Dynamical Analysis of a Harvesting Model of Phytoplankton-Zooplankton Interaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Dynamical Analysis of a Harvesting Model of Phytoplankton-Zooplankton Interaction

Authors: Anuj K. Sharma, Amit Sharma, Kulbhushan Agnihotri

Abstract:

In this work, we propose and analyze a model of Phytoplankton-Zooplankton interaction with harvesting considering that some species are exploited commercially for food. Criteria for local stability, instability and global stability are derived and some threshold harvesting levels are explored to maintain the population at an appropriate equilibrium level even if the species are exploited continuously.Further,biological and bionomic equilibria of the system are obtained and an optimal harvesting policy is also analysed using the Pantryagin’s Maximum Principle.Finally analytical findings are also supported by some numerical simulations.

Keywords: Phytoplankton-Zooplankton, Global stability, Bionomic Equilibrium, Pontrying-Maximum Principal.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1337871

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273

References:


[1] A. M. Edwards and J. Brindley, Oscillatory behaviour in three component plankton population model., Dyn. Syst., (1996);11(4):347-370.
[2] S. Ruan, Persistence and co-existence in zooplankton-phytoplanktonnutrient models with instantaneous nutrient recycling., J.Math. Biol.(1993);31:633-654.
[3] S. Busenberg, K. S. Kishore, P. Austin, G. Wake, The dynamics of a model of a plankton-nutrient interaction., J. Math. Biol. (1990);52(5): 677-696.
[4] Chakarborty, S. Roy, J. Chattopadhyay, Nutrient-limiting toxin producing and the dynamics of two phytoplankton in culture media: A mathematical instantaneous nutrient recycling., J. Ecological Modelling. (2008);213(2):191-201.
[5] S. Pal, S. Chatterjee, J. Chattopadhyay, Role of toxin and nutrient for the occurrence and termination of plankton bloom-results drawn from field observations and a mathematical model., J. Biosystem. (2007);90:87- 100.
[6] R. R. Sarkar, S. Pal, J. Chattopadhyay, Role of two toxin-producing plankton and their effect on phytoplankton-zooplankton system-a mathematical study by experimental findings., J. Biosystem. (2005);80:11-23.
[7] J. Chattopadhayay, R. R. Sarkar, S. Mandal, Toxin producing plankton may act as a biological control for planktonic blooms-field study and mathematical modelling., J. Biol. Theor. (2002);215(3):333-344.
[8] Y. F. Lv, Y. Z. Pei, S. J. Gao, C. G. Li, Harvesting of a phytoplanktonzooplankton model., Nonlinear Anal. RWA. (2010);11:3608-3619.
[9] Y. F. Lv, Y. Z. Pei, C. G. Li, Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system., Appl. Math. Modelling (2012);36:1752-1765.
[10] J. D. Murray, Mathematical Biology., Springer;(2002).
[11] G. Birkhoff, G. S. Rota, Ordinary Differential Equations., Ginn, Boston; 1882.
[12] J. La Salle, S. Lefschetz, Stability by Liapunov’s Direct Method with Applications., Academic Press: New York, London: 1961.
[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes., Pergamon Press: London,1964.
[14] C. W. Clark, Bioeconomic Modelling and Fisheries Management., John Wiley and Sons; 1985.
[15] T. K. Kar, K. S. Chaudhuri, On non-selective harvesting of a multispecies fishery., int. J. Math. Educ. Sci. Technol. 33(2002) 543-556.
[16] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources., Wiley,New York: 1976.