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On the Wreath Product
of Group by Some Other Groups
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Abstract—In this paper, we will generate the wreath product
M, wrM |, using only two permutations. Also, we will show the

structure of some groups containing the wreath product M, wrM, .
The structure of the groups founded is determined in terms of wreath
product (M, ,wrM ,)wrC, . Some related cases are also included.
Also, we will show that S132K+1 and A132K+1 can be generated

using the wreath product (M, wrM ,)wr C, and a transposition in
S132K+1 and an element of order 3 in A132K+1 . We will also show
that .S 130Kk41 and Al x4+ can be generated using the wreath

product M, wrM,, and an element of order k+1.

Keywords—Group presentation, group generated by n-cycle,
Wreath product, Mathieu group.

I. INTRODUCTION
AMMAS and Al-Amri [1], have shown that 4,, ., of

degree 2n +1 can be generated using a copy of .S, and
in A

an element of order 3 They also gave the

2n+1 -

symmetric generating set of Groups A, , and S, ., using
S, [5].

Shafee [2] showed that the groups A4

, and S, ., can

kn + kn+
be generated using the wreath product 4, wr S, and an
element of order £+1. Also she showed how to generate
Sins and A, ., symmetrically using n elements each of

order k+1.
In [3], Shafee and Al-Amri have shown that the groups

Ajoryy and S) 0., can be generated using the wreath

product M, ,wrM, and an element of order k+1.
The Mathieu group M, and M, are two groups of the

well known simple groups. In [6], they are fully described. In
a matter of fact, they can be faintly presented in different
ways. They have presentations in [6] as follows :

M, =<XY,Z|X"=Y'=(XZ)’=1,X"=X"=Y"=Y">

M, =<X,Y,Z|X" =Y’ =7 =(XY)' =(X2)’ =(Y2)="1, M,
XA (YZ)X = (YZ)* >.
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can be generated using two permutations, the first is of order
13 and an involution as follows

M, =<(12,...11)(1,2,3,7,6)(4,8,5,9,10) >. M, can be
generated using two permutations, the first is of order 17 and
an involution as follow:

M, =<(1,2,...,11)(1,2,3,7,6)(4,8,5,9,10)(1,12)(2,11)(3,6)

(4,8)(5,9)(7,10)>.

In this paper, we will generate the wreath product
M, wrM,, using only two permutations. Also, we show the

structure of some groups containing the wreath product
M, ,wrM,, . The structure of the groups founded is determined

in terms of wreath product(M,,wrM ,)wrC,. Some related

and

cases are also included. Also, we will show that § .

A

(M, wrM ,)wrC,and a transposition in g

can be generated using the wreath product

132K+1

132K +1 and an

element of order 3 in A4 We will also show that

Sizaknand A

product A/, wrM,, and an element of order & +1.

132K+1°

13241 can be generated using the wreath

II. PRELIMINARY RESULTS

DEFINITION 2.1 Let 4 and B be groups of permutations
on non empty sets (@ and (o, respectively. The wreath

product of 4 and B is denote by 4 wr B and defined as 4 wr
B=4"2 X, B , i.e., the direct product of | 2, | copies of 4 and
a mapping 6

THEOREM 2.2 [4] Let G be the group generated by the
n-cycle (1, 2, ..., n) and the 2-cycle (n, a). If 1<a <nisan
integer with n =am , then G =S, wrC,.

THEOREM 2.3 [4] Let 1<a#b <n be any integers. Let n

be an odd integer and let G be the group generated by the n-
cycle (1,2,...,n) and the 3-cycle (n,a,b). If the hef(n,a,p)=1,
then G =4, . While if n can be an even then g =5 .

THEOREM 2.4 [4] Let 1<a<n be any integer. Let
G=((1,2,..,n),(n,a)). . Ifhcf(n,a)=1,then G =§,,.

THEOREM 25[4] Let 1<a=#b <n be any integers. Let

n be an even integer and let G be the group generated by the
(n-1)-cycle (1,2,...,n —1) and 3-cycle (n,a,b). Then G = 4,,.
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III. THE RESULTS
THEOREM 3.1 The wreath product a7 wrh,, can be

generated using two permutations, the first is of order 132 and
the second is of order 4.

Proof : Let G = (X,Y), where: X=(1, 2, 3, 4, ..., 132), which
is a cycle of order 252, Y=(1, 9)(2, 6)(4, 5)(7, 8)(12, 20, 23,
31)(13, 17)(15, 16)(18, 19)(24, 28)(26, 27) (29, 30)(34, 42,
56, 64)(35, 39)(37, 38)(40, 41)(45, 53)(46, 50)(48, 49)(51,
52)(57, 61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71)(73, 74),
which is the product of two cycles each of order 4 and twenty
four transpositions. Let o :((Xy YIX Y T )“‘. Then

o, =(11,22, 33,44, 55, 66, 132),
which is a cycle of order 7. Let ¢, =¢,”'x . It is easy to show
that
a,=(1,2,3,..., 17)(18, 19, 20, ..., 22) ... (67, 68, 69,

132),
which is the product of seven cycles each of order 11. Let:

B=H o9, 20012,  23)(31, 53)34, 56),
B, =By '=(1, 9, 12, 20)2, 6)(4, 5) (7, 8)(13, 17)(15,

16)(18, 19)(23, 31, 45, 53)(24, 28)(26, 27)(29, 30)(34, 42)(35,
39)(37, 38)(40, 41)(46, 50)(48, 49)(51, 52)(56, 64)(57,
61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71) (73, 74),

-1,.3
po= g =0, 4512, 23), B, =47 =,
44)(55, 66) and g, = g2 = (17, 221)(68, 85).

(')

Let ;= ﬂ5ﬂ3 . Hence

03 =(12, 24)(48, 60).
Let a,=yx ’la{lX . We can conclude that

o, =(1,9)(2,6)(4,5)(7,8)(12,20)(13,17)(15,16)(18,19)(23,3
1)(24,28)(26,27)(29,30)(34,42)(35,39)(37,38)(40,41)(45,53)(4
6,50)(48,49)(51,52)(56,64)(57,61)(59,60)(62,63)(67,75)(68,7
2)(70,71)(73,74),
which is the product of twenty eight transpositions. Let
K ={a, ,a,)-Let §: K — M,,) be the mapping defined by

O(12i+)=j V1<i<10, V 1< <12

Since @ (a,)=(1, 2, ..., 12) and O (a,)=(1, 92, 6)(4,
5(7, 8), thenK=6(K)=M,. Let H,=(a;,a,).
Then H, =M, - Moreover, K conjugates f 0 into H,» H, into
H, and so it conjugates H, into H, , where

H, =<@,12+i,34+051+i,68+1,85+1,102+1,...,221+0)(i,12 + i)(34 + 1,68 + i) >

V 1<i <10. Hence we getM, wrM,,)c G. On the other
hand, Since X= a0, and Y= 0{40!3X ,thenG c M, wrM,,.

Hence G=M,wrM,, 0
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THEOREM 3.2 The wreath product (M, wrM ,)wrC, can

be generated using two permutations, the first is of order 132k
and an involution, for all integers k> 1.

Proof : Let o=(1,2, ..., 132k) and 7 =(k, 9k)(2k, 6k)(4k,
Sk)(Tk, 8K)(12k, 20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k,
19K)(24k, 28K)(26k, 27k)(29k, 30k)(34k, 42k, 56k, 64k) (35K,
39K)(37k, 38K)(40k, 41k)(45k, 53k) 46k, S0k)(48k, 49K) (51K,
52k)(57k, 61k) (59, 60Kk) (62k, 63k)(67k, T5Kk)(68k, T2k)(T0k,
71k). If k=1, then we get the group M |, wrM |, which can be
considered as the
(M, wrM ) wr C, wr<id>.

trivial wreath product

Assume that k& >1. Let

2

,o*, we get an element O o =(k, 2k, 3k, ...,

o=

i=0
i i
132k). Let Gl. =( 0°,1° ), be the groups acts on the sets
Fi ={ 1, kH, 2k+,.., 131k+ }, for all 1<i<k.

k
Since () /; = @, then we get the direct product G1 X G2 X
i=l

. X Gk , where, by theorem 3.1 eacth =M, wrM,,. Let
B=05"0=(1,2, ... Kk+1, k42, ..., 2K) ... (T6k+1, T6k+2,
.o 132k). Let H =(B)=C, - H ' conjugates G, into G,,
G2 into G3,...and Gk into Gl' Hence we get the wreath

product (M, )wrM , )wrC, < G. On the other hand,
since 0 f= (1, 2, ..., k, k+1, k+2, ..., 2k, ..., 131k+1,
13142, ..., 1320=0, then o e (M, wrM,)wrCy.
Hence G =< o,7 >= (M, ,wrM , )wrC,, .0

THEOREM 3.3 The wreath product (L,(11)wrM,,)wrS,

can be generated using three permutations, the first is of order
132k, the second and the third are involutions, for all k> 2.

Proof : Let o= (1,2, ..., 132k), T=(k, 9)(2k, 6k)(4k,
5k)(Tk, 8k)(12k, 20k, 23k, 31k)(13k 17k)(15k, 16k)(18K,
19k)(24k, 28k)(26k, 27k)(29%, 30k)(34k, 42k, 56k, 64k)(35k,
39k)(37k, 38K)(40k, 41k)(45k, 53k)(46k, S0k)(48k, 49k)(51k,
52k)(57k, 61k)(59%, 60k)(62k, 63k)(67k, T5k)(68k, T2k)(70k,

71k) and g = (1, 2)(k+1, k+2)2k+1, 2k+2) ... (131k+1,
1314+2). Since by Theorem 3.2,
<0O,T>= (M, wM,)wrC,and (1, 2, ..., k)(k+1, k+2, ...,
2k) ... (I131k+1, ..,132k)e (M, wrM,,)wrC, then
(A, 0 (k+1,..,2k)...(131k+1,...,132k) , ;) =S, . Hence
G =<G, T, ,u> = (M, wrM,)wrS, -0

COROLLARY 34 The wreath product
(M, wrM ,)wr A, can be generated using three

permutations, the first is of order 132k, the second is an
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involution and the third is of order 3, for all odd integers & >
3.

THEOREM 35 The wreath product
(M, wrM,,)wr(S, wrC,) can be generated using three

permutations, the first is of order 132k, the second and the
third are involutions, where Kk =am be any integer with
l<a<k.

Proof : Let o= (1, 2, ..., 132k), T =(k, 9k)(2k, 6k)(4k,
S5k)(Tk, SK)(12k, 20k, 23k, 31k)(13k, 17k)(15k, 16k)(18K,
19k)(24k, 28K)(26k, 27k)(29k, 30k)(34k, 42k, 56k, 64k) (35K,
39k)(37k, 38K)(40k, 41k)(45k, 53Kk) 46k, S0k)(48k, 49k) (51K,
52k)(57k, 61k)(59, 60k)(62k, 63k)(67k, T5k)(68k, 72k)(70k,
71k) and u = (k, a)2k, k+a)(3k, 2k+a) ... (132k, 131k+a).
Since by Theorem 3.2, < 0,7 >= (M, ,wrM,,)wrC, and

(A, oy B, 20 (131k+1, 132k)e
(M, ,wrM ,,)wr C, then

(A, s B,
132k, p)= (S, wrC,).
HenceG =(o, 7, u) = (M,,wrM ,)wr(S,wrC,) .0

20 ..(131k+1, ...,

THEOREM 3.6 S,;,;,,and A4;,,,, can be generated

using the wreath product (M, wrM,)wrC, and a

transposition in S,,,,, for all integers k& >1and an element

of order 3 in A,3,,,, forall odd integers k >1.

Proof: Let o= (1, 2, ..., 132k), T=(k, 9%)(2k, 6k)(4k,
Sk)(Tk, 8k)(12k, 20k, 23k, 31k)(13k, 17k)(15k, 16k)(18k,
19k)(24k, 28k)(26k, 27k)(29%, 30k)(34k, 42k, 56k, 64k)(35k,
39k)(37k, 38k)(40k, 41k)(45k, 53k)(46k, 50k)(48k, 49k)(51k,
52k)(57k, 61k) (59, 60k)(62k, 63k)(67k, T5k)(68k, 72k)(70k,
71k), p=(132k+1,1) and p'=(1,k, 132k+1) be four
permutations, of order 132k, 2, 2 and 3 respectively. Let
H =<O', Z'>.By theorem 3.2 H = (M, wrM,,)wrC, -

Case 1: Let G=<0', 7, ﬂ>. Let a=ou
a=(1,2,.,132k,132k +1)
order 132k +1.

, then

which is a cycle of

By theorem 24 G < 0,7, i’ >=< a, 4 >= S35, -
Case 2: Let G =(o, 7,4/
By theorem 2.5« ¢4,y >= A * Since 7 is an even

permutation, then G = 4., .-

THEOREM 3.7 S|;,,,,and A3,,,, can be generated
using the wreath product L,(11)wrM ,and an element of

order k +1 in S|3,,,,and A43,,,, forallintegers k >1.
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Proof: Let G:<G, T,,u), where, o=(1, 2, 3, ...,
132)(132(k-(k-1))*+1, ..., 132(k-(k-1))+132) ... (132(k-1)+1,
o 132(k-1)+132), 7=(1, 9)(2, 6)(4, 5)(7, 8)(12, 20, 23,
31)(13, 17)(15, 16)(18, 19)(24, 28)(26, 27)(29, 30)(34, 42, 56,
64)(35, 39)(37, 38)(40, 41)(45, 53)(46, 50)(48, 49)(51,
52)(57, 61)(59, 60)(62, 63)(67, 75)(68, 72)(70, 71)(73, 74) ...
(132(k-1)+1, 132(k-1)+9) ... (132(k-1)+73, 132(k-1)+74), and
1 =(132, 154, ...,132k, 132k+1), where k-i >0, be three
permutations of order 132, 4 and k+1 respectively. Let
H = <o-, z-> . Define the mapping @ as follows;

O2(k-i)y)=j V1<i<k,V 1<j<12

Hence H =< 0,7 >= M, wrM,- Let & = o it is easy to
show thatar =(1,2,3,...,132k +1), which is a cycle of
order 132k +1 Let
' =pu° =1,133,..,132(k - 1)+ 1,132k +1)
B= [ﬂ, ,u'] =(1,132,132k +1).
Since h.c. f(1,132,132k +1),

G =(o.r.u)=(a.B) Siz2es1 OF  Appg,  depending  on

and

then by theorem 2.3

whether £ is an odd or an even integer respectively. ¢
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