Search results for: Grid base clustering
1705 Grid-based Supervised Clustering - GBSC
Authors: Pornpimol Bungkomkhun, Surapong Auwatanamongkol
Abstract:
This paper presents a supervised clustering algorithm, namely Grid-Based Supervised Clustering (GBSC), which is able to identify clusters of any shapes and sizes without presuming any canonical form for data distribution. The GBSC needs no prespecified number of clusters, is insensitive to the order of the input data objects, and is capable of handling outliers. Built on the combination of grid-based clustering and density-based clustering, under the assistance of the downward closure property of density used in bottom-up subspace clustering, the GBSC can notably reduce its search space to avoid the memory confinement situation during its execution. On two-dimension synthetic datasets, the GBSC can identify clusters with different shapes and sizes correctly. The GBSC also outperforms other five supervised clustering algorithms when the experiments are performed on some UCI datasets.Keywords: supervised clustering, grid-based clustering, subspace clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16101704 Energy Efficient Clustering and Data Aggregation in Wireless Sensor Networks
Authors: Surender Kumar Soni
Abstract:
Wireless Sensor Networks (WSNs) are wireless networks consisting of number of tiny, low cost and low power sensor nodes to monitor various physical phenomena like temperature, pressure, vibration, landslide detection, presence of any object, etc. The major limitation in these networks is the use of nonrechargeable battery having limited power supply. The main cause of energy consumption WSN is communication subsystem. This paper presents an efficient grid formation/clustering strategy known as Grid based level Clustering and Aggregation of Data (GCAD). The proposed clustering strategy is simple and scalable that uses low duty cycle approach to keep non-CH nodes into sleep mode thus reducing energy consumption. Simulation results demonstrate that our proposed GCAD protocol performs better in various performance metrics.Keywords: Ad hoc network, Cluster, Grid base clustering, Wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31371703 Grid–SVC: An Improvement in SVC Algorithm, Based On Grid Based Clustering
Authors: Farhad Hadinejad, Hasan Saberi, Saeed Kazem
Abstract:
Support vector clustering (SVC) is an important kernelbased clustering algorithm in multi applications. It has got two main bottle necks, the high computation price and labeling piece. In this paper, we presented a modified SVC method, named Grid–SVC, to improve the original algorithm computationally. First we normalized and then we parted the interval, where the SVC is processing, using a novel Grid–based clustering algorithm. The algorithm parts the intervals, based on the density function of the data set and then applying the cartesian multiply makes multi-dimensional grids. Eliminating many outliers and noise in the preprocess, we apply an improved SVC method to each parted grid in a parallel way. The experimental results show both improvement in time complexity order and the accuracy.
Keywords: Grid–based clustering, SVC, Density function, Radial basis function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17441702 Hierarchical Clustering Algorithms in Data Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.Keywords: Clustering, method, algorithm, hierarchical, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33761701 A Distributed Algorithm for Intrinsic Cluster Detection over Large Spatial Data
Authors: Sauravjyoti Sarmah, Rosy Das, Dhruba Kr. Bhattacharyya
Abstract:
Clustering algorithms help to understand the hidden information present in datasets. A dataset may contain intrinsic and nested clusters, the detection of which is of utmost importance. This paper presents a Distributed Grid-based Density Clustering algorithm capable of identifying arbitrary shaped embedded clusters as well as multi-density clusters over large spatial datasets. For handling massive datasets, we implemented our method using a 'sharednothing' architecture where multiple computers are interconnected over a network. Experimental results are reported to establish the superiority of the technique in terms of scale-up, speedup as well as cluster quality.Keywords: Clustering, Density-based, Grid-based, Adaptive Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15981700 Fuzzy Types Clustering for Microarray Data
Authors: Seo Young Kim, Tai Myong Choi
Abstract:
The main goal of microarray experiments is to quantify the expression of every object on a slide as precisely as possible, with a further goal of clustering the objects. Recently, many studies have discussed clustering issues involving similar patterns of gene expression. This paper presents an application of fuzzy-type methods for clustering DNA microarray data that can be applied to typical comparisons. Clustering and analyses were performed on microarray and simulated data. The results show that fuzzy-possibility c-means clustering substantially improves the findings obtained by others.Keywords: Clustering, microarray data, Fuzzy-type clustering, Validation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15211699 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: Data grids, fault tolerance, chandy-lamport, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9511698 Grid Learning; Computer Grid Joins to e- Learning
Authors: A. Nassiry, A. Kardan
Abstract:
According to development of communications and web-based technologies in recent years, e-Learning has became very important for everyone and is seen as one of most dynamic teaching methods. Grid computing is a pattern for increasing of computing power and storage capacity of a system and is based on hardware and software resources in a network with common purpose. In this article we study grid architecture and describe its different layers. In this way, we will analyze grid layered architecture. Then we will introduce a new suitable architecture for e-Learning which is based on grid network, and for this reason we call it Grid Learning Architecture. Various sections and layers of suggested architecture will be analyzed; especially grid middleware layer that has key role. This layer is heart of grid learning architecture and, in fact, regardless of this layer, e-Learning based on grid architecture will not be feasible.Keywords: Distributed learning, Grid Learning, Grid network, SCORM standard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271697 Design and Implementation a New Energy Efficient Clustering Algorithm using Genetic Algorithm for Wireless Sensor Networks
Authors: Moslem Afrashteh Mehr
Abstract:
Wireless Sensor Networks consist of small battery powered devices with limited energy resources. once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, One of the most important issues that needs to be enhanced in order to improve the life span of the network is energy efficiency. to overcome this demerit many research have been done. The clustering is the one of the representative approaches. in the clustering, the cluster heads gather data from nodes and sending them to the base station. In this paper, we introduce a dynamic clustering algorithm using genetic algorithm. This algorithm takes different parameters into consideration to increase the network lifetime. To prove efficiency of proposed algorithm, we simulated the proposed algorithm compared with LEACH algorithm using the matlabKeywords: Wireless Sensor Networks, Clustering, Geneticalgorithm, Energy Consumption
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28841696 Similarity Measures and Weighted Fuzzy C-Mean Clustering Algorithm
Authors: Bainian Li, Kongsheng Zhang, Jian Xu
Abstract:
In this paper we study the fuzzy c-mean clustering algorithm combined with principal components method. Demonstratively analysis indicate that the new clustering method is well rather than some clustering algorithms. We also consider the validity of clustering method.
Keywords: FCM algorithm, Principal Components Analysis, Clustervalidity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17241695 Resource Discovery in Web-Services Based Grids
Authors: Damandeep Kaur, Jyotsna Sengupta
Abstract:
A Web-services based grid infrastructure is evolving to be readily available in the near future. In this approach, the Web services are inherited (encapsulated or functioned) into the same existing Grid services class. In practice there is not much difference between the existing Web and grid infrastructure. Grid services emerged as stateful web services. In this paper, we present the key components of web-services based grid and also how the resource discovery is performed on web-services based grid considering resource discovery, as a critical service, to be provided by any type of grid.
Keywords: Web services, resource discovery, grid computing, OGSA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16401694 Exponential Particle Swarm Optimization Approach for Improving Data Clustering
Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi
Abstract:
In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.Keywords: Particle swarm optimization, data clustering, exponential PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16901693 A Comparison of Fuzzy Clustering Algorithms to Cluster Web Messages
Authors: Sara El Manar El Bouanani, Ismail Kassou
Abstract:
Our objective in this paper is to propose an approach capable of clustering web messages. The clustering is carried out by assigning, with a certain probability, texts written by the same web user to the same cluster based on Stylometric features and using fuzzy clustering algorithms. Focus in the present work is on comparing the most popular algorithms in fuzzy clustering theory namely, Fuzzy C-means, Possibilistic C-means and Fuzzy Possibilistic C-Means.
Keywords: Authorship detection, fuzzy clustering, profiling, stylometric features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20521692 Analysis of Diverse Clustering Tools in Data Mining
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.
Keywords: Cluster Analysis, Clustering Algorithms, Clustering Techniques, Association, Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22011691 A Survey: Clustering Ensembles Techniques
Authors: Reza Ghaemi , Md. Nasir Sulaiman , Hamidah Ibrahim , Norwati Mustapha
Abstract:
The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.Keywords: Clustering Ensembles, Combinational Algorithm, Consensus Function, Unsupervised Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34491690 Analyzing The Effect of Variable Round Time for Clustering Approach in Wireless Sensor Networks
Authors: Vipin Pal, Girdhari Singh, R P Yadav
Abstract:
As wireless sensor networks are energy constraint networks so energy efficiency of sensor nodes is the main design issue. Clustering of nodes is an energy efficient approach. It prolongs the lifetime of wireless sensor networks by avoiding long distance communication. Clustering algorithms operate in rounds. Performance of clustering algorithm depends upon the round time. A large round time consumes more energy of cluster heads while a small round time causes frequent re-clustering. So existing clustering algorithms apply a trade off to round time and calculate it from the initial parameters of networks. But it is not appropriate to use initial parameters based round time value throughout the network lifetime because wireless sensor networks are dynamic in nature (nodes can be added to the network or some nodes go out of energy). In this paper a variable round time approach is proposed that calculates round time depending upon the number of active nodes remaining in the field. The proposed approach makes the clustering algorithm adaptive to network dynamics. For simulation the approach is implemented with LEACH in NS-2 and the results show that there is 6% increase in network lifetime, 7% increase in 50% node death time and 5% improvement over the data units gathered at the base station.Keywords: Wireless Sensor Network, Clustering, Energy Efficiency, Round Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17861689 Handling Mobility using Virtual Grid in Static Wireless Sensor Networks
Authors: T.P. Sharma
Abstract:
Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.Keywords: Mobility in WSNs, virtual grid, GBDD, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15501688 Ontology-based Concept Weighting for Text Documents
Authors: Hmway Hmway Tar, Thi Thi Soe Nyaunt
Abstract:
Documents clustering become an essential technology with the popularity of the Internet. That also means that fast and high-quality document clustering technique play core topics. Text clustering or shortly clustering is about discovering semantically related groups in an unstructured collection of documents. Clustering has been very popular for a long time because it provides unique ways of digesting and generalizing large amounts of information. One of the issues of clustering is to extract proper feature (concept) of a problem domain. The existing clustering technology mainly focuses on term weight calculation. To achieve more accurate document clustering, more informative features including concept weight are important. Feature Selection is important for clustering process because some of the irrelevant or redundant feature may misguide the clustering results. To counteract this issue, the proposed system presents the concept weight for text clustering system developed based on a k-means algorithm in accordance with the principles of ontology so that the important of words of a cluster can be identified by the weight values. To a certain extent, it has resolved the semantic problem in specific areas.Keywords: Clustering, Concept Weight, Document clustering, Feature Selection, Ontology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24051687 Journey on Image Clustering Based on Color Composition
Authors: Achmad Nizar Hidayanto, Elisabeth Martha Koeanan
Abstract:
Image clustering is a process of grouping images based on their similarity. The image clustering usually uses the color component, texture, edge, shape, or mixture of two components, etc. This research aims to explore image clustering using color composition. In order to complete this image clustering, three main components should be considered, which are color space, image representation (feature extraction), and clustering method itself. We aim to explore which composition of these factors will produce the best clustering results by combining various techniques from the three components. The color spaces use RGB, HSV, and L*a*b* method. The image representations use Histogram and Gaussian Mixture Model (GMM), whereas the clustering methods use KMeans and Agglomerative Hierarchical Clustering algorithm. The results of the experiment show that GMM representation is better combined with RGB and L*a*b* color space, whereas Histogram is better combined with HSV. The experiments also show that K-Means is better than Agglomerative Hierarchical for images clustering.Keywords: Image clustering, feature extraction, RGB, HSV, L*a*b*, Gaussian Mixture Model (GMM), histogram, Agglomerative Hierarchical Clustering (AHC), K-Means, Expectation-Maximization (EM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22061686 Multi-Agent Systems for Intelligent Clustering
Authors: Jung-Eun Park, Kyung-Whan Oh
Abstract:
Intelligent systems are required in order to quickly and accurately analyze enormous quantities of data in the Internet environment. In intelligent systems, information extracting processes can be divided into supervised learning and unsupervised learning. This paper investigates intelligent clustering by unsupervised learning. Intelligent clustering is the clustering system which determines the clustering model for data analysis and evaluates results by itself. This system can make a clustering model more rapidly, objectively and accurately than an analyzer. The methodology for the automatic clustering intelligent system is a multi-agent system that comprises a clustering agent and a cluster performance evaluation agent. An agent exchanges information about clusters with another agent and the system determines the optimal cluster number through this information. Experiments using data sets in the UCI Machine Repository are performed in order to prove the validity of the system.
Keywords: Intelligent Clustering, Multi-Agent System, PCA, SOM, VC(Variance Criterion)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271685 Sample-Weighted Fuzzy Clustering with Regularizations
Authors: Miin-Shen Yang, Yee-Shan Pan
Abstract:
Although there have been many researches in cluster analysis to consider on feature weights, little effort is made on sample weights. Recently, Yu et al. (2011) considered a probability distribution over a data set to represent its sample weights and then proposed sample-weighted clustering algorithms. In this paper, we give a sample-weighted version of generalized fuzzy clustering regularization (GFCR), called the sample-weighted GFCR (SW-GFCR). Some experiments are considered. These experimental results and comparisons demonstrate that the proposed SW-GFCR is more effective than the most clustering algorithms.
Keywords: Clustering; fuzzy c-means, fuzzy clustering, sample weights, regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17651684 Parallel and Distributed Mining of Association Rule on Knowledge Grid
Authors: U. Sakthi, R. Hemalatha, R. S. Bhuvaneswaran
Abstract:
In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.Keywords: Association rule, Grid computing, Knowledge grid, Mobility prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21811683 Numerical Grid Generation of Oceanic Model for the Andaman Sea
Authors: Nitima Aschariyaphotha, Pratan Sakkaplangkul, Anirut Luadsong
Abstract:
The study of the Andaman Sea can be studied by using the oceanic model; therefore the grid covering the study area should be generated. This research aims to generate grid covering the Andaman Sea, situated between longitudes 90◦E to 101◦E and latitudes 1◦N to 18◦N. A horizontal grid is an orthogonal curvilinear with 87 × 217 grid points. The methods used in this study are cubic spline and bilinear interpolations. The boundary grid points are generated by spline interpolation while the interior grid points have to be specified by bilinear interpolation method. A vertical grid is sigma coordinate with 15 layers of water column.Keywords: Sigma Coordinate, Curvilinear Coordinate, AndamanSea.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681682 Application of a New Hybrid Optimization Algorithm on Cluster Analysis
Authors: T. Niknam, M. Nayeripour, B.Bahmani Firouzi
Abstract:
Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.
Keywords: Ant Colony Optimization (ACO), Data clustering, Hybrid evolutionary optimization algorithm, K-means clustering, Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21981681 Cost-Effective Private Grid Using Object-based Grid Architecture
Authors: M. Victor Jose, V. Seenivasagam
Abstract:
This paper proposes a cost-effective private grid using Object-based Grid Architecture (OGA). In OGA, the data process privacy and inter communication are increased through an object- oriented concept. The limitation of the existing grid is that the user can enter or leave the grid at any time without schedule and dedicated resource. To overcome these limitations, cost-effective private grid and appropriate algorithms are proposed. In this, each system contains two platforms such as grid and local platforms. The grid manager service running in local personal computer can act as grid resource. When the system is on, it is intimated to the Monitoring and Information System (MIS) and details are maintained in Resource Object Table (ROT). The MIS is responsible to select the resource where the file or the replica should be stored. The resource storage is done within virtual single private grid nodes using random object addressing to prevent stolen attack. If any grid resource goes down, then the resource ID will be removed from the ROT, and resource recovery is efficiently managed by the replicas. This random addressing technique makes the grid storage a single storage and the user views the entire grid network as a single system.Keywords: Object Grid Architecture, Grid Manager Service, Resource Object table, Random object addressing, Object storage, Dynamic Object Update.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10311680 A Similarity Measure for Clustering and its Applications
Authors: Guadalupe J. Torres, Ram B. Basnet, Andrew H. Sung, Srinivas Mukkamala, Bernardete M. Ribeiro
Abstract:
This paper introduces a measure of similarity between two clusterings of the same dataset produced by two different algorithms, or even the same algorithm (K-means, for instance, with different initializations usually produce different results in clustering the same dataset). We then apply the measure to calculate the similarity between pairs of clusterings, with special interest directed at comparing the similarity between various machine clusterings and human clustering of datasets. The similarity measure thus can be used to identify the best (in terms of most similar to human) clustering algorithm for a specific problem at hand. Experimental results pertaining to the text categorization problem of a Portuguese corpus (wherein a translation-into-English approach is used) are presented, as well as results on the well-known benchmark IRIS dataset. The significance and other potential applications of the proposed measure are discussed.Keywords: Clustering Algorithms, Clustering Applications, Similarity Measures, Text Clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15711679 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach
Authors: Uttam Vijay, Nitin Gupta
Abstract:
Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.
Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24751678 Energy Efficient Cooperative Caching in WSN
Authors: Narottam Chand
Abstract:
Wireless sensor networks (WSNs) consist of number of tiny, low cost and low power sensor nodes to monitor some physical phenomenon. The major limitation in these networks is the use of non-rechargeable battery having limited power supply. The main cause of energy consumption in such networks is communication subsystem. This paper presents an energy efficient Cluster Cooperative Caching at Sensor (C3S) based upon grid type clustering. Sensor nodes belonging to the same cluster/grid form a cooperative cache system for the node since the cost for communication with them is low both in terms of energy consumption and message exchanges. The proposed scheme uses cache admission control and utility based data replacement policy to ensure that more useful data is retained in the local cache of a node. Simulation results demonstrate that C3S scheme performs better in various performance metrics than NICoCa which is existing cooperative caching protocol for WSNs.Keywords: Cooperative caching, cache replacement, admission control, WSN, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22681677 Minimal Spanning Tree based Fuzzy Clustering
Authors: Ágnes Vathy-Fogarassy, Balázs Feil, János Abonyi
Abstract:
Most of fuzzy clustering algorithms have some discrepancies, e.g. they are not able to detect clusters with convex shapes, the number of the clusters should be a priori known, they suffer from numerical problems, like sensitiveness to the initialization, etc. This paper studies the synergistic combination of the hierarchical and graph theoretic minimal spanning tree based clustering algorithm with the partitional Gath-Geva fuzzy clustering algorithm. The aim of this hybridization is to increase the robustness and consistency of the clustering results and to decrease the number of the heuristically defined parameters of these algorithms to decrease the influence of the user on the clustering results. For the analysis of the resulted fuzzy clusters a new fuzzy similarity measure based tool has been presented. The calculated similarities of the clusters can be used for the hierarchical clustering of the resulted fuzzy clusters, which information is useful for cluster merging and for the visualization of the clustering results. As the examples used for the illustration of the operation of the new algorithm will show, the proposed algorithm can detect clusters from data with arbitrary shape and does not suffer from the numerical problems of the classical Gath-Geva fuzzy clustering algorithm.Keywords: Clustering, fuzzy clustering, minimal spanning tree, cluster validity, fuzzy similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24061676 A Distributed Weighted Cluster Based Routing Protocol for Manets
Authors: Naveen Chauhan, L.K. Awasthi, Narottam chand, Vivek Katiyar, Ankit Chug
Abstract:
Mobile ad-hoc networks (MANETs) are a form of wireless networks which do not require a base station for providing network connectivity. Mobile ad-hoc networks have many characteristics which distinguish them from other wireless networks which make routing in such networks a challenging task. Cluster based routing is one of the routing schemes for MANETs in which various clusters of mobile nodes are formed with each cluster having its own clusterhead which is responsible for routing among clusters. In this paper we have proposed and implemented a distributed weighted clustering algorithm for MANETs. This approach is based on combined weight metric that takes into account several system parameters like the node degree, transmission range, energy and mobility of the nodes. We have evaluated the performance of proposed scheme through simulation in various network situations. Simulation results show that proposed scheme outperforms the original distributed weighted clustering algorithm (DWCA).Keywords: MANETs, Clustering, Routing, WirelessCommunication, Distributed Clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891