Search results for: Fractional order controller
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5882

Search results for: Fractional order controller

5552 Robust Position Control of an Electromechanical Actuator for Automotive Applications

Authors: Markus Reichhartinger, Martin Horn

Abstract:

In this paper, the position control of an electronic throttle actuator is outlined. The dynamic behavior of the actuator is described with the help of an uncertain plant model. This motivates the controller design based on the ideas of higher-order slidingmodes. As a consequence anti-chattering techniques can be omitted. It is shown that the same concept is applicable to estimate unmeasureable signals. The control law and the observer are implemented on an electronic control unit. Results achieved by numerical simulations and real world experiments are presented and discussed.

Keywords: higher order sliding-mode, throttle actuator, electromechanicalsystem, robust and nonlinear control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
5551 Design of IMC-PID Controller Cascaded Filter for Simplified Decoupling Control System

Authors: Le Linh, Truong Nguyen Luan Vu, Le Hieu Giang

Abstract:

In this work, the IMC-PID controller cascaded filter based on Internal Model Control (IMC) scheme is systematically proposed for the simplified decoupling control system. The simplified decoupling is firstly introduced for multivariable processes by using coefficient matching to obtain a stable, proper, and causal simplified decoupler. Accordingly, transfer functions of decoupled apparent processes can be expressed as a set of n equivalent independent processes and then derived as a ratio of the original open-loop transfer function to the diagonal element of the dynamic relative gain array. The IMC-PID controller in series with filter is then directly employed to enhance the overall performance of the decoupling control system while avoiding difficulties arising from properties inherent to simplified decoupling. Some simulation studies are considered to demonstrate the simplicity and effectiveness of the proposed method. Simulations were conducted by tuning various controllers of the multivariate processes with multiple time delays. The results indicate that the proposed method consistently performs well with fast and well-balanced closed-loop time responses.

Keywords: Coefficient matching method, internal model control scheme, PID controller cascaded filter, simplified decoupler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
5550 Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools

Authors: Chin-Yin Chen, Chi-Cheng Cheng

Abstract:

This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.

Keywords: Machine tools, integrated structure and control design, design for control, multilevel decomposition, quantitative feedback theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
5549 Intelligent Off-Grid Photovoltaic Supply Systems

Authors: Prashant Kumar Soori, Parthasarathy L., Masami Okano, Awet Mana

Abstract:

Off-grid Photovoltaic (PV) systems are empowering technology in underdeveloped countries like Ethiopia where many people live far away from the modern world. Where there is relatively low energy consumption, providing energy from grid systems is not commercially cost-effective. As a result, significant people groups worldwide stay without access to electricity. One remote village in northern Ethiopia was selected by the United Nations for a pilot project to improve its living conditions. As part of this comprehensive project, an intelligent charge controller circuit for Off-grid PV systems was designed for the clinic in that village. In this paper, design aspects of an intelligent charge controller unit and its load driver circuits are discussed for an efficient utilization of PVbased supply systems.

Keywords: Compact Fluorescent Lamp (CFL), FluorescentLamp, Intelligent Charge Controller Unit (ICCU), Light EmittingDiode (LED), Photovoltaic (PV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
5548 Chattering Phenomenon Supression of Buck Boost DC-DC Converter with Fuzzy Sliding Modes Control

Authors: Abdelaziz Sahbani, Kamel Ben Saad, Mohamed Benrejeb

Abstract:

This paper proposes a Fuzzy Sliding Mode Control (FSMC) as a control strategy for Buck-Boost DC-DC converter. The proposed fuzzy controller specifies changes in the control signal based on the knowledge of the surface and the surface change to satisfy the sliding mode stability and attraction conditions. The performances of the proposed fuzzy sliding controller are compared to those obtained by a classical sliding mode controller. The satisfactory simulation results show the efficiency of the proposed control law which reduces the chattering phenomenon. Moreover, the obtained results prove the robustness of the proposed control law against variation of the load resistance and the input voltage of the studied converter.

Keywords: Buck Boost converter, Sliding Mode Control, Fuzzy Sliding Mode Control, robustness, chattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
5547 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems

Authors: N. Kaewpraek, W. Assawinchaichote

Abstract:

This paper considers an H TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an HTS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.

Keywords: H∞ fuzzy control, LMI, Takagi-Sugano (TS) fuzzy model, nonlinear dynamic systems, state-derivative feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
5546 Takagi-Sugeno Fuzzy Controller for a 3-DOF Stabilized Platform with Adaptive Decoupling Scheme

Authors: S. Leghmizi, S. Liu, F. Naeim

Abstract:

This paper presents a fuzzy control system for a three degree of freedom (3-DOF) stabilized platform with explicit decoupling scheme. The system under consideration is a system with strong interactions between three channels. By using the concept of decentralized control, a control structure is developed that is composed of three control loops, each of which is associated with a single-variable fuzzy controller and a decoupling unit. Takagi-Sugeno (TS) fuzzy control algorithm is used to implement the fuzzy controller. The decoupling units design is based on the adaptive theory reasoning. Simulation tests were established using Simulink of Matlab. The obtained results have demonstrated the feasibility and effectiveness of the proposed approach. Simulation results are represented in this paper.

Keywords: 3-DOF platform of a ship carried antenna, the concept of decentralized control, Takagi-Sugeno (TS) fuzzy control algorithm, Simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
5545 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes

Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi

Abstract:

Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.

Keywords: Back stepping, Bergman Model, Nonlinear control, Sliding mode control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3497
5544 Fuzzy Rules Emulated Network Adaptive Controller with Unfixed Learning Rate for a Class of Unknown Discrete-time Nonlinear Systems

Authors: Chidentree Treesatayapun

Abstract:

A direct adaptive controller for a class of unknown nonlinear discrete-time systems is presented in this article. The proposed controller is constructed by fuzzy rules emulated network (FREN). With its simple structure, the human knowledge about the plant is transferred to be if-then rules for setting the network. These adjustable parameters inside FREN are tuned by the learning mechanism with time varying step size or learning rate. The variation of learning rate is introduced by main theorem to improve the system performance and stabilization. Furthermore, the boundary of adjustable parameters is guaranteed through the on-line learning and membership functions properties. The validation of the theoretical findings is represented by some illustrated examples.

Keywords: Neuro-Fuzzy, learning algorithm, nonlinear discrete time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
5543 Maximum Power Point Tracking by ANN Controller for a Standalone Photovoltaic System

Authors: K. Ranjani, M. Raja, B. Anitha

Abstract:

In this paper, ANN controller for maximum power point tracking of photovoltaic (PV) systems is proposed and PV modeling is discussed. Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. ANN controller with hill-climbing algorithm offers fast and accurate converging to the maximum operating point during steady-state and varying weather conditions compared to conventional hill-climbing. The proposed algorithm gives a good maximum power operation of the PV system. Simulation results obtained are presented and compared with the conventional hill-climbing algorithm. Simulation results show the effectiveness of the proposed technique.

Keywords: Artificial neural network (ANN), hill-climbing, maximum power-point tracking (MPPT), photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3103
5542 Active Power Filter dimensioning Using a Hysteresis Current Controller

Authors: Tarek A. Kasmieh, Hassan S. Omran

Abstract:

This paper aims to give a full study of the dynamic behavior of a mono-phase active power filter. First, the principle of the parallel active power filter will be introduced. Then, a dimensioning procedure for all its components will be explained in detail, such as the input filter, the current and voltage controllers. This active power filter is simulated using OrCAD program showing the validity of the theoretical study.

Keywords: Active power filter, Power Quality, Hysteresiscurrent controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
5541 Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.

Keywords: Automatic generation control (AGC), Generation rate constraint (GRC), Thyristor control phase shifter (TCPS), Particle swarm optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
5540 An Intelligent Controller Augmented with Variable Zero Lag Compensation for Antilock Braking System

Authors: Benjamin C. Agwah, Paulinus C. Eze

Abstract:

Antilock braking system (ABS) is one of the important contributions by the automobile industry, designed to ensure road safety in such way that vehicles are kept steerable and stable when during emergency braking. This paper presents a wheel slip-based intelligent controller with variable zero lag compensation for ABS. It is required to achieve a very fast perfect wheel slip tracking during hard braking condition and eliminate chattering with improved transient and steady state performance, while shortening the stopping distance using effective braking torque less than maximum allowable torque to bring a braking vehicle to a stop. The dynamic of a vehicle braking with a braking velocity of 30 ms⁻¹ on a straight line was determined and modelled in MATLAB/Simulink environment to represent a conventional ABS system without a controller. Simulation results indicated that system without a controller was not able to track desired wheel slip and the stopping distance was 135.2 m. Hence, an intelligent control based on fuzzy logic controller (FLC) was designed with a variable zero lag compensator (VZLC) added to enhance the performance of FLC control variable by eliminating steady state error, provide improve bandwidth to eliminate the effect of high frequency noise such as chattering during braking. The simulation results showed that FLC-VZLC provided fast tracking of desired wheel slip, eliminated chattering, and reduced stopping distance by 70.5% (39.92 m), 63.3% (49.59 m), 57.6% (57.35 m) and 50% (69.13 m) on dry, wet, cobblestone and snow road surface conditions respectively. Generally, the proposed system used effective braking torque that is less than the maximum allowable braking torque to achieve efficient wheel slip tracking and overall robust control performance on different road surfaces.

Keywords: ABS, Fuzzy Logic Controller, Variable Zero Lag Compensator, Wheel Slip Tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279
5539 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.

Keywords: Matching, OpenFlow tables, POX controller, SDN, table-miss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
5538 Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone

Authors: Ibrahim F. Jasim

Abstract:

This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.

Keywords: Dead Zone, Nonlinear Systems, Observer, Robust Adaptive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
5537 A Novel Digital Implementation of AC Voltage Controller for Speed Control of Induction Motor

Authors: Ali M. Eltamaly, A. I. Alolah, R. Hamouda, M. Y. Abdulghany

Abstract:

In this paper a novel, simple and reliable digital firing scheme has been implemented for speed control of three-phase induction motor using ac voltage controller. The system consists of three-phase supply connected to the three-phase induction motor via three triacs and its control circuit. The ac voltage controller has three modes of operation depending on the shape of supply current. The performance of the induction motor differs in each mode where the speed is directly proportional with firing angle in two modes and inversely in the third one. So, the control system has to detect the current mode of operation to choose the correct firing angle of triacs. Three sensors are used to feed the line currents to control system to detect the mode of operation. The control strategy is implemented using a low cost Xilinx Spartan-3E field programmable gate array (FPGA) device. Three PI-controllers are designed on FPGA to control the system in the three-modes. Simulation of the system is carried out using PSIM computer program. The simulation results show stable operation for different loading conditions especially in mode 2/3. The simulation results have been compared with the experimental results from laboratory prototype.

Keywords: FPGA, Induction motor, PSIM, triac, Voltage controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2872
5536 Battery/Supercapacitor Emulator for Chargers Functionality Testing

Authors: S. Farag, A. Kupeman

Abstract:

In this paper, design of solid-state battery/supercapacitor emulator based on dc-dc boost converter is described. The emulator mimics charging behavior of any storage device based on a predefined behavior set by the user. The device is operated by a two-level control structure: high-level emulating controller and low- level input voltage controller. Simulation and experimental results are shown to demonstrate the emulator operation.

Keywords: Battery, Charger, Energy, Storage, Supercapacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2817
5535 Power System with PSS and FACTS Controller: Modelling, Simulation and Simultaneous Tuning Employing Genetic Algorithm

Authors: Sidhartha Panda, Narayana Prasad Padhy

Abstract:

This paper presents a systematic procedure for modelling and simulation of a power system installed with a power system stabilizer (PSS) and a flexible ac transmission system (FACTS)-based controller. For the design purpose, the model of example power system which is a single-machine infinite-bus power system installed with the proposed controllers is developed in MATLAB/SIMULINK. In the developed model synchronous generator is represented by model 1.1. which includes both the generator main field winding and the damper winding in q-axis so as to evaluate the impact of PSS and FACTS-based controller on power system stability. The model can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, to avoid adverse interactions, PSS and FACTS-based controller are simultaneously designed employing genetic algorithm (GA). The non-linear simulation results are presented for the example power system under various disturbance conditions to validate the effectiveness of the proposed modelling and simultaneous design approach.

Keywords: Genetic algorithm, modelling and simulation, MATLAB/SIMULINK, power system stabilizer, thyristor controlledseries compensator, simultaneous design, power system stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111
5534 GSA-Based Design of Dual Proportional Integral Load Frequency Controllers for Nonlinear Hydrothermal Power System

Authors: M. Elsisi, M. Soliman, M. A. S. Aboelela, W. Mansour

Abstract:

This paper considers the design of Dual Proportional- Integral (DPI) Load Frequency Control (LFC), using gravitational search algorithm (GSA). The design is carried out for nonlinear hydrothermal power system where generation rate constraint (GRC) and governor dead band are considered. Furthermore, time delays imposed by governor-turbine, thermodynamic process, and communication channels are investigated. GSA is utilized to search for optimal controller parameters by minimizing a time-domain based objective function. GSA-based DPI has been compared to Ziegler- Nichols based PI, and Genetic Algorithm (GA) based PI controllers in order to demonstrate the superior efficiency of the proposed design. Simulation results are carried for a wide range of operating conditions and system parameters variations.

Keywords: Gravitational Search Algorithm (GSA), Load Frequency Control (LFC), Dual Proportional-Integral (DPI) controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
5533 Fuzzy PID Controller with Coupled Rules for a Nonlinear Quarter Car Model

Authors: Şaban Çetin, Özgür Demir

Abstract:

In this study, Fuzzy PID Control scheme is designed for an active suspension system. The main goal of an active suspension system for using in a vehicle model is reducing body deflections and handling high comfort for a passenger car. The present system was modelled as a two-degree-of-freedom (2-DOF) nonlinear vehicle model.

Keywords: Active suspension system, Fuzzy PID controller, a nonlinear quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
5532 Portfolio Management: A Fuzzy Set Based Approach to Monitoring Size to Maximize Return and Minimize Risk

Authors: Margaret F. Shipley

Abstract:

Fuzzy logic can be used when knowledge is incomplete or when ambiguity of data exists. The purpose of this paper is to propose a proactive fuzzy set- based model for reacting to the risk inherent in investment activities relative to a complete view of portfolio management. Fuzzy rules are given where, depending on the antecedents, the portfolio size may be slightly or significantly decreased or increased. The decision maker considers acceptable bounds on the proportion of acceptable risk and return. The Fuzzy Controller model allows learning to be achieved as 1) the firing strength of each rule is measured, 2) fuzzy output allows rules to be updated, and 3) new actions are recommended as the system continues to loop. An extension is given to the fuzzy controller that evaluates potential financial loss before adjusting the portfolio. An application is presented that illustrates the algorithm and extension developed in the paper.

Keywords: Portfolio Management, Financial Market Monitoring, Fuzzy Controller, Fuzzy Logic,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
5531 Long-Range Dependence of Financial Time Series Data

Authors: Chatchai Pesee

Abstract:

This paper examines long-range dependence or longmemory of financial time series on the exchange rate data by the fractional Brownian motion (fBm). The principle of spectral density function in Section 2 is used to find the range of Hurst parameter (H) of the fBm. If 0< H <1/2, then it has a short-range dependence (SRD). It simulates long-memory or long-range dependence (LRD) if 1/2< H <1. The curve of exchange rate data is fBm because of the specific appearance of the Hurst parameter (H). Furthermore, some of the definitions of the fBm, long-range dependence and selfsimilarity are reviewed in Section II as well. Our results indicate that there exists a long-memory or a long-range dependence (LRD) for the exchange rate data in section III. Long-range dependence of the exchange rate data and estimation of the Hurst parameter (H) are discussed in Section IV, while a conclusion is discussed in Section V.

Keywords: Fractional Brownian motion, long-rangedependence, memory, short-range dependence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
5530 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation

Authors: Sun Lim, Il-Kyun Jung

Abstract:

This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.

Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
5529 Intelligent Temperature Controller for Water-Bath System

Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar

Abstract:

Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.

To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.

It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.

Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5492
5528 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives

Authors: Mingyu Xie, Mietek Brdys

Abstract:

The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.

Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2437
5527 Comparison between PI and PR Current Controllers in Grid Connected PV Inverters

Authors: D. Zammit, C. Spiteri Staines, M. Apap

Abstract:

This paper presents a comparison between Proportional Integral (PI) and Proportional Resonant (PR) current controllers used in Grid Connected Photovoltaic (PV) Inverters. Both simulation and experimental results will be presented. A 3kW Grid-Connected PV Inverter was designed and constructed for this research.

Keywords: Inverters, Proportional-Integral Controller, Proportional-Resonant Controller, Photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15863
5526 Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique

Authors: Sidhartha Panda, N. P. Padhy

Abstract:

This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.

Keywords: Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
5525 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization

Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin

Abstract:

In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller. 

Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
5524 Design and Implementation of a Hybrid Fuzzy Controller for a High-Performance Induction

Authors: M. Zerikat, S. Chekroun

Abstract:

This paper proposes an effective algorithm approach to hybrid control systems combining fuzzy logic and conventional control techniques of controlling the speed of induction motor assumed to operate in high-performance drives environment. The introducing of fuzzy logic in the control systems helps to achieve good dynamical response, disturbance rejection and low sensibility to parameter variations and external influences. Some fundamentals of the fuzzy logic control are preliminary illustrated. The developed control algorithm is robust, efficient and simple. It also assures precise trajectory tracking with the prescribed dynamics. Experimental results have shown excellent tracking performance of the proposed control system, and have convincingly demonstrated the validity and the usefulness of the hybrid fuzzy controller in high-performance drives with parameter and load uncertainties. Satisfactory performance was observed for most reference tracks.

Keywords: Fuzzy controller, high-performance, inductionmotor, intelligent control, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
5523 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller

Authors: Sufian Ashraf Mazhari, Surendra Kumar

Abstract:

This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.

Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167