mission for the remote detection of life signatures in the Martian surface and subsurface. Terrestrial analogues of Martian sites have been identified and the biogeological modifications incurred as a result of extremophilic activity have been studied. Analytical instrumentation protocols for the unequivocal detection of biomarkers in suitable geological matrices are critical for future unmanned explorations, including the forthcoming ESA ExoMars mission to search for life on Mars scheduled for 2018 and Raman spectroscopy is currently a part of the Pasteur instrumentation suite of this mission. Here, Raman spectroscopy using 785nm excitation was evaluated for determining various concentrations of beta-carotene in admixture with polyaromatic hydrocarbons and usnic acid have been investigated by Raman microspectrometry to determine the lowest levels detectable in simulation of their potential identification remotely in geobiological conditions in Martian scenarios. Information from this study will be important for the development of a miniaturized Raman instrument for targetting Martian sites where the biosignatures of relict or extant life could remain in the geological record.
Keywords: Raman spectroscopy, Mars-analog, Beta-carotene, PAHs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199352 Study of the Azo Hydrazone Tautomerism in the 4-(9-Anthrylazo) Phenol
Authors: Ramadan Ali Bawa, Ebtisam Mohammed Alzaraide
Abstract:
The spectroscopic study on 4-(9-anthrylazo) phenol has revealed that the azo dye under study exists in two tautomeric forms which are azo phenol and hydrazo keto forms in ratio of almost (1:1). The azo hydrazone tautomerism was confirmed by the use of IR spectroscopy and HNMR in which the characteristic absorption bands and chemical shifts for both tautomers were assigned.
Keywords: Spectroscopic, tautomeric forms, azo hydrazone tautomerism, IR spectroscopy, HNMR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842351 Efficient Preparation and Characterization of Carbohydrate Based Monomers. D-mannose Derivatives
Authors: L. M. Stefan, A. M. Pana, M. Silion, M. Balan, G. Bandur, L. M. Rusnac
Abstract:
The field of polymeric biomaterials is very important from the socio-economical viewpoint. Synthetic carbohydrate polymers are being increasingly investigated as biodegradable, biocompatible and biorenewable materials. The aim of this study was to synthesize and characterize some derivatives based on D-mannose. D-mannose was chemically modified to obtain 1-O-allyl-2,3:5,6-di- O-isopropylidene-D-mannofuranose and 1-O-(2-,3--epoxy-propyl)- 2,3:5,6-di-O-isopropylidene-D-mannofuranose. The chemical structure of the resulting compounds was characterized by FT-IR and NMR spectroscopy, and by HPLC-MS.Keywords: D-mannose, biopolymers , spectroscopy, synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205350 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy
Authors: Isao Tomita
Abstract:
The detection of environmental gases, 12CO2, 13CO2, and CH4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO2 of a 3-% CO2 gas at 2 μm with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO2 peaks. In addition, the detection of 12CO2 peaks of a 385-ppm (0.0385-%) CO2 gas in the air is made at 2 μm with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH4 in a small area are attempted. For a 100-% CH4 gas trapped in a ∼ 1 mm3 glass container, the absorption peaks of CH4 are obtained at 1.65 μm with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.
Keywords: Environmental Gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746349 Production of As Isotopes in the Interaction of natGe with 14-30 MeV Protons
Authors: Yong H. Chung, Eun J. Han, Seil Lee, Sun Y. Park, Eun H. Yoon, Eun J. Cho, Jang H. Lee, Young J. Chu, Jang H. Ha, Jongseo Chai, Yu S. Kim, Min Y. Lee, Hyeyoung Lee
Abstract:
Cross sections of As radionuclides in the interaction of natGe with 14-30 MeV protons have been deduced by off-line y-ray spectroscopy to find optimal reaction channels leading to radiotracers for positron emission tomography. The experimental results were compared with the previous results and those estimated by the compound nucleus reaction model.
Keywords: Compound nucleus reaction model, off-line g-ray spectroscopy, radionuclide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538348 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags
Authors: Elias Akoury
Abstract:
Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.
Keywords: Lanthanide Tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987347 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy
Authors: K. Petcharaporn, S. Kumchoo
Abstract:
The acidity (citric acid) is the one of chemical content that can be refer to the internal quality and it’s a maturity index of tomato, The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR) spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomato.
Keywords: Tomato, quality, prediction, transmittance, titratable acidity, citric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699346 Silver Nanoparticles-Enhanced Luminescence Spectra of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks
Abstract:
Metal-enhanced Luminescence of silicon nanocrystals (SiNCs) was determined using two different particle sizes of silver nanoparticles (AgNPs). SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. AgNPs were synthesized using photochemical reduction of AgNO3 with sodium dodecyl sulphate (SDS). The enhanced luminescence of SiNCs by AgNPs was evaluated by confocal Raman microspectroscopy. Enhancement up to x9 and x3 times were observed for SiNCs that mixed with AgNPs which have an average particle size of 100 nm and 30 nm, respectively. Silver NPs-enhanced luminescence of SiNCs occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs.
Keywords: Luminescence, Silicon Nanocrystals, Silver Nanoparticles, Surface Enhanced Raman Spectroscopy (SERS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2819345 Electrical Characteristics of Biomodified Electrodes using Nonfaradaic Electrochemical Impedance Spectroscopy
Authors: Yusmeeraz Yusof, Yoshiyuki Yanagimoto, Shigeyasu Uno, Kazuo Nakazato
Abstract:
We demonstrate a nonfaradaic electrochemical impedance spectroscopy measurement of biochemically modified gold plated electrodes using a two-electrode system. The absence of any redox indicator in the impedance measurements provide more precise and accurate characterization of the measured bioanalyte at molecular resolution. An equivalent electrical circuit of the electrodeelectrolyte interface was deduced from the observed impedance data of saline solution at low and high concentrations. The detection of biomolecular interactions was fundamentally correlated to electrical double-layer variation at modified interface. The investigations were done using 20mer deoxyribonucleic acid (DNA) strands without any label. Surface modification was performed by creating mixed monolayer of the thiol-modified single-stranded DNA and a spacer thiol (mercaptohexanol) by a two-step self-assembly method. The results clearly distinguish between the noncomplementary and complementary hybridization of DNA, at low frequency region below several hundreds Hertz.
Keywords: Biosensor, electrical double-layer, impedance spectroscopy, label free DNA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3086344 A Structural and Magnetic Investigation of the Inversion Degree in Spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 Ferrites Prepared by Soft Mechanochemical Synthesis
Authors: Z. Ž. Lazarević, D. L. Sekulić, V. N. Ivanovski, N. Ž. Romčević
Abstract:
NiFe2O4 (nickel ferrite), ZnFe2O4 (zinc ferrite) and Ni0.5Zn0.5Fe2O4 (nickel-zinc ferrite) were prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2/Fe(OH)3, Zn(OH)2/Fe(OH)3 and Ni(OH)2/Zn(OH)2/Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 25 h, 18 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase ferrite samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.Keywords: Ferrites, Raman spectroscopy, IR spectroscopy, Mössbauer measurements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988