Search results for: Generated force
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1846

Search results for: Generated force

1756 Accuracy of Displacement Estimation and Selection of Capacitors for a Four Degrees of Freedom Capacitive Force Sensor

Authors: Chisato Murakami, Makoto Takahashi

Abstract:

Force sensor has been used as requisite for knowing information on the amount and the directions of forces on the skin surface. We have developed a four-degrees-of-freedom capacitive force sensor (approximately 20×20×5 mm3) that has a flexible structure and sixteen parallel plate capacitors. An iterative algorithm was developed for estimating four displacements from the sixteen capacitances using fourth-order polynomial approximation of characteristics between capacitance and displacement. The estimation results from measured capacitances had large error caused by deterioration of the characteristics. In this study, effective capacitors had major information were selected on the basis of the capacitance change range and the characteristic shape. Maximum errors in calibration and non-calibration points were 25%and 6.8%.However the maximum error was larger than desired value, the smallness of averaged value indicated the occurrence of a few large error points. On the other hand, error in non-calibration point was within desired value.

 

Keywords: Force sensors, capacitive sensors, estimation, iterative algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
1755 Design and Development of a Mechanical Force Gauge for the Square Watermelon Mold

Authors: M. Malek Yarand, H. Saebi Monfared

Abstract:

This study aimed at designing and developing a mechanical force gauge for the square watermelon mold for the first time. It also tried to introduce the square watermelon characteristics and its production limitations. The mechanical force gauge performance and the product itself were also described. There are three main designable gauge models: a. hydraulic gauge, b. strain gauge, and c. mechanical gauge. The advantage of the hydraulic model is that it instantly displays the pressure and thus the force exerted by the melon. However, considering the inability to measure forces at all directions, complicated development, high cost, possible hydraulic fluid leak into the fruit chamber and the possible influence of increased ambient temperature on the fluid pressure, the development of this gauge was overruled. The second choice was to calculate pressure using the direct force a strain gauge. The main advantage of these strain gauges over spring types is their high precision in measurements; but with regard to the lack of conformity of strain gauge working range with water melon growth, calculations were faced with problems. Finally the mechanical pressure gauge has advantages, including the ability to measured forces and pressures on the mold surface during melon growth; the ability to display the peak forces; the ability to produce melon growth graph thanks to its continuous force measurements; the conformity of its manufacturing materials with the required physical conditions of melon growth; high air conditioning capability; the ability to permit sunlight reaches the melon rind (no yellowish skin and quality loss); fast and straightforward calibration; no damages to the product during assembling and disassembling; visual check capability of the product within the mold; applicable to all growth environments (field, greenhouses, etc.); simple process; low costs and so forth.

Keywords: Mechanical Force Gauge, Mold, Reshaped Fruit, Square Watermelon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3074
1754 Enhancing Privacy-Preserving Cloud Database Querying by Preventing Brute Force Attacks

Authors: Ambika Vishal Pawar, Ajay Dani

Abstract:

Considering the complexities involved in Cloud computing, there are still plenty of issues that affect the privacy of data in cloud environment. Unless these problems get solved, we think that the problem of preserving privacy in cloud databases is still open. In tokenization and homomorphic cryptography based solutions for privacy preserving cloud database querying, there is possibility that by colluding with service provider adversary may run brute force attacks that will reveal the attribute values.

In this paper we propose a solution by defining the variant of K –means clustering algorithm that effectively detects such brute force attacks and enhances privacy of cloud database querying by preventing this attacks.

Keywords: Privacy, Database, Cloud Computing, Clustering, K-means, Cryptography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
1753 Two Degree of Freedom Spherical Mechanism Design for Exact Sun Tracking

Authors: Osman Acar

Abstract:

Sun tracking systems are the systems following the sun ray by a right angle or by predetermined certain angle. In this study, we used theoretical trajectory of sun for latitude of central Anatolia in Turkey. A two degree of freedom spherical mechanism was designed to have a large workspace able to follow the sun's theoretical motion by the right angle during the whole year. An inverse kinematic analysis was generated to find the positions of mechanism links for the predicted trajectory. Force and torque analysis were shown for the first day of the year.

Keywords: Sun tracking, theoretical sun trajectory, spherical mechanism, inverse kinematic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
1752 Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Authors: Gökhan Polat, Dicle Kocaoğlu Yılmazer, Muhlis Nezihi Sarıdede

Abstract:

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Keywords: Iron oxide wastes, reduction, coke, recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
1751 Hazardous Waste Generated in the Peruvian Textile Industry: Haute Couture, Alpaca Fiber and Tannery

Authors: Huiman C. Alberto

Abstract:

The research cites the various hazardous waste generated in the textile industry. The method used is descriptive and comparative, the process consisted of the search and evaluation of information, both nationally and internationally. The results indicate: (1) Waste is generated from the alpaca fiber industry in the various stages of camelid rearing, they stand out for their dangerousness: excreta, residual fiber and yarn scraps. (2) The main hazardous waste generated by the tannery industry are grease, hides, hair, plastic containers with traces of toxic substances, chips and pieces of leather with chrome. (3) Three companies' Solid Waste Management Plans were analyzed, randomly selected, and none of them detail waste treatment processes and warn of the lack of supervision by the authorities. It is concluded that the hazardous waste generated can affect human and environmental health. There is the possibility of taking advantage of certain hazardous waste such as manure and alpaca fiber, after treatment; while non-hazardous waste from the tannery such as yarn, panel weaving, cloth, scraps, and thread, can be used to produce new products, generating a production chain in favor of the entrepreneur himself.

Keywords: Alpaca fiber, excreta, Haute couture, hazardous waste tannery, hazardous waste treatment, textile waste,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 330
1750 Evaluating and Measuring the Performance Parameters of Agricultural Wheels

Authors: Ali Roozbahani, Aref Mardani, Roohollah Jokar, Hamid Taghavifar

Abstract:

Evaluating and measuring the performance parameters of wheels and tillage equipments under controlled conditions obligates the use of soil bin facility. In this research designing, constructing and evaluating a single-wheel tester has been studied inside a soil bin. The tested wheel was directly driven by the electric motor. Vertical load was applied by a power bolt on wheel. This tester can measure required draft force, the depth of tire sinkage, contact area between wheel and soil, and soil stress at different depths and in the both alongside and perpendicular to the direction of traversing. In order to evaluate the system preparation, traction force was measured by the connected S-shaped load cell as arms between the wheel-tester and carriage. Treatments of forward speed, slip, and vertical load at a constant pressure were investigated in a complete randomized block design. The results indicated that the traction force increased at constant wheel load. The results revealed that the maximum traction force was observed within the %15 of slip.

Keywords: Slip, single wheel-tester, soil bin, soil–machine, speed, traction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
1749 The Effect of Pulsator on Washing Performance in a Front-Loading Washer

Authors: Eung Ryeol Seo, Hee Tae Lim, Eunsuk Bang, Soon Cheol Kweon, Jeoung-Kyo Jeoung, Ji-Hoon Choic

Abstract:

The object of this study is to investigate the effect of pulsator on washing performance quantitatively for front-loading washer. The front-loading washer with pulsator shows washing performance improvement of 18% and the particle-based body simulation technique has been applied to figure out the relation between washing performance and mechanical forces exerted on textile during washing process. As a result, the mechanical forces, such as collision force and strain force, acting on the textile have turned out to be about twice numerically. The washing performance improvement due to additional pulsate system has been utilized for customers to save 50% of washing time.

Keywords: Front-loading washer, mechanical force, fabric movement, pulsator, time saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
1748 Analytical and Experimental Study on the Effect of Air-Core Coil Parameters on Magnetic Force Used in a Linear Optical Scanner

Authors: Loke Kean Koay, Horizon Gitano-Briggs, Mani Maran Ratnam

Abstract:

Today air-core coils (ACC) are a viable alternative to ferrite-core coils in a range of applications due to their low induction effect. An analytical study was carried out and the results were used as a guide to understand the relationship between the magnet-coil distance and the resulting attractive magnetic force. Four different ACC models were fabricated for experimental study. The variation in the models included the dimensions, the number of coil turns and the current supply to the coil. Comparison between the analytical and experimental results for all the models shows an average discrepancy of less than 10%. An optimized ACC design was selected for the scanner which can provide maximum magnetic force.

Keywords: Air-Core Coils, Electromagnetic, Linear Optical Scanner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
1747 Comparative Study of Static and Dynamic Bending Forces during 3-Roller Cone Frustum Bending Process

Authors: Mahesh K. Chudasama, Harit K. Raval

Abstract:

3-roller conical bending process is widely used in the industries for manufacturing of conical sections and shells. It involves static as well dynamic bending stages. Analytical models for prediction of bending force during static as well as dynamic bending stage are available in the literature. In this paper bending forces required for static bending stage and dynamic bending stages have been compared using the analytical models. It is concluded that force required for dynamic bending is very less as compared to the bending force required during the static bending stage.

Keywords: Analytical modeling, cone frustum, dynamic bending, static bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
1746 On the Wreath Product of Group by Some Other Groups

Authors: Basmah H. Shafee

Abstract:

In this paper, we will generate the wreath product 11 12 M wrM using only two permutations. Also, we will show the structure of some groups containing the wreath product 11 12 M wrM . The structure of the groups founded is determined in terms of wreath product k (M wrM ) wrC 11 12 . Some related cases are also included. Also, we will show that 132K+1 S and 132K+1 A can be generated using the wreath product k (M wrM ) wrC 11 12 and a transposition in 132K+1 S and an element of order 3 in 132K+1 A . We will also show that 132K+1 S and 132K+1 A can be generated using the wreath product 11 12 M wrM and an element of order k +1.

Keywords: Group presentation, group generated by n-cycle, Wreath product, Mathieu group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167
1745 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle

Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan

Abstract:

The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.

Keywords: Spring, mass, damper, impact, knee joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
1744 Sprayer Boom Active Suspension Using Intelligent Active Force Control

Authors: M. Tahmasebi, R.A. Rahman, M. Mailah, M. Gohari

Abstract:

The control of sprayer boom undesired vibrations pose a great challenge to investigators due to various disturbances and conditions. Sprayer boom movements lead to reduce of spread efficiency and crop yield. This paper describes the design of a novel control method for an active suspension system applying proportional-integral-derivative (PID) controller with an active force control (AFC) scheme integration of an iterative learning algorithm employed to a sprayer boom. The iterative learning as an intelligent method is principally used as a method to calculate the best value of the estimated inertia of the sprayer boom needed for the AFC loop. Results show that the proposed AFC-based scheme performs much better than the standard PID control technique. Also, this shows that the system is more robust and accurate.

Keywords: Active force control, sprayer boom, active suspension, iterative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
1743 Segmentation of Cardiac Images by the Force Field Driven Speed Term

Authors: Renato Dedic, Madjid Allili, Roger Lecomte, Adbelhamid Benchakroun

Abstract:

The class of geometric deformable models, so-called level sets, has brought tremendous impact to medical imagery. In this paper we present yet another application of level sets to medical imaging. The method we give here will in a way modify the speed term in the standard level sets equation of motion. To do so we build a potential based on the distance and the gradient of the image we study. In turn the potential gives rise to the force field: F~F(x, y) = P ∀(p,q)∈I ((x, y) - (p, q)) |ÔêçI(p,q)| |(x,y)-(p,q)| 2 . The direction and intensity of the force field at each point will determine the direction of the contour-s evolution. The images we used to test our method were produced by the Univesit'e de Sherbrooke-s PET scanners.

Keywords: PET, Cardiac, Heart, Mouse, Geodesic, Geometric, Level Sets, Deformable Models, Edge Detection, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
1742 A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending

Authors: Mahesh Chudasama, Harit Raval

Abstract:

Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected.

Keywords: Roller-bending, static-bending, stress-conditions, analytical-modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
1741 Critical Analysis of Different Actuation Techniques for a Micro Cantilever

Authors: B. G. Sheeparamatti, Prashant Hanasi, Vanita Abbigeri

Abstract:

The objective of this work is to carryout critical comparison of different actuation mechanisms like electrostatic, thermal, piezoelectric, and magnetic with reference to a micro cantilever. The relevant parameters like force generated, displacement are compared in actuation methods. With these results, helps in choosing the best actuation method for a particular application. In this study, Comsol/Multiphysics software is used. Modeling and simulation is done by considering the micro cantilever of same dimensions as an actuator using all the above mentioned actuation techniques. In addition to their small size, micro actuators consume very little power and are capable of accurate results. In this work, a comparison of actuation mechanisms is done to decide the efficient system in micro domain.

Keywords: Actuation techniques, microswitch, micro actuator, microsystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373
1740 Fretting Fatigue behavior of Bolted Single Lap Joints of Aluminum Alloys

Authors: Hadi Rezghi Maleki, Babak Abazadeh

Abstract:

In this paper, the effect of bolt clamping force on the fatigue behavior of bolted single lap joints of aluminum alloy 2024- T3 have been studied using numerical finite element method. To do so, a three dimensional model according to the bolted single lap joint has been created and numerical analysis has been carried out using finite element based package. Then the stress distribution and also the slip amplitudes have been calculated in the critical regions and the outcome have been compared with the available experimental fatigue tests results. The numerical results show that in low applied clamping force, the fatigue failure of the specimens occur around the stress concentration location (the bolted hole edge) due to the tensile stresses and thus fatigue crack propagation, but with increase of the clamping force, the fatigue life increases and the cracks nucleate and propagate far from the hole edge because of fretting fatigue. In other words, with the further increase of clamping force value of the joint, the fatigue life reduces due to occurrence of the fretting fatigue in the critical location where the slip amplitude is within its critical occurs earlier.

Keywords: Fretting fatigue, bolted single lap joint, torque tightening, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
1739 Courses Pre-Required Visualization Using Force Directed Placement Technique

Authors: Imen Ammari, Mourad Elloumi, Ala Eddine Barouni

Abstract:

Visualizing “Courses – Pre – Required - Architecture" on the screen has proven to be useful and helpful for university actors and specially for students. In fact, these students can easily identify courses and their pre required, perceive the courses to follow in the future, and then can choose rapidly the appropriate course to register in. Given a set of courses and their prerequired, we present an algorithm for visualization a graph entitled “Courses-Pre-Required-Graph" that present courses and their prerequired in order to help students to recognize, lonely, what courses to take in the future and perceive the contain of all courses that they will study. Our algorithm using “Force Directed Placement" technique visualizes the “Courses-Pre-Required-Graph" in such way that courses are easily identifiable. The time complexity of our drawing algorithm is O (n2), where n is the number of courses in the “Courses-Pre-Required-Graph".

Keywords: Courses–Pre-Required-Architecture, Courses-Pre- Required-Graph, Courses-Pre-Required-Visualization, Force directed Placement, Resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
1738 Parametric Study on Grindability of GFRP Laminates Using Different Abrasives

Authors: P. Chockalingam, C. K. Kok, T. R. Vijayaram

Abstract:

A study on grindability of chopped strand mat glass fiber reinforced polymer laminates (CSM GFRP) have been carried out to evaluate the significant parameters on wheel performance. Performance of Aluminum oxide and c-BN wheels during grinding of CSM GFRP laminate was evaluated in terms of grinding force and surface roughness during grinding. The cubic Boron Nitride wheel experiences higher tangential grinding forces components and lower normal force component than Aluminum oxide grinding wheels. In case of surface finish, Aluminum oxide grinding wheels outdo the cubic Boron Nitride grinding wheels.

Keywords: Grinding, glass fiber reinforced polymer laminates, grinding force, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
1737 Numerical Simulation of a Single Air Bubble Rising in Water with Various Models of Surface Tension Force

Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani

Abstract:

Different numerical methods are employed and developed for simulating interfacial flows. A large range of applications belong to this group, e.g. two-phase flows of air bubbles in water or water drops in air. In such problems surface tension effects often play a dominant role. In this paper, various models of surface tension force for interfacial flows, the CSF, CSS, PCIL and SGIP models have been applied to simulate the motion of small air bubbles in water and the results were compared and reviewed. It has been pointed out that by using SGIP or PCIL models, we are able to simulate bubble rise and obtain results in close agreement with the experimental data.

Keywords: Volume-of-Fluid, Bubble Rising, SGIP model, CSS model, CSF model, PCIL model, interface, surface tension force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
1736 Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Authors: Keke Gao, Tao Lin, Yonghui Xie, Di Zhang

Abstract:

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Keywords: Unsteady flow, axial turbine, wake, aerodynamic force, loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
1735 Optimization Approach on Flapping Aerodynamic Characteristics of Corrugated Airfoil

Authors: Wei-Hsin Sun, Jr-Ming Miao, Chang-Hsien Tai, Chien-Chun Hung

Abstract:

The development of biomimetic micro-aerial-vehicles (MAVs) with flapping wings is the future trend in military/domestic field. The successful flight of MAVs is strongly related to the understanding of unsteady aerodynamic performance of low Reynolds number airfoils under dynamic flapping motion. This study explored the effects of flapping frequency, stroke amplitude, and the inclined angle of stroke plane on lift force and thrust force of a bio-inspiration corrugated airfoil with 33 full factorial design of experiment and ANOVA analysis. Unsteady vorticity flows over a corrugated thin airfoil executing flapping motion are computed with time-dependent two-dimensional laminar incompressible Reynolds-averaged Navier-Stokes equations with the conformal hybrid mesh. The tested freestream Reynolds number based on the chord length of airfoil as characteristic length is fixed of 103. The dynamic mesh technique is applied to model the flapping motion of a corrugated airfoil. Instant vorticity contours over a complete flapping cycle clearly reveals the flow mechanisms for lift force generation are dynamic stall, rotational circulation, and wake capture. The thrust force is produced as the leading edge vortex shedding from the trailing edge of airfoil to form a reverse von Karman vortex. Results also indicated that the inclined angle is the most significant factor on both the lift force and thrust force. There are strong interactions between tested factors which mean an optimization study on parameters should be conducted in further runs.

Keywords: biomimetic, MAVs, aerodynamic, ANOVA analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
1734 Influence of the Compression Force and Powder Particle Size on Some Physical Properties of Date Fruit (Phoenix dactylifera) Tablets

Authors: Djemaa Megdoud, Messaoud Boudaa, Fatima Ouamrane, Salem Benamara

Abstract:

In recent years, the compression of date (Phoenix dactylifera L.) fruit powders (DP) to obtain date tablets (DT) has been suggested as a promising form of valorization of non commercial valuable date fruit (DF) varieties. To further improve and characterize DT, the present study aims to investigate the influence of the DP particle size and compression force on some physical properties of DT. The results show that independently of particle size, the hardness (y) of tablets increases with the increase of the compression force (x) following a logarithmic law (y = a ln (bx) where a and b are the constants of model). Further, a full factorial design (FFD) at two levels, applied to investigate the erosion %, reveals that the effects of time and particle size are the same in absolute value and they are beyond the effect of the compression. Regarding the disintegration time, the obtained results also by means of a FFD show that the effect of the compression force exceeds 4 times that of the DP particle size. As final stage, the color parameters in the CIELab system of DT immediately after their obtaining are differently influenced by the size of the initial powder.

Keywords: Powder, valorization, tablets, date fruit (Phoenix dactylifera L.), hardness, erosion, disintegration time, color.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2677
1733 Determining the Maximum Lateral Displacement Due to Sever Earthquakes without Using Nonlinear Analysis

Authors: Mussa Mahmoudi

Abstract:

For Seismic design, it is important to estimate, maximum lateral displacement (inelastic displacement) of the structures due to sever earthquakes for several reasons. Seismic design provisions estimate the maximum roof and storey drifts occurring in major earthquakes by amplifying the drifts of the structures obtained by elastic analysis subjected to seismic design load, with a coefficient named “displacement amplification factor" which is greater than one. Here, this coefficient depends on various parameters, such as ductility and overstrength factors. The present research aims to evaluate the value of the displacement amplification factor in seismic design codes and then tries to propose a value to estimate the maximum lateral structural displacement from sever earthquakes, without using non-linear analysis. In seismic codes, since the displacement amplification is related to “force reduction factor" hence; this aspect has been accepted in the current study. Meanwhile, two methodologies are applied to evaluate the value of displacement amplification factor and its relation with the force reduction factor. In the first methodology, which is applied for all structures, the ratio of displacement amplification and force reduction factors is determined directly. Whereas, in the second methodology that is applicable just for R/C moment resisting frame, the ratio is obtained by calculating both factors, separately. The acquired results of these methodologies are alike and estimate the ratio of two factors from 1 to 1.2. The results indicate that the ratio of the displacement amplification factor and the force reduction factor differs to those proposed by seismic provisions such as NEHRP, IBC and Iranian seismic code (standard no. 2800).

Keywords: Displacement amplification factor, Ductility factor, Force reduction factor, Maximum lateral displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842
1732 Development of Highly Sensitive System for Measurement and Monitoring of Small Impacts

Authors: Priyanka Guin, Dibyendu Chatterjee, Arijit Roy

Abstract:

Developing electronic system for detecting low energy impacts using open source hardware such as Arduino is challenging. A highly efficient loadcell is designed and fabricated. A commercial polyvinylidene fluoride (PVDF) piezoelectric film is used as primary sensor for sensing small impacts. Without modifying hardware, the Arduino board is configured by programming to capture the signal from the film sensor with a resolution better than 1.1 mV. By our system, impact energy as low as 1.8 µJ (corresponds to impact force of 39.9 mN) is reliably and monitored. In the linear zone, sensitivity of the system found to be as high as 20.7 kV/J or 3.3 V/N with a measurement frequency of 500 Hz. The various characteristics such as linearity, hysteresis, repeatability and spectrum analysis are discussed. After calibration, measurements of unknown impact energy and impact force are investigated and results are found to agree well.

Keywords: Arduino, impact energy, impact force, measurement system, PVDF film sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
1731 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time based DNA codes, writing DNA code from scratch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
1730 Differences in Stress and Total Deformation Due to Muscle Attachment to the Femur

Authors: Jeong-Woo Seo, Jin-Seung Choi, Dong-Won Kang, Jae-Hyuk Bae, Gye-Rae Tack

Abstract:

To achieve accurate and precise results of finite element analysis (FEA) of bones, it is important to represent the load/boundary conditions as identical as possible to the human body such as the bone properties, the type and force of the muscles, the contact force of the joints, and the location of the muscle attachment. In this study, the difference in the Von-Mises stress and the total deformation was compared by classifying them into Case 1, which shows the actual anatomical form of the muscle attached to the femur when the same muscle force was applied, and Case 2, which gives a simplified representation of the attached location. An inverse dynamical musculoskeletal model was simulated using data from an actual walking experiment to complement the accuracy of the muscular force, the input value of FEA. The FEA method using the results of the muscular force that were calculated through the simulation showed that the maximum Von-Mises stress and the maximum total deformation in Case 2 were underestimated by 8.42% and 6.29%, respectively, compared to Case 1. The torsion energy and bending moment at each location of the femur occurred via the stress ingredient. Due to the geometrical/morphological feature of the femur of having a long bone shape when the stress distribution is wide, as shown in Case 1, a greater Von-Mises stress and total deformation are expected from the sum of the stress ingredients. More accurate results can be achieved only when the muscular strength and the attachment location in the FEA of the bones and the attachment form are the same as those in the actual anatomical condition under the various moving conditions of the human body.

Keywords: Musculoskeletal modeling, Finite element analysis, Von-Mises stress, Deformation, Muscle attachment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
1729 Experimental Investigation on Tsunami Acting on Bridges

Authors: Iman Mazinani, Zubaidah Ismail, Ahmad Mustafa Hashim, Amirreza Saba

Abstract:

Two tragic tsunamis that devastated the west coast of Sumatra Island, Indonesia in 2004 and North East Japan in 2011 had damaged bridges to various extents. Tsunamis have resulted in the catastrophic deterioration of infrastructures i.e. coastal structures, utilities and transportation facilities. A bridge structure performs vital roles to enable people to perform activities related to their daily needs and for development. A damaged bridge needs to be repaired expeditiously. In order to understand the effects of tsunami forces on bridges, experimental tests are carried out to measure the characteristics of hydrodynamic force at various wave heights. Coastal bridge models designed at a 1:40 scale are used in a 24.0 m long hydraulic flume with a cross section of 1.5 m by 2.0 m. The horizontal forces and uplift forces in all cases show that forces increase nonlinearly with increasing wave amplitude.

Keywords: Tsunami, bridge, horizontal force, uplift force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
1728 Detente and Power - Conceptual Determination, Forms and Means of Education at the Preteen Age

Authors: Constantin Pehoiu

Abstract:

The scientific perspective, the practice area of physical education and sports activities improve power capacity in all its forms of expression, being a generator of the research topics. Today theories that strength training athletes and slow down development progress will affect the strength and flexibility are discredited. On the other hand there are sectors and / or samples whose results are sports of the way higher manifestation of power as a result of the composition of the force and velocity, being based in this respect on the systematic and continuous development of both bio-motric capacities said. Training of force for children was and is controversial. Teama de accidentări sau a stopării premature a procesului de creştere a făcut ca în trecut copiii să fie ţinuţi departe de lucrul cu diferite greutăţi.Fear of injury or premature stop the growth process in the past made the children to be kept away from working with different weights. Recent studies have shown that the risk of accidents is relatively small and the strength training can help prevent them. For example, most accidents occur at the level of athletics ligaments and tendons. From this point of view, it can be said that a progressive intervention of force training, optimal design, will help enhancing their process, such as athlete much better prepared to meet training requests and competitions. Preparation of force provides a solid basis for further phases in the highest performance.

Keywords: Detente, education, effort will, power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
1727 Real-time Haptic Modeling and Simulation for Prosthetic Insertion

Authors: Catherine A. Todd, Fazel Naghdy

Abstract:

In this work a surgical simulator is produced which enables a training otologist to conduct a virtual, real-time prosthetic insertion. The simulator provides the Ear, Nose and Throat surgeon with real-time visual and haptic responses during virtual cochlear implantation into a 3D model of the human Scala Tympani (ST). The parametric model is derived from measured data as published in the literature and accounts for human morphological variance, such as differences in cochlear shape, enabling patient-specific pre- operative assessment. Haptic modeling techniques use real physical data and insertion force measurements, to develop a force model which mimics the physical behavior of an implant as it collides with the ST walls during an insertion. Output force profiles are acquired from the insertion studies conducted in the work, to validate the haptic model. The simulator provides the user with real-time, quantitative insertion force information and associated electrode position as user inserts the virtual implant into the ST model. The information provided by this study may also be of use to implant manufacturers for design enhancements as well as for training specialists in optimal force administration, using the simulator. The paper reports on the methods for anatomical modeling and haptic algorithm development, with focus on simulator design, development, optimization and validation. The techniques may be transferrable to other medical applications that involve prosthetic device insertions where user vision is obstructed.

Keywords: Haptic modeling, medical device insertion, real-time visualization of prosthetic implantation, surgical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997