Search results for: Linear mixed model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9000

Search results for: Linear mixed model

9000 An Estimation of Variance Components in Linear Mixed Model

Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian

Abstract:

In this paper, a linear mixed model which has two random effects is broken up into two models. This thesis gets the parameter estimation of the original model and an estimation’s statistical qualities based on these two models. Then many important properties are given by comparing this estimation with other general estimations. At the same time, this paper proves the analysis of variance estimate (ANOVAE) about σ2 of the original model is equal to the least-squares estimation (LSE) about σ2 of these two models. Finally, it also proves that this estimation is better than ANOVAE under Stein function and special condition in some degree.

Keywords: Linear mixed model, Random effects, Parameter estimation, Stein function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
8999 A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem

Authors: Mohsen Ziaee

Abstract:

In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.

Keywords: Scheduling, flexible job shop, makespan, mixed integer linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
8998 Spatial Time Series Models for Rice and Cassava Yields Based On Bayesian Linear Mixed Models

Authors: Panudet Saengseedam, Nanthachai Kantanantha

Abstract:

This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.

Keywords: Bayesian method, Linear mixed model, Multivariate conditional autoregressive model, Spatial time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
8997 Development of a Comprehensive Electricity Generation Simulation Model Using a Mixed Integer Programming Approach

Authors: Erik Delarue, David Bekaert, Ronnie Belmans, William D'haeseleer

Abstract:

This paper presents the development of an electricity simulation model taking into account electrical network constraints, applied on the Belgian power system. The base of the model is optimizing an extensive Unit Commitment (UC) problem through the use of Mixed Integer Linear Programming (MILP). Electrical constraints are incorporated through the implementation of a DC load flow. The model encloses the Belgian power system in a 220 – 380 kV high voltage network (i.e., 93 power plants and 106 nodes). The model features the use of pumping storage facilities as well as the inclusion of spinning reserves in a single optimization process. Solution times of the model stay below reasonable values.

Keywords: Electricity generation modeling, Unit Commitment(UC), Mixed Integer Linear Programming (MILP), DC load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
8996 Optimal Planning of Waste-to-Energy through Mixed Integer Linear Programming

Authors: S. T. Tan, H. Hashim, W. S. Ho, C. T. Lee

Abstract:

Rapid economic development and population growth in Malaysia had accelerated the generation of solid waste. This issue gives pressure for effective management of municipal solid waste (MSW) to take place in Malaysia due to the increased cost of landfill. This paper discusses optimal planning of waste-to-energy (WTE) using a combinatorial simulation and optimization model through mixed integer linear programming (MILP) approach. The proposed multi-period model is tested in Iskandar Malaysia (IM) as case study for a period of 12 years (2011 -2025) to illustrate the economic potential and tradeoffs involved in this study. In this paper, 3 scenarios have been used to demonstrate the applicability of the model: (1) Incineration scenario (2) Landfill scenario (3) Optimal scenario. The model revealed that the minimum cost of electricity generation from 9,995,855 tonnes of MSW is estimated as USD 387million with a total electricity generation of 50MW /yr in the optimal scenario.

Keywords: Mixed Integer Linear Programming (MILP), optimization, solid waste management (SWM), Waste-to-energy (WTE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988
8995 Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model

Authors: Pitsanu Tongkhow, Pichet Jiraprasertwong

Abstract:

This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6.

Keywords: Defective autoparts products, Bayesian framework, Generalized linear mixed model (GLMM), Risk factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1912
8994 Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices

Authors: Li Jiang, Baoguang Tian

Abstract:

In this paper, we present the preconditioned mixed-type splitting iterative method for solving the linear systems, Ax = b, where A is a Z-matrix. And we give some comparison theorems to show that the convergence rate of the preconditioned mixed-type splitting iterative method is faster than that of the mixed-type splitting iterative method. Finally, we give a numerical example to illustrate our results.

Keywords: Z-matrix, mixed-type splitting iterative method, precondition, comparison theorem, linear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
8993 Optimal Production Planning in Aromatic Coconuts Supply Chain Based On Mixed-Integer Linear Programming

Authors: Chaimongkol Limpianchob

Abstract:

This work addresses the problem of production planning that arises in the production of aromatic coconuts from Samudsakhorn province in Thailand. The planning involves the forwarding of aromatic coconuts from the harvest areas to the factory, which is classified into two groups; self-owned areas and contracted areas, the decisions of aromatic coconuts flow in the plant, and addressing a question of which warehouse will be in use. The problem is formulated as a mixed-integer linear programming model within supply chain management framework. The objective function seeks to minimize the total cost including the harvesting, labor and inventory costs. Constraints on the system include the production activities in the company and demand requirements. Numerical results are presented to demonstrate the feasibility of coconuts supply chain model compared with base case.

Keywords: Aromatic coconut, supply chain management, production planning, mixed-integer linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2760
8992 A Comparison of the Sum of Squares in Linear and Partial Linear Regression Models

Authors: Dursun Aydın

Abstract:

In this paper, estimation of the linear regression model is made by ordinary least squares method and the partially linear regression model is estimated by penalized least squares method using smoothing spline. Then, it is investigated that differences and similarity in the sum of squares related for linear regression and partial linear regression models (semi-parametric regression models). It is denoted that the sum of squares in linear regression is reduced to sum of squares in partial linear regression models. Furthermore, we indicated that various sums of squares in the linear regression are similar to different deviance statements in partial linear regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the partial linear regression model. For this aim, it is made two different applications. A simulated and a real data set are considered to prove the claim mentioned here. In this way, this study is supported with a simulation and a real data example.

Keywords: Partial Linear Regression Model, Linear RegressionModel, Residuals, Deviance, Smoothing Spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873
8991 Development of Admire Longitudinal Quasi-Linear Model by using State Transformation Approach

Authors: Jianqiao. Yu, Jianbo. Wang, Xinzhen. He

Abstract:

This paper presents a longitudinal quasi-linear model for the ADMIRE model. The ADMIRE model is a nonlinear model of aircraft flying in the condition of high angle of attack. So it can-t be considered to be a linear system approximately. In this paper, for getting the longitudinal quasi-linear model of the ADMIRE, a state transformation based on differentiable functions of the nonscheduling states and control inputs is performed, with the goal of removing any nonlinear terms not dependent on the scheduling parameter. Since it needn-t linear approximation and can obtain the exact transformations of the nonlinear states, the above-mentioned approach is thought to be appropriate to establish the mathematical model of ADMIRE. To verify this conclusion, simulation experiments are done. And the result shows that this quasi-linear model is accurate enough.

Keywords: quasi-linear model, simulation, state transformation approach, the ADMIRE model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
8990 A Model for Optimal Design of Mixed Renewable Warranty Policy for Non-Repairable Weibull Life Products under Conflict between Customer and Manufacturer Interests

Authors: Saleem Z. Ramadan

Abstract:

A model is presented to find the optimal design of the mixed renewable warranty policy for non-repairable Weibull life products. The optimal design considers the conflict of interests between the customer and the manufacturer: the customer interests are longer full rebate coverage period and longer total warranty coverage period, the manufacturer interests are lower warranty cost and lower risk. The design factors are full rebate and total warranty coverage periods. Results showed that mixed policy is better than full rebate policy in terms of risk and total warranty coverage period in all of the three bathtub regions. In addition, results showed that linear policy is better than mixed policy in infant mortality and constant failure regions while the mixed policy is better than linear policy in ageing region of the model. Furthermore, the results showed that using burn-in period for infant mortality products reduces warranty cost and risk.

Keywords: Reliability, Mixed warranty policy, Optimization, Weibull Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
8989 Optimization of Petroleum Refinery Configuration Design with Logic Propositions

Authors: Cheng Seong Khor, Xiao Qi Yeoh

Abstract:

This work concerns the topological optimization problem for determining the optimal petroleum refinery configuration. We are interested in further investigating and hopefully advancing the existing optimization approaches and strategies employing logic propositions to conceptual process synthesis problems. In particular, we seek to contribute to this increasingly exciting area of chemical process modeling by addressing the following potentially important issues: (a) how the formulation of design specifications in a mixed-logical-and-integer optimization model can be employed in a synthesis problem to enrich the problem representation by incorporating past design experience, engineering knowledge, and heuristics; and (b) how structural specifications on the interconnectivity relationships by space (states) and by function (tasks) in a superstructure should be properly formulated within a mixed-integer linear programming (MILP) model. The proposed modeling technique is illustrated on a case study involving the alternative processing routes of naphtha, in which significant improvement in the solution quality is obtained.

Keywords: Mixed-integer linear programming (MILP), petroleum refinery, process synthesis, superstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
8988 The Relative Efficiency of Parameter Estimation in Linear Weighted Regression

Authors: Baoguang Tian, Nan Chen

Abstract:

A new relative efficiency in linear model in reference is instructed into the linear weighted regression, and its upper and lower bound are proposed. In the linear weighted regression model, for the best linear unbiased estimation of mean matrix respect to the least-squares estimation, two new relative efficiencies are given, and their upper and lower bounds are also studied.

Keywords: Linear weighted regression, Relative efficiency, Mean matrix, Trace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
8987 Validity Domains of Beams Behavioural Models: Efficiency and Reduction with Artificial Neural Networks

Authors: Keny Ordaz-Hernandez, Xavier Fischer, Fouad Bennis

Abstract:

In a particular case of behavioural model reduction by ANNs, a validity domain shortening has been found. In mechanics, as in other domains, the notion of validity domain allows the engineer to choose a valid model for a particular analysis or simulation. In the study of mechanical behaviour for a cantilever beam (using linear and non-linear models), Multi-Layer Perceptron (MLP) Backpropagation (BP) networks have been applied as model reduction technique. This reduced model is constructed to be more efficient than the non-reduced model. Within a less extended domain, the ANN reduced model estimates correctly the non-linear response, with a lower computational cost. It has been found that the neural network model is not able to approximate the linear behaviour while it does approximate the non-linear behaviour very well. The details of the case are provided with an example of the cantilever beam behaviour modelling.

Keywords: artificial neural network, validity domain, cantileverbeam, non-linear behaviour, model reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
8986 Linear Programming Application in Unit Commitment of Wind Farms with Considering Uncertainties

Authors: M. Esmaeeli Shahrakht, A. Kazemi

Abstract:

Due to uncertainty of wind velocity, wind power generators don’t have deterministic output power. Utilizing wind power generation and thermal power plants together create new concerns for operation engineers of power systems. In this paper, a model is presented to implement the uncertainty of load and generated wind power which can be utilized in power system operation planning. Stochastic behavior of parameters is simulated by generating scenarios that can be solved by deterministic method. A mixed-integer linear programming method is used for solving deterministic generation scheduling problem. The proposed approach is applied to a 12-unit test system including 10 thermal units and 2 wind farms. The results show affectivity of piecewise linear model in unit commitment problems. Also using linear programming causes a considerable reduction in calculation times and guarantees convergence to the global optimum. Neglecting the uncertainty of wind velocity causes higher cost assessment of generation scheduling.

Keywords: Load uncertainty, linear programming, scenario generation, unit commitment, wind farm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2938
8985 Some Results on New Preconditioned Generalized Mixed-Type Splitting Iterative Methods

Authors: Guangbin Wang, Fuping Tan, Deyu Sun

Abstract:

In this paper, we present new preconditioned generalized mixed-type splitting (GMTS) methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GMTS methods converge faster than the GMTS method whenever the GMTS method is convergent. Finally, we give a numerical example to confirm our theoretical results.

Keywords: Preconditioned, GMTS method, linear system, convergence, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
8984 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems

Authors: S. Panda, J. S. Yadav, N. P. Patidar, C. Ardil

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Order Reduction, Stability, Transfer Function, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
8983 Low-Level Modeling for Optimal Train Routing and Scheduling in Busy Railway Stations

Authors: Quoc Khanh Dang, Thomas Bourdeaud’huy, Khaled Mesghouni, Armand Toguy´eni

Abstract:

This paper studies a train routing and scheduling problem for busy railway stations. Our objective is to allow trains to be routed in dense areas that are reaching saturation. Unlike traditional methods that allocate all resources to setup a route for a train and until the route is freed, our work focuses on the use of resources as trains progress through the railway node. This technique allows a larger number of trains to be routed simultaneously in a railway node and thus reduces their current saturation. To deal with this problem, this study proposes an abstract model and a mixed-integer linear programming formulation to solve it. The applicability of our method is illustrated on a didactic example.

Keywords: Busy railway stations, mixed-integer linear programming, offline railway station management, train platforming, train routing, train scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
8982 Relationship between Sums of Squares in Linear Regression and Semi-parametric Regression

Authors: Dursun Aydın, Bilgin Senel

Abstract:

In this paper, the sum of squares in linear regression is reduced to sum of squares in semi-parametric regression. We indicated that different sums of squares in the linear regression are similar to various deviance statements in semi-parametric regression. In addition to, coefficient of the determination derived in linear regression model is easily generalized to coefficient of the determination of the semi-parametric regression model. Then, it is made an application in order to support the theory of the linear regression and semi-parametric regression. In this way, study is supported with a simulated data example.

Keywords: Semi-parametric regression, Penalized LeastSquares, Residuals, Deviance, Smoothing Spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
8981 A New Approach for Classifying Large Number of Mixed Variables

Authors: Hashibah Hamid

Abstract:

The issue of classifying objects into one of predefined groups when the measured variables are mixed with different types of variables has been part of interest among statisticians in many years. Some methods for dealing with such situation have been introduced that include parametric, semi-parametric and nonparametric approaches. This paper attempts to discuss on a problem in classifying a data when the number of measured mixed variables is larger than the size of the sample. A propose idea that integrates a dimensionality reduction technique via principal component analysis and a discriminant function based on the location model is discussed. The study aims in offering practitioners another potential tool in a classification problem that is possible to be considered when the observed variables are mixed and too large.

Keywords: classification, location model, mixed variables, principal component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
8980 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities

Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper

Abstract:

In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.

Keywords: Linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
8979 Design of Digital IIR filters with the Advantages of Model Order Reduction Technique

Authors: K.Ramesh, A.Nirmalkumar, G.Gurusamy

Abstract:

In this paper, a new model order reduction phenomenon is introduced at the design stage of linear phase digital IIR filter. The complexity of a system can be reduced by adopting the model order reduction method in their design. In this paper a mixed method of model order reduction is proposed for linear IIR filter. The proposed method employs the advantages of factor division technique to derive the reduced order denominator polynomial and the reduced order numerator is obtained based on the resultant denominator polynomial. The order reduction technique is used to reduce the delay units at the design stage of IIR filter. The validity of the proposed method is illustrated with design example in frequency domain and stability is also examined with help of nyquist plot.

Keywords: Error index (J), Factor division method, IIR filter, Nyquist plot, Order reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
8978 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks

Authors: Yuichi Masukake, Yoshihisa Ishida

Abstract:

In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.

Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
8977 The New Relative Efficiency Based on the Least Eigenvalue in Generalized Linear Model

Authors: Chao Yuan, Bao Guang Tian

Abstract:

A new relative efficiency is defined as LSE and BLUE in the generalized linear model. The relative efficiency is based on the ratio of the least eigenvalues. In this paper, we discuss about its lower bound and the relationship between it and generalized relative coefficient. Finally, this paper proves that the new estimation is better under Stein function and special condition in some degree.

Keywords: Generalized linear model, generalized relative coefficient, least eigenvalue, relative efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
8976 Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians

Authors: Aly Farag, Ayman El-Baz, Refaat Mohamed

Abstract:

In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.

Keywords: Logistic regression model, Expectationmaximization, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
8975 Determining Optimum Time Multiplier Setting of Overcurrent Relays Using Mixed Integer Linear Programming

Authors: P. N. Korde, P. P. Bedekar

Abstract:

The time coordination of overcurrent relays (OCR) in a power distribution network is of great importance, as it reduces the power outages by avoiding the mal-operation of the backup relays. For this, the optimum value of the time multiplier setting (TMS) of OCRs should be chosen. The problem of determining the optimum value of TMS of OCRs in power distribution networks is formulated as a constrained optimization problem. The objective is to find the optimum value of TMS of OCRs to minimize the time of operation of relays under the constraint of maintaining the coordination of relays. A power distribution network can have a combination of numerical and electromechanical relays. The TMS of numerical relays can be set to any real value (which satisfies the constraints of the problem), whereas the TMS of electromechanical relays can be set in fixed step (0 to 1 in steps of 0.05). The main contribution of this paper is a formulation of the problem as a mixed-integer linear programming (MILP) problem and application of Gomory's cutting plane method to find the optimum value of TMS of OCRs. The TMS of electromechanical relays are taken as integers in the range 1 to 20 in the step of 1, and these values are mapped to 0.05 to 1 in the step of 0.05. The results obtained are compared with those obtained using a simplex method and its variants. It has been shown that the mixed-integer linear programming method outperforms the simplex method (and its variants) in the case of a system having a combination of numerical and electromechanical relays.

Keywords: Backup protection, constrained optimization, Gomory's cutting plane method, mixed-integer linear programming, overcurrent relay coordination, simplex method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
8974 Pure and Mixed Nash Equilibria Domain of a Discrete Game Model with Dichotomous Strategy Space

Authors: A. S. Mousa, F. Shoman

Abstract:

We present a discrete game theoretical model with homogeneous individuals who make simultaneous decisions. In this model the strategy space of all individuals is a discrete and dichotomous set which consists of two strategies. We fully characterize the coherent, split and mixed strategies that form Nash equilibria and we determine the corresponding Nash domains for all individuals. We find all strategic thresholds in which individuals can change their mind if small perturbations in the parameters of the model occurs.

Keywords: Coherent strategy, split strategy, pure strategy, mixed strategy, Nash Equilibrium, game theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715
8973 Mixed Model Assembly Line Sequencing In Make to Order System with Available to Promise Consideration

Authors: N. Manavizadeh, A. Dehghani, M. Rabbani

Abstract:

Mixed model assembly lines (MMAL) are a type of production line where a variety of product models similar in product characteristics are assembled. The effective design of these lines requires that schedule for assembling the different products is determined. In this paper we tried to fit the sequencing problem with the main characteristics of make to order (MTO) environment. The problem solved in this paper is a multiple objective sequencing problem in mixed model assembly lines sequencing using weighted Sum Method (WSM) using GAMS software for small problem and an effective GA for large scale problems because of the nature of NP-hardness of our problem and vast time consume to find the optimum solution in large problems. In this problem three practically important objectives are minimizing: total utility work, keeping a constant production rate variation, and minimizing earliness and tardiness cost which consider the priority of each customer and different due date which is a real situation in mixed model assembly lines and it is the first time we consider different attribute to prioritize the customers which help the company to reduce the cost of earliness and tardiness. This mechanism is a way to apply an advance available to promise (ATP) in mixed model assembly line sequencing which is the main contribution of this paper.

Keywords: Available to promise, Earliness & Tardiness, GA, Mixed-Model assembly line Sequencing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
8972 Magnetohydrodynamic Maxwell Nanofluids Flow over a Stretching Surface through a Porous Medium: Effects of Non-Linear Thermal Radiation, Convective Boundary Conditions and Heat Generation/Absorption

Authors: Sameh E. Ahmed, Ramadan A. Mohamed, Abd Elraheem M. Aly, Mahmoud S. Soliman

Abstract:

In this paper, an enhancement of the heat transfer using non-Newtonian nanofluids by magnetohydrodynamic (MHD) mixed convection along stretching sheets embedded in an isotropic porous medium is investigated. Case of the Maxwell nanofluids is studied using the two phase mathematical model of nanofluids and the Darcy model is applied for the porous medium. Important effects are taken into account, namely, non-linear thermal radiation, convective boundary conditions, electromagnetic force and presence of the heat source/sink. Suitable similarity transformations are used to convert the governing equations to a system of ordinary differential equations then it is solved numerically using a fourth order Runge-Kutta method with shooting technique. The main results of the study revealed that the velocity profiles are decreasing functions of the Darcy number, the Deborah number and the magnetic field parameter. Also, the increase in the non-linear radiation parameters causes an enhancement in the local Nusselt number.

Keywords: MHD, nanofluids, stretching surface, non-linear thermal radiation, convective condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
8971 A Scatter Search and Help Policies Approaches for a New Mixed Model Assembly Lines Sequencing Problem

Authors: N. Manavizadeh , M. Rabbani , H. Sotudian , F. Jolai

Abstract:

Mixed Model Production is the practice of assembling several distinct and different models of a product on the same assembly line without changeovers and then sequencing those models in a way that smoothes the demand for upstream components. In this paper, we consider an objective function which minimizes total stoppage time and total idle time and it is presented sequence dependent set up time. Many studies have been done on the mixed model assembly lines. But in this paper we specifically focused on reducing the idle times. This is possible through various help policies. For improving the solutions, some cases developed and about 40 tests problem was considered. We use scatter search for optimization and for showing the efficiency of our algorithm, experimental results shows behavior of method. Scatter search and help policies can produce high quality answers, so it has been used in this paper.

Keywords: mixed model assembly lines, Scatter search, help policies, idle time, Stoppage time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491