Search results for: Function optimization.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3679

Search results for: Function optimization.

289 A Security Model of Voice Eavesdropping Protection over Digital Networks

Authors: Supachai Tangwongsan, Sathaporn Kassuvan

Abstract:

The purpose of this research is to develop a security model for voice eavesdropping protection over digital networks. The proposed model provides an encryption scheme and a personal secret key exchange between communicating parties, a so-called voice data transformation system, resulting in a real-privacy conversation. The operation of this system comprises two main steps as follows: The first one is the personal secret key exchange for using the keys in the data encryption process during conversation. The key owner could freely make his/her choice in key selection, so it is recommended that one should exchange a different key for a different conversational party, and record the key for each case into the memory provided in the client device. The next step is to set and record another personal option of encryption, either taking all frames or just partial frames, so-called the figure of 1:M. Using different personal secret keys and different sets of 1:M to different parties without the intervention of the service operator, would result in posing quite a big problem for any eavesdroppers who attempt to discover the key used during the conversation, especially in a short period of time. Thus, it is quite safe and effective to protect the case of voice eavesdropping. The results of the implementation indicate that the system can perform its function accurately as designed. In this regard, the proposed system is suitable for effective use in voice eavesdropping protection over digital networks, without any requirements to change presently existing network systems, mobile phone network and VoIP, for instance.

Keywords: Computer Security, Encryption, Key Exchange, Security Model, Voice Eavesdropping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
288 A Software Framework for Predicting Oil-Palm Yield from Climate Data

Authors: Mohd. Noor Md. Sap, A. Majid Awan

Abstract:

Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.

Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
287 Simple Infrastructure in Measuring Countries e-Government

Authors: Sukhbaatar Dorj, Erdenebaatar Altangerel

Abstract:

As alternative to existing e-government measuring models, here proposed a new customer centric, service oriented, simple approach for measuring countries e-Governments. If successfully implemented, built infrastructure will provide a single egovernment index number for countries. Main schema is as follows. Country CIO or equal position government official, at the beginning of each year will provide to United Nations dedicated web site 4 numbers on behalf of own country: 1) Ratio of available online public services, to total number of public services, 2) Ratio of interagency inter ministry online public services to total number of available online public services, 3) Ratio of total number of citizen and business entities served online annually to total number of citizen and business entities served annually online and physically on those services, 4) Simple index for geographical spread of online served citizen and business entities. 4 numbers then combined into one index number by mathematical Average function. In addition to 4 numbers 5th number can be introduced as service quality indicator of online public services. If in ordering of countries index number is equal, 5th criteria will be used. Notice: This approach is for country’s current e-government achievement assessment, not for e-government readiness assessment.

Keywords: Countries e-government index, e-government, infrastructure for measuring e-government, measuring e-government.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
286 Turbine Follower Control Strategy Design Based on Developed FFPP Model

Authors: Ali Ghaffari, Mansour Nikkhah Bahrami, Hesam Parsa

Abstract:

In this paper a comprehensive model of a fossil fueled power plant (FFPP) is developed in order to evaluate the performance of a newly designed turbine follower controller. Considering the drawbacks of previous works, an overall model is developed to minimize the error between each subsystem model output and the experimental data obtained at the actual power plant. The developed model is organized in two main subsystems namely; Boiler and Turbine. Considering each FFPP subsystem characteristics, different modeling approaches are developed. For economizer, evaporator, superheater and reheater, first order models are determined based on principles of mass and energy conservation. Simulations verify the accuracy of the developed models. Due to the nonlinear characteristics of attemperator, a new model, based on a genetic-fuzzy systems utilizing Pittsburgh approach is developed showing a promising performance vis-à-vis those derived with other methods like ANFIS. The optimization constraints are handled utilizing penalty functions. The effect of increasing the number of rules and membership functions on the performance of the proposed model is also studied and evaluated. The turbine model is developed based on the equation of adiabatic expansion. Parameters of all evaluated models are tuned by means of evolutionary algorithms. Based on the developed model a fuzzy PI controller is developed. It is then successfully implemented in the turbine follower control strategy of the plant. In this control strategy instead of keeping control parameters constant, they are adjusted on-line with regard to the error and the error rate. It is shown that the response of the system improves significantly. It is also shown that fuel consumption decreases considerably.

Keywords: Attemperator, Evolutionary algorithms, Fossil fuelled power plant (FFPP), Fuzzy set theory, Gain scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
285 Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling

Authors: Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiathmakjornr

Abstract:

For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast.

Keywords: Railway ballast, coal fouling, discrete element modelling, discrete element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
284 Flow Visualization and Characterization of an Artery Model with Stenosis

Authors: Anis S. Shuib, Peter R. Hoskins, William J. Easson

Abstract:

Cardiovascular diseases, principally atherosclerosis, are responsible for 30% of world deaths. Atherosclerosis is due to the formation of plaque. The fatty plaque may be at risk of rupture, leading typically to stroke and heart attack. The plaque is usually associated with a high degree of lumen reduction, called a stenosis.It is increasingly recognized that the initiation and progression of disease and the occurrence of clinical events is a complex interplay between the local biomechanical environment and the local vascular biology. The aim of this study is to investigate the flow behavior through a stenosed artery. A physical experiment was performed using an artery model and blood analogue fluid. An axisymmetric model constructed consists of contraction and expansion region that follow a mathematical form of cosine function. A 30% diameter reduction was used in this study. The flow field was measured using particle image velocimetry (PIV). Spherical particles with 20μm diameter were seeded in a water-glycerol-NaCl mixture. Steady flow Reynolds numbers are 250. The area of interest is the region after the stenosis where the flow separation occurs. The velocity field was measured and the velocity gradient was investigated. There was high particle concentration in the recirculation zone. High velocity gradient formed immediately after the stenosis throat created a lift force that enhanced particle migration to the flow separation area.

Keywords: Stenosis artery, Biofluid mechanics, PIV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
283 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269
282 Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler

Authors: Yehia A. Eldrainy, Mohammad Nazri Mohd. Jaafar, Tholudin Mat Lazim

Abstract:

This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.

Keywords: cold flow, numerical simulation, combustor;turbulence, axial swirler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
281 Reclaiming Pedestrian Space from Car Dominated Neighborhoods

Authors: Andreas L. Savvides

Abstract:

For a long time as a result of accommodating car traffic, planning ideologies in the past put a low priority on public space, pedestrianism and the role of city space as a meeting place for urban dwellers. In addition, according to authors such as Jan Gehl, market forces and changing architectural perceptions began to shift the focus of planning practice from the integration of public space in various pockets around the contemporary city to individual buildings. Eventually, these buildings have become increasingly more isolated and introverted and have turned their backs to the realm of the public space adjoining them. As a result of this practice, the traditional function of public space as a social forum for city dwellers has in many cases been reduced or even phased out. Author Jane Jacobs published her seminal book “The Death and Life of Great American Cities" more than fifty years ago, but her observations and predictions at the time still ring true today, where she pointed out how the dramatic increase in car traffic and its accommodation by the urban planning ideology that was brought about by the Modern movement has prompted a separation of the uses of the city. At the same time it emphasizes free standing buildings that threaten urban space and city life and result in underutilized and lifeless urban cores. In this discussion context, the aim of this paper is to showcase a reversal of just such a situation in the case of the Dasoupolis neighborhood in Strovolos, Cyprus, where enlightened urban design practice has see the reclamation of pedestrian space in a car dominated area.

Keywords: Urban Design, Public Space, Right to the City, Accessibility, Mobility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
280 Creating Shared Value: A Paradigm Shift from Corporate Social Responsibility to Creating Shared Value

Authors: Bolanle Deborah Motilewa, E.K. Rowland Worlu, Gbenga Mayowa Agboola, Marvellous Aghogho Chidinma Gberevbie

Abstract:

Businesses operating in the modern business world are faced with varying challenges; amongst which is the need to ensure that they are performing their societal function of being responsible in the society in which they operate. This responsibility to society is generally termed as corporate social responsibility. For many years, the practice of corporate social responsibility (CSR) was solely philanthropic, where organizations gave ‘charity’ or ‘alms’ to society, without any link to the organization’s mission and objectives. However, there has arisen a shift in the application of CSR from an act of philanthropy to a strategy with a business model engaged in by organizations to create a win-win situation of performing their societal obligation, whilst simultaneously performing their economic obligation. In more recent times, the term has moved from CSR to creating shared value, which is simply corporate policies and practices that enhance the competitiveness of a business organization while simultaneously advancing social and economic conditions in the communities in which the company operates. Creating shared value has in more recent light found more meaning in underdeveloped countries, faced with deep societal challenges that businesses can solve whilst creating economic value. This study thus reviews literature on CSR, conceptualizing the shift to creating shared value and finally viewing its potential significance in Africa’s development.

Keywords: Corporate social responsibility, shared value, Africapitalism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
279 Performance Characteristics of Some Small Scale Wind Turbines Fabricated in Tanzania

Authors: Talam K. E, Kainkwa R. M.

Abstract:

In this study, a field testing has been carried out to assess the power characteristics of some small scale wind turbines fabricated by one native technician from Tanzania. Two Horizontal Axis Wind Turbines (HAWTs), one with five and other with sixteen blades were installed at a height of 2.4m above the ground. The rotation speed of the rotor blade and wind speed approaching the turbines were measured simultaneously. The data obtained were used to determine how the power coefficient varies as a function of tip speed ratio and also the way in which the output power compares with available power in the wind for each turbine. For the sixteen-bladed wind turbine the maximum value of power coefficient of about 0.14 was found to occur at a tip speed ratio of around 0.65 while for the five bladed, these extreme values were respectively attained at approximately 0.2 and 1.7. The five bladed-wind turbine was found to have a higher power efficiency of about 37.5% which is higher compared to the sixteen bladed wind turbine whose corresponding value was 14.37%. This is what would be expected, as the smaller the number of blades of a wind turbine, the higher the electric power efficiency and vice versa. Some of the main reasons for the low efficiency of these machines may be due to the low aerodynamic efficiency of the turbine or low efficiency of the transmission mechanisms such as gearbox and generator which were not examined in this study. It is recommended that some other researches be done to investigate the power efficiency of such machines from different manufacturers in the country. The manufacturers should also be encouraged to use fewer blades in their designs so as to improve the efficiency and at the same time reduce materials used to fabricate the blades. The power efficiency of the electric generators used in the locally fabricated wind turbines should also be examined.

Keywords: Tip speed ratio, Power coefficients and power efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3027
278 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.

Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
277 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
276 Experimental Evaluation of Drilling Damage on the Strength of Cores Extracted from RC Buildings

Authors: A. Masi, A. Digrisolo, G. Santarsiero

Abstract:

Concrete strength evaluated from compression tests on cores is affected by several factors causing differences from the in-situ strength at the location from which the core specimen was extracted. Among the factors, there is the damage possibly occurring during the drilling phase that generally leads to underestimate the actual in-situ strength. In order to quantify this effect, in this study two wide datasets have been examined, including: (i) about 500 core specimens extracted from Reinforced Concrete existing structures, and (ii) about 600 cube specimens taken during the construction of new structures in the framework of routine acceptance control. The two experimental datasets have been compared in terms of compression strength and specific weight values, accounting for the main factors affecting a concrete property, that is type and amount of cement, aggregates' grading, type and maximum size of aggregates, water/cement ratio, placing and curing modality, concrete age. The results show that the magnitude of the strength reduction due to drilling damage is strongly affected by the actual properties of concrete, being inversely proportional to its strength. Therefore, the application of a single value of the correction coefficient, as generally suggested in the technical literature and in structural codes, appears inappropriate. A set of values of the drilling damage coefficient is suggested as a function of the strength obtained from compressive tests on cores.

Keywords: RC Buildings, Assessment, In-situ concrete strength, Core testing, Drilling damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
275 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: Hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218
274 A Neutral Set Approach for Applying TOPSIS in Maintenance Strategy Selection

Authors: C. Ardil

Abstract:

This paper introduces the concept of neutral sets (NSs) and explores various operations on NSs, along with their associated properties. The foundation of the Neutral Set framework lies in ontological neutrality and the principles of logic, including the Law of Non-Contradiction. By encompassing components for possibility, indeterminacy, and necessity, the NS framework provides a flexible representation of truth, uncertainty, and necessity, accommodating diverse ontological perspectives without presupposing specific existential commitments. The inclusion of Possibility acknowledges the spectrum of potential states or propositions, promoting neutrality by accommodating various viewpoints. Indeterminacy reflects the inherent uncertainty in understanding reality, refraining from making definitive ontological commitments in uncertain situations. Necessity captures propositions that must hold true under all circumstances, aligning with the principle of logical consistency and implicitly supporting the Law of Non-Contradiction. Subsequently, a neutral set-TOPSIS approach is applied in the maintenance strategy selection problem, demonstrating the practical applicability of the NS framework. The paper further explores uncertainty relations and presents the fundamental preliminaries of NS theory, emphasizing its role in fostering ontological neutrality and logical coherence in reasoning.

Keywords: Uncertainty sets, neutral sets, maintenance strategy selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, distance function, multiple attribute, decision making, selection method, uncertainty, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21
273 The Role of Chemerin and Myostatin after Physical Activity

Authors: M. J. Pourvaghar, M. E. Bahram

Abstract:

Obesity and overweight is one of the most common metabolic disorders in industrialized countries and in developing countries. One consequence of pathological obesity is cardiovascular disease and metabolic syndrome. Chemerin is an adipocyne that plays a role in the regulation of the adipocyte function and the metabolism of glucose in the liver and musculoskeletal system. Most likely, chemerin is involved in obesity-related disorders such as type 2 diabetes and cardiovascular disease. Aerobic exercises reduce the level of chemerin and cause macrophage penetration into fat cells and inflammatory factors. Several efforts have been made to clarify the cellular and molecular mechanisms of hypertrophy and muscular atrophy. Myostatin, a new member of the TGF-β family, is a transforming growth factor β that its expression negatively regulates the growth of the skeletal muscle; and the increase of this hormone has been observed in conditions of muscular atrophy. While in response to muscle overload, its levels decrease after the atrophy period, TGF-β is the most important cytokine in the development of skeletal muscle. Myostatin plays an important role in muscle control, and animal and human studies show a negative role of myostatin in the growth of skeletal muscle. Separation of myostatin from Golgi begins on the ninth day of the onset period and continues until birth at all times of muscle growth. Higher levels of myostatin are found in obese people. Resistance training for 10 weeks could reduce levels of plasma myostatin.

Keywords: Chemerin, myostatin, obesity, physical activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
272 Electroencephalography Activity during Sensory Organization Balance Test

Authors: Tariq Ali Gujar, Anita Hökelmann

Abstract:

Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.

Keywords: Balance, electroencephalography activity, somatosensory, visual, vestibular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
271 Computing Entropy for Ortholog Detection

Authors: Hsing-Kuo Pao, John Case

Abstract:

Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.

Keywords: compression, decision tree, entropy, ortholog, ROC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
270 Flow Regime Characterization in a Diseased Artery Model

Authors: Anis S. Shuib, Peter R. Hoskins, William J. Easson

Abstract:

Cardiovascular disease mostly in the form of atherosclerosis is responsible for 30% of all world deaths amounting to 17 million people per year. Atherosclerosis is due to the formation of plaque. The fatty plaque may be at risk of rupture, leading typically to stroke and heart attack. The plaque is usually associated with a high degree of lumen reduction, called a stenosis. The initiation and progression of the disease is strongly linked to the hemodynamic environment near the vessel wall. The aim of this study is to validate the flow of blood mimic through an arterial stenosis model with computational fluid dynamics (CFD) package. In experiment, an axisymmetric model constructed consists of contraction and expansion region that follow a mathematical form of cosine function. A 30% diameter reduction was used in this study. Particle image velocimetry (PIV) was used to characterize the flow. The fluid consists of rigid spherical particles suspended in waterglycerol- NaCl mixture. The particles with 20 μm diameter were selected to follow the flow of fluid. The flow at Re=155, 270 and 390 were investigated. The experimental result is compared with FLUENT simulated flow that account for viscous laminar flow model. The results suggest that laminar flow model was sufficient to predict flow velocity at the inlet but the velocity at stenosis throat at Re =390 was overestimated. Hence, a transition to turbulent regime might have been developed at throat region as the flow rate increases.

Keywords: Atherosclerosis, Particle-laden flow, Particle imagevelocimetry, Stenosis artery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
269 Numerical Investigation of the Performance of a Vorsyl Separator Using a Euler-Lagrange Approach

Authors: Guozhen Li, Philip Hall, Nick Miles, Tao Wu, Jie Dong

Abstract:

This paper presents a Euler-Lagrange model of the water-particles multiphase flows in a Vorsyl separator where particles with different densities are separated. A series of particles with their densities ranging from 760 kg/m3 to 1380 kg/m3 were fed into the Vorsyl separator with water by means of tangential inlet. The simulation showed that the feed materials acquired centrifugal force which allows most portion of the particles with a density less than water to move to the center of the separator, enter the vortex finder and leave the separator through the bottom outlet. While the particles heavier than water move to the wall, reach the throat area and leave the separator through the side outlet. The particles were thus separated and particles collected at the bottom outlet are pure and clean. The influence of particle density on separation efficiency was investigated which demonstrated a positive correlation of the separation efficiency with increasing density difference between medium liquid and the particle. In addition, the influence of the split ratio on the performance was studied which showed that the separation efficiency of the Vorsyl separator can be improved by the increase of split ratio. The simulation also suggested that the Vorsyl separator may not function when the feeding velocity is smaller than a certain critical feeding in velocity. In addition, an increasing feeding velocity gives rise to increased pressure drop, however does not necessarily increase the separation efficiency.

Keywords: Vorsyl separator, separation efficiency, CFD, split ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
268 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier

Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari

Abstract:

Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.

Keywords: Cyanex 272, emulsion liquid membrane, multiwalled carbon nanotubes, nanofluid, response surface methodology, Samarium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
267 Development of Manufacturing Simulation Model for Semiconductor Fabrication

Authors: Syahril Ridzuan Ab Rahim, Ibrahim Ahmad, Mohd Azizi Chik, Ahmad Zafir Md. Rejab, and U. Hashim

Abstract:

This research presents the development of simulation modeling for WIP management in semiconductor fabrication. Manufacturing simulation modeling is needed for productivity optimization analysis due to the complex process flows involved more than 35 percent re-entrance processing steps more than 15 times at same equipment. Furthermore, semiconductor fabrication required to produce high product mixed with total processing steps varies from 300 to 800 steps and cycle time between 30 to 70 days. Besides the complexity, expansive wafer cost that potentially impact the company profits margin once miss due date is another motivation to explore options to experiment any analysis using simulation modeling. In this paper, the simulation model is developed using existing commercial software platform AutoSched AP, with customized integration with Manufacturing Execution Systems (MES) and Advanced Productivity Family (APF) for data collections used to configure the model parameters and data source. Model parameters such as processing steps cycle time, equipment performance, handling time, efficiency of operator are collected through this customization. Once the parameters are validated, few customizations are made to ensure the prior model is executed. The accuracy for the simulation model is validated with the actual output per day for all equipments. The comparison analysis from result of the simulation model compared to actual for achieved 95 percent accuracy for 30 days. This model later was used to perform various what if analysis to understand impacts on cycle time and overall output. By using this simulation model, complex manufacturing environment like semiconductor fabrication (fab) now have alternative source of validation for any new requirements impact analysis.

Keywords: Advanced Productivity Family (APF), Complementary Metal Oxide Semiconductor (CMOS), Manufacturing Execution Systems (MES), Work In Progress (WIP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3143
266 Utilizing Analytic Hierarchy Process to Analyze Consumers- Purchase Evaluation Factors of Smartphones

Authors: Yi-Chung Hu, Yu-Lin Liao

Abstract:

Due to the fast development of technology, the competition of technological products is turbulent; therefore, it is important to understand the market trend, consumers- demand and preferences. As the smartphones are prevalent, the main purpose of this paper is to utilize Analytic Hierarchy Process (AHP) to analyze consumer-s purchase evaluation factors of smartphones. Through the AHP expert questionnaire, the smartphones- main functions are classified as “user interface", “mobile commerce functions", “hardware and software specifications", “entertainment functions" and “appearance and design", five aspects to analyze the weights. Then four evaluation criteria are evaluated under each aspect to rank the weights. Based on an analysis of data shows that consumers consider when purchase factors are “hardware and software specifications", “user interface", “appearance and design", “mobile commerce functions" and “entertainment functions" in sequence. The “hardware and software specifications" aspect obtains the weight of 33.18%; it is the most important factor that consumers are taken into account. In addition, the most important evaluation criteria are central processing unit, operating system, touch screen, and battery function in sequence. The results of the study can be adopted as reference data for mobile phone manufacturers in the future on the design and marketing strategy to satisfy the voice of customer.

Keywords: Analytic Hierarchy Process (AHP), evaluation criteria, purchase evaluation factors, smartphone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
265 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture

Authors: Osama Al-Sehail

Abstract:

This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.   

Keywords: Biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
264 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: Finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
263 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: Acid treatment, carbonate, diversion, sandstone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4007
262 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures

Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse

Abstract:

A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.

Keywords: Industrial sludge drying, heat transfer, mass transfer, mathematical modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
261 Optimal Design of a PV/Diesel Hybrid System for Decentralized Areas through Economic Criteria

Authors: D. Tsuanyo, D. Aussel, Y. Azoumah, P. Neveu

Abstract:

An innovative concept called “Flexy-Energy” is developing at 2iE. This concept aims to produce electricity at lower cost by smartly mix different available energy sources in accordance to the load profile of the region. With a higher solar irradiation and due to the fact that Diesel generator are massively used in sub-Saharan rural areas, PV/Diesel hybrid systems could be a good application of this concept and a good solution to electrify this region, provided they are reliable, cost effective and economically attractive to investors. Presentation of the developed approach is the aims of this paper. The PV/Diesel hybrid system designed consists to produce electricity and/or heat from a coupling between Diesel Diesel generators and PV panels without batteries storage, while ensuring the substitution of gasoil by bio-fuels available in the area where the system will be installed. The optimal design of this system is based on his technical performances; the Life Cycle Cost (LCC) and Levelized Cost of Energy are developed and use as economic criteria. The Net Present Value (NPV), the internal rate of return (IRR) and the discounted payback (DPB) are also evaluated according to dual electricity pricing (in sunny and unsunny hours). The PV/Diesel hybrid system obtained is compared to the standalone Diesel Diesel generators. The approach carried out in this paper has been applied to Siby village in Mali (Latitude 12 ° 23'N 8 ° 20'W) with 295 kWh as daily demand.This approach provides optimal physical characteristics (size of the components, number of component) and dynamical characteristics in real time (number of Diesel generator on, their load rate, fuel specific consumptions, and PV penetration rate) of the system. The system obtained is slightly cost effective; but could be improved with optimized tariffing strategies.

Keywords: Investments criteria, Optimization, PV hybrid, Sizing, Rural electrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
260 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Authors: Panagiotis Karadimos, Leonidas Anthopoulos

Abstract:

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.

Keywords: Actual cost and duration, attribute selection, bridge projects, neural networks, predicting models, FANN TOOL, WEKA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083