Search results for: Linear stability analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10527

Search results for: Linear stability analysis

10287 Mean Square Exponential Synchronization of Stochastic Neutral Type Chaotic Neural Networks with Mixed Delay

Authors: Zixin Liu, Huawei Yang, Fangwei Chen

Abstract:

This paper studies the mean square exponential synchronization problem of a class of stochastic neutral type chaotic neural networks with mixed delay. On the Basis of Lyapunov stability theory, some sufficient conditions ensuring the mean square exponential synchronization of two identical chaotic neural networks are obtained by using stochastic analysis and inequality technique. These conditions are expressed in the form of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using Matlab LMI Toolbox. The feedback controller used in this paper is more general than those used in previous literatures. One simulation example is presented to demonstrate the effectiveness of the derived results.

Keywords: Exponential synchronization, stochastic analysis, chaotic neural networks, neutral type system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
10286 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

Authors: Daniele Losanno, Giorgio Serino

Abstract:

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Keywords: Brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
10285 Determination of Geometric Dimensions of a Double Sided Linear Switched Reluctance Motor

Authors: Dursun M., Koc F., Ozbay H.

Abstract:

In this study, a double-sided linear switched reluctance motor (LSRM) drive was investigated as an alternative actuator for vertical linear transportation applications such as a linear elevator door, hospital and subway doors which move linearly and where accurate position control and rapid response is requested. A prototype sliding elevator door that is focused on a home elevator with LSRMs is designed. The motor has 6/4 poles, 3 phases, 8A, 24V, 250 W and 250 N pull forces. Air gap between rotor and translator poles of the designed motor and phase coil-s ideal inductance profile are obtained in compliance with the geometric dimensions. Operation and switching sections as motor and generator has been determined from the inductance profile.

Keywords: Linear switched reluctance motor, sliding door, elevator door, linear motor design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
10284 Evaluation of Droplet Sizes from Video Images for Metal Working Fluids

Authors: R. Hacıoğlu, A. Genç, B. Bakırcı

Abstract:

Metal working fluids were used in the preparation of oil in water emulsions. The size of oil droplets were evaluated by using the analysis of video images taken from the zeta potential measurements. The evaluated size distributions for emulsions were also tested by microscopic analysis. In addition, emulsion stabilities were discussed depending on electrolyte concentration and pH. The results showed that the stability of oil emulsions was strongly related to pH and the concentration of CaCl2. However, the same dependency was not observed for NaCl.

Keywords: Droplet size distribution, emulsion stability, o/w emulsions, video images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
10283 Economic Dispatch Fuzzy Linear Regression and Optimization

Authors: A. K. Al-Othman

Abstract:

This study presents a new approach based on Tanaka's fuzzy linear regression (FLP) algorithm to solve well-known power system economic load dispatch problem (ELD). Tanaka's fuzzy linear regression (FLP) formulation will be employed to compute the optimal solution of optimization problem after linearization. The unknowns are expressed as fuzzy numbers with a triangular membership function that has middle and spread value reflected on the unknowns. The proposed fuzzy model is formulated as a linear optimization problem, where the objective is to minimize the sum of the spread of the unknowns, subject to double inequality constraints. Linear programming technique is employed to obtain the middle and the symmetric spread for every unknown (power generation level). Simulation results of the proposed approach will be compared with those reported in literature.

Keywords: Economic Dispatch, Fuzzy Linear Regression (FLP)and Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
10282 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform

Authors: Chethana K., Guru Prasad A. S., Vikranth H. N., Varun H., Omkar S. N., Asokan S.

Abstract:

This paper describes a novel application of Fiber Braggs Grating (FBG) sensors in the assessment of human postural stability and balance on an unstable platform. In this work, FBG sensor Stability Analyzing Device (FBGSAD) is developed for measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. The studies are validated by comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer. The results obtained from the developed FBGSAD depict qualitative similarities with the data recorded by commercial accelerometer. The advantage of the FBGSAD is that it measures simultaneously plantar strain distribution and postural stability of the subject along with its inherent benefits like non-requirement of energizing voltage to the sensor, electromagnetic immunity and simple design which suits its applicability in biomechanical applications. The developed FBGSAD can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.

Keywords: Biomechanics, Fiber Bragg Gratings, Plantar Strain Measurement, Postural Stability Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
10281 Dynamical Analysis of a Harvesting Model of Phytoplankton-Zooplankton Interaction

Authors: Anuj K. Sharma, Amit Sharma, Kulbhushan Agnihotri

Abstract:

In this work, we propose and analyze a model of Phytoplankton-Zooplankton interaction with harvesting considering that some species are exploited commercially for food. Criteria for local stability, instability and global stability are derived and some threshold harvesting levels are explored to maintain the population at an appropriate equilibrium level even if the species are exploited continuously.Further,biological and bionomic equilibria of the system are obtained and an optimal harvesting policy is also analysed using the Pantryagin’s Maximum Principle.Finally analytical findings are also supported by some numerical simulations.

Keywords: Phytoplankton-Zooplankton, Global stability, Bionomic Equilibrium, Pontrying-Maximum Principal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
10280 On the Solution of Fully Fuzzy Linear Systems

Authors: Hsuan-Ku Liu

Abstract:

A linear system is called a fully fuzzy linear system (FFLS) if quantities in this system are all fuzzy numbers. For the FFLS, we investigate its solution and develop a new approximate method for solving the FFLS. Observing the numerical results, we find that our method is accurate than the iterative Jacobi and Gauss- Seidel methods on approximating the solution of FFLS.

Keywords: Fully fuzzy linear equations, iterative method, homotopy perturbation method, approximate solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
10279 A Study on a Research and Development Cost-Estimation Model in Korea

Authors: Babakina Alexandra, Yong Soo Kim

Abstract:

In this study, we analyzed the factors that affect research funds using linear regression analysis to increase the effectiveness of investments in national research projects. We collected 7,916 items of data on research projects that were in the process of being finished or were completed between 2010 and 2011. Data pre-processing and visualization were performed to derive statistically significant results. We identified factors that affected funding using analysis of fit distributions and estimated increasing or decreasing tendencies based on these factors.

Keywords: R&D funding, Cost estimation, Linear regression, Preliminary feasibility study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
10278 Passivity Analysis of Stochastic Neural Networks With Multiple Time Delays

Authors: Biao Qin, Jin Huang, Jiaojiao Ren, Wei Kang

Abstract:

This paper deals with the problem of passivity analysis for stochastic neural networks with leakage, discrete and distributed delays. By using delay partitioning technique, free weighting matrix method and stochastic analysis technique, several sufficient conditions for the passivity of the addressed neural networks are established in terms of linear matrix inequalities (LMIs), in which both the time-delay and its time derivative can be fully considered. A numerical example is given to show the usefulness and effectiveness of the obtained results.

Keywords: Passivity, Stochastic neural networks, Multiple time delays, Linear matrix inequalities (LMIs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
10277 Studying Frame-Resistant Steel Structures under Near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectlyplastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
10276 Dynamic Stability of Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies dynamic stability of homogeneous beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Bernoulli-Euler beam theory. Applying the Hamilton's principle, the governing dynamic equation is established. The influences of applied voltage, foundation coefficient and piezoelectric thickness on the unstable regions are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Dynamic stability, Homogeneous graded beam-Piezoelectric layer, Harmonic balance method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
10275 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: Linear low density polyethylene, nanocomposite, organoclay, plasticizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
10274 Using Finite Element Method for Determination of Poles Number in Optimal Design of Linear Motor

Authors: Abdolamir Nekoubin

Abstract:

One of Effective parameters on the performance of linear induction motors is number of poles which must be selected and optimized to increase power efficiency and motor performance significantly. In this paper a double-sided linear induction motor with different poles number by using MAXWELL3D software is designed and with finite element method is analyzed electromagnetically. Then for dynamic simulation, linear motor by using MATLAB software is simulated. The results show that by adding poles number, system time response is increased and motor after more time reaches to steady state. Also propulsion force of motor is increased.

Keywords: Linear motor, poles number, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
10273 A Soft Error Rates Evaluation Method of Combinational Logic Circuit Based on Linear Energy Transfers

Authors: Man Li, Wanting Zhou, Lei Li

Abstract:

Communication stability is the primary concern of communication satellites. Communication satellites are easily affected by particle radiation to generate single event effects (SEE), which leads to soft errors (SE) of combinational logic circuit. The existing research on soft error rates (SER) of combined logic circuit is mostly based on the assumption that the logic gates being bombarded have the same pulse width. However, in the actual radiation environment, the pulse widths of the logic gates being bombarded are different due to different linear energy transfers (LET). In order to improve the accuracy of SER evaluation model, this paper proposes a soft error rates evaluation method based on LET. In this paper, we analyze the influence of LET on the pulse width of combinational logic and establish the pulse width model based on LET. Based on this model, the error rate of test circuit ISCAS’85 is calculated. Experimental results show that this model can be used for SER evaluation.

Keywords: Communication satellite, pulse width, soft error rates, linear energy transfer, LET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 313
10272 Studying Frame-Resistant Steel Structures under near Field Ground Motion

Authors: S. A. Hashemi, A. Khoshraftar

Abstract:

This paper presents the influence of the vertical seismic component on the non-linear dynamics analysis of three different structures. The subject structures were analyzed and designed according to recent codes. This paper considers three types of buildings: 5-, 10-, and 15-story buildings. The non-linear dynamics analysis of the structures with assuming elastic-perfectly-plastic behavior was performed using RAM PERFORM-3D software; the horizontal component was taken into consideration with and without the incorporation of the corresponding vertical component. Dynamic responses obtained for the horizontal component acting alone were compared with those obtained from the simultaneous application of both seismic components. The results show that the effect of the vertical component of ground motion may increase the axial load significantly in the interior columns and, consequently, the stories. The plastic mechanisms would be changed. The P-Delta effect is expected to increase. The punching base plate shear of the columns should be considered. Moreover, the vertical component increases the input energy when the structures exhibit inelastic behavior and are taller.

Keywords: Inelastic behavior, non-linear dynamic analysis, steel structure, vertical component.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
10271 The Influence of Internal and External Damping on Turbocharger Stability

Authors: Zdeňka Rendlová

Abstract:

This paper presents the mathematical description of the high-speed rotating system taking into account the influence of internal and external damping. The mathematical model is obtained by using the finite element method. The analyzed system is an automotive turbocharger understood as a rotor-bearing system. The circular cross-section shaft is equipped with one compressor wheel, one turbine wheel and is supported by two floating ring bearings. Based on the model, the dynamical analysis of a turbocharger is performed and stability conditions are evaluated.

Keywords: External damping, internal damping, journal bearing, stability, turbocharger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
10270 Transfer Function of Piezoelectric Material

Authors: C. Worakitjaroenphon, A. Oonsivilai

Abstract:

The study of piezoelectric material in the past was in T-Domain form; however, no one has studied piezoelectric material in the S-Domain form. This paper will present the piezoelectric material in the transfer function or S-Domain model. S-Domain is a well known mathematical model, used for analyzing the stability of the material and determining the stability limits. By using S-Domain in testing stability of piezoelectric material, it will provide a new tool for the scientific world to study this material in various forms.

Keywords: Piezoelectric, Stability, S-Domain, Transfer function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3821
10269 Transient Stability Improvement in Multi-Machine System Using Power System Stabilizer (PSS) and Static Var Compensator (SVC)

Authors: Khoshnaw Khalid Hama Saleh, Ergun Ercelebi

Abstract:

Increasingly complex modern power systems require stability, especially for transient and small disturbances. Transient stability plays a major role in stability during fault and large disturbance. This paper compares a power system stabilizer (PSS) and static Var compensator (SVC) to improve damping oscillation and enhance transient stability. The effectiveness of a PSS connected to the exciter and/or governor in damping electromechanical oscillations of isolated synchronous generator was tested. The SVC device is a member of the shunt FACTS (flexible alternating current transmission system) family, utilized in power transmission systems. The designed model was tested with a multi-machine system consisting of four machines six bus, using MATLAB/SIMULINK software. The results obtained indicate that SVC solutions are better than PSS.

Keywords: FACTS, MATLAB/SIMULINK, multi-machine system, PSS, SVC, transient stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310
10268 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier

Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo

Abstract:

This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.

Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
10267 Delay-independent Stabilization of Linear Systems with Multiple Time-delays

Authors: Ping He, Heng-You Lan, Gong-Quan Tan

Abstract:

The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matrix theory. An illustrative example and the simulation result, show that the approach to linear systems with multiple time-delays is effective.

Keywords: Linear system, Delay-independent stabilization, Lyapunovfunctional, Riccati algebra matrix equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
10266 Pushover Analysis of Masonry Infilled Reinforced Concrete Frames for Performance Based Design for Near Field Earthquakes

Authors: Alok Madan, Ashok Gupta, Arshad K. Hashmi

Abstract:

Non-linear dynamic time history analysis is considered as the most advanced and comprehensive analytical method for evaluating the seismic response and performance of multi-degree-of-freedom building structures under the influence of earthquake ground motions. However, effective and accurate application of the method requires the implementation of advanced hysteretic constitutive models of the various structural components including masonry infill panels. Sophisticated computational research tools that incorporate realistic hysteresis models for non-linear dynamic time-history analysis are not popular among the professional engineers as they are not only difficult to access but also complex and time-consuming to use. In addition, commercial computer programs for structural analysis and design that are acceptable to practicing engineers do not generally integrate advanced hysteretic models which can accurately simulate the hysteresis behavior of structural elements with a realistic representation of strength degradation, stiffness deterioration, energy dissipation and ‘pinching’ under cyclic load reversals in the inelastic range of behavior. In this scenario, push-over or non-linear static analysis methods have gained significant popularity, as they can be employed to assess the seismic performance of building structures while avoiding the complexities and difficulties associated with non-linear dynamic time-history analysis. “Push-over” or non-linear static analysis offers a practical and efficient alternative to non-linear dynamic time-history analysis for rationally evaluating the seismic demands. The present paper is based on the analytical investigation of the effect of distribution of masonry infill panels over the elevation of planar masonry infilled reinforced concrete [R/C] frames on the seismic demands using the capacity spectrum procedures implementing nonlinear static analysis [pushover analysis] in conjunction with the response spectrum concept. An important objective of the present study is to numerically evaluate the adequacy of the capacity spectrum method using pushover analysis for performance based design of masonry infilled R/C frames for near-field earthquake ground motions.

Keywords: Nonlinear analysis, capacity spectrum method, response spectrum, seismic demand, near-field earthquakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
10265 Analysis of Linear Equalizers for Cooperative Multi-User MIMO Based Reporting System

Authors: S. Hariharan, P. Muthuchidambaranathan

Abstract:

In this paper, we consider a multi user multiple input multiple output (MU-MIMO) based cooperative reporting system for cognitive radio network. In the reporting network, the secondary users forward the primary user data to the common fusion center (FC). The FC is equipped with linear equalizers and an energy detector to make the decision about the spectrum. The primary user data are considered to be a digital video broadcasting - terrestrial (DVB-T) signal. The sensing channel and the reporting channel are assumed to be an additive white Gaussian noise and an independent identically distributed Raleigh fading respectively. We analyzed the detection probability of MU-MIMO system with linear equalizers and arrived at the closed form expression for average detection probability. Also the system performance is investigated under various MIMO scenarios through Monte Carlo simulations.

Keywords: Cooperative MU-MIMO, DVB-T, Linear Equalizers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
10264 Image Segmentation by Mathematical Morphology: An Approach through Linear, Bilinear and Conformal Transformation

Authors: Dibyendu Ghoshal, Pinaki Pratim Acharjya

Abstract:

Image segmentation process based on mathematical morphology has been studied in the paper. It has been established from the first principles of the morphological process, the entire segmentation is although a nonlinear signal processing task, the constituent wise, the intermediate steps are linear, bilinear and conformal transformation and they give rise to a non linear affect in a cumulative manner.

Keywords: Image segmentation, linear transform, bilinear transform, conformal transform, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
10263 Online Robust Model Predictive Control for Linear Fractional Transformation Systems Using Linear Matrix Inequalities

Authors: Peyman Sindareh Esfahani, Jeffery Kurt Pieper

Abstract:

In this paper, the problem of robust model predictive control (MPC) for discrete-time linear systems in linear fractional transformation form with structured uncertainty and norm-bounded disturbance is investigated. The problem of minimization of the cost function for MPC design is converted to minimization of the worst case of the cost function. Then, this problem is reduced to minimization of an upper bound of the cost function subject to a terminal inequality satisfying the l2-norm of the closed loop system. The characteristic of the linear fractional transformation system is taken into account, and by using some mathematical tools, the robust predictive controller design problem is turned into a linear matrix inequality minimization problem. Afterwards, a formulation which includes an integrator to improve the performance of the proposed robust model predictive controller in steady state condition is studied. The validity of the approaches is illustrated through a robust control benchmark problem.

Keywords: Linear fractional transformation, linear matrix inequality, robust model predictive control, state feedback control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1241
10262 An Estimation of Variance Components in Linear Mixed Model

Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian

Abstract:

In this paper, a linear mixed model which has two random effects is broken up into two models. This thesis gets the parameter estimation of the original model and an estimation’s statistical qualities based on these two models. Then many important properties are given by comparing this estimation with other general estimations. At the same time, this paper proves the analysis of variance estimate (ANOVAE) about σ2 of the original model is equal to the least-squares estimation (LSE) about σ2 of these two models. Finally, it also proves that this estimation is better than ANOVAE under Stein function and special condition in some degree.

Keywords: Linear mixed model, Random effects, Parameter estimation, Stein function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1774
10261 Preparation and Characterization of M. × Piperita L. Oil Based Gel Formulation

Authors: Peeyush Kumar, Sapna Mishra, Anushree Malik, Santosh Satya

Abstract:

The essential oil of M. × piperita L. was formulated into a topical gel. The prepared gel was characterized for its pH, viscosity, spreadiblity, consistency and extrudiblity, while its stability was evaluated under different temperature conditions. The prepared M. × piperita oil gel was clear and transparent. The pH value of developed gel was 6.6, while its viscosity was 1200 cP. Spreadability and consistency of the M. × piperita oil gel was 10.7 g.cm/sec and 7 mm, respectively. The prepared gel showed good extrudiblity. During the stability studies, no significant change in pH and viscosity as a function of time for gel was observed, indicating stability of prepared formulation. The gel developed in this study is expected to forward the usage of M. × piperita essential towards commercial application.

Keywords: M. × piperita L., formulation, gel, characterization, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3084
10260 Robust FACTS Controller Design Employing Modern Heuristic Optimization Techniques

Authors: A.K.Balirsingh, S.C.Swain, S. Panda

Abstract:

Recently, Genetic Algorithms (GA) and Differential Evolution (DE) algorithm technique have attracted considerable attention among various modern heuristic optimization techniques. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of DE and GA optimization techniques, for flexible ac transmission system (FACTS)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both the PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques has been compared. Further, the optimized controllers are tested on a weekly connected power system subjected to different disturbances, and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a FACTS-based controller, to enhance power system stability.

Keywords: Differential Evolution, Flexible AC TransmissionSystems (FACTS), Genetic Algorithm, Low Frequency Oscillations, Single-machine Infinite Bus Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
10259 Finite-time Stability Analysis of Fractional-order with Multi-state Time Delay

Authors: Liqiong Liu, Shouming Zhong

Abstract:

In this paper, the finite-time stabilization of a class of multi-state time delay of fractional-order system is proposed. First, we define finite-time stability with the fractional-order system. Second, by using Generalized Gronwall's approach and the methods of the inequality, we get some conditions of finite-time stability for the fractional system with multi-state delay. Finally, a numerical example is given to illustrate the result.

Keywords: Finite-time stabilization, fractional-order system, Gronwall inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
10258 Investigation of Slope Stability in Gravel Soils in Unsaturated State

Authors: Seyyed Abolhasan Naeini, Ehsan Azini

Abstract:

In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software.  we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg’s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground.  Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased.

Keywords: Slope stability analysis, factor of safety, matric suction, unsaturated silty gravel soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777