Search results for: Faults (short-circuits)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 178

Search results for: Faults (short-circuits)

88 A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network

Authors: H. Khorashadi-Zadeh, M. R. Aghaebrahimi

Abstract:

A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.

Keywords: Artificial neural networks, cable, fault location andfault classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
87 Hamiltonian Related Properties with and without Faults of the Dual-Cube Interconnection Network and Their Variations

Authors: Shih-Yan Chen, Shin-Shin Kao

Abstract:

In this paper, a thorough review about dual-cubes, DCn, the related studies and their variations are given. DCn was introduced to be a network which retains the pleasing properties of hypercube Qn but has a much smaller diameter. In fact, it is so constructed that the number of vertices of DCn is equal to the number of vertices of Q2n +1. However, each vertex in DCn is adjacent to n + 1 neighbors and so DCn has (n + 1) × 2^2n edges in total, which is roughly half the number of edges of Q2n+1. In addition, the diameter of any DCn is 2n +2, which is of the same order of that of Q2n+1. For selfcompleteness, basic definitions, construction rules and symbols are provided. We chronicle the results, where eleven significant theorems are presented, and include some open problems at the end.

Keywords: Hypercubes, dual-cubes, fault-tolerant hamiltonian property, dual-cube extensive networks, dual-cube-like networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
86 Design of AC Electronics Load Surge Protection

Authors: N. Mungkung, S. Wongcharoen, C. Sukkongwari, Somchai Arunrungrasmi

Abstract:

This study examines the design and construction of AC Electronics load surge protection in order to carry electric surge load arisen from faults in low voltage electricity system (single phase/220V) by using the principle of electronics load clamping voltage during induction period so that electric voltage could go through to safe load and continue to work. The qualification of the designed device could prevent both transient over voltage and voltage swell. Both will work in cooperation, resulting in the ability to improve and modify the quality of electrical power in Thailand electricity distribution system more effective than the past and help increase the lifetime of electric appliances, electric devices, and electricity protection equipments.

Keywords: Electronics Load, Transient Over Voltage, Voltage Swell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2613
85 Detection of Bias in GPS satellites- Measurements for Enhanced Measurement Integrity

Authors: Mamoun F. Abdel-Hafez

Abstract:

In this paper, the detection of a fault in the Global Positioning System (GPS) measurement is addressed. The class of faults considered is a bias in the GPS pseudorange measurements. This bias is modeled as an unknown constant. The fault could be the result of a receiver fault or signal fault such as multipath error. A bias bank is constructed based on set of possible fault hypotheses. Initially, there is equal probability of occurrence for any of the biases in the bank. Subsequently, as the measurements are processed, the probability of occurrence for each of the biases is sequentially updated. The fault with a probability approaching unity will be declared as the current fault in the GPS measurement. The residual formed from the GPS and Inertial Measurement Unit (IMU) measurements is used to update the probability of each fault. Results will be presented to show the performance of the presented algorithm.

Keywords: Estimation and filtering, Statistical data analysis, Faultdetection and identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
84 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles

Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou

Abstract:

The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.

Keywords: Fault detection, feature selection, machine learning, predictive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715
83 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modeled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.

Keywords: A breathing crack, fault, FFT, nonlinear, orbit, rotorstator rub, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
82 Health Assessment of Electronic Products using Mahalanobis Distance and Projection Pursuit Analysis

Authors: Sachin Kumar, Vasilis Sotiris, Michael Pecht

Abstract:

With increasing complexity in electronic systems there is a need for system level anomaly detection and fault isolation. Anomaly detection based on vector similarity to a training set is used in this paper through two approaches, one the preserves the original information, Mahalanobis Distance (MD), and the other that compresses the data into its principal components, Projection Pursuit Analysis. These methods have been used to detect deviations in system performance from normal operation and for critical parameter isolation in multivariate environments. The study evaluates the detection capability of each approach on a set of test data with known faults against a baseline set of data representative of such “healthy" systems.

Keywords: Mahalanobis distance, Principle components, Projection pursuit, Health assessment, Anomaly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
81 Pilot Directional Protection Scheme Using Wireless Communication

Authors: Nitish Sharma, G. G. Karady

Abstract:

This paper presents a scheme for the protection of loop system from all type of faults using the direction of fault current. The presence of distributed generation in today’s system increases the complexity of fault detection as the power flow is bidirectional. Hence, protection scheme specific to this purpose needs to be developed. This paper shows a fast protection scheme using communication which can be fiber optic or wireless. In this paper, the possibility of wireless communication for protection is studied to exchange the information between the relays. The negative sequence and positive sequence directional elements are used to determine the direction of fault current. A PSCAD simulation is presented and validated using commercial SEL relays.

Keywords: Smart grid protection, pilot protection, power system simulation, wireless communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
80 Determination of the Characteristics for Ferroresonance Phenomenon in Electric Power Systems

Authors: Sezen Yildirim, Tahir Çetin Akinci, Serhat Seker, Nazmi Ekren

Abstract:

Ferroresonance is an electrical phenomenon in nonlinear character, which frequently occurs in power system due to transmission line faults and single or more-phase switching on the lines as well as usage of the saturable transformers. In this study, the ferroresonance phenomena are investigated under the modeling of the West Anatolian Electric Power Network of 380 kV in Turkey. The ferroresonance event is observed as a result of removing the loads at the end of the lines. In this sense, two different cases are considered. At first, the switching is applied at 2nd second and the ferroresonance affects are observed between 2nd and 4th seconds in the voltage variations of the phase-R. Hence the ferroresonance and nonferroresonance parts of the overall data are compared with each others using the Fourier transform techniques to show the ferroresonance affects.

Keywords: Ferroresonance, West Anatolian Electric Power System, Power System Modeling, Switching, Spectral Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2651
79 An Elin Load Tap Changer Diagnosis by DGA

Authors: Hoda Molavi, Alireza Zahiri, Katayoon Anvarizadeh

Abstract:

Dissolved gas analysis has been accepted as a sensitive, informative and reliable technique for incipient faults detection in power transformers and is widely used. In the last few years this method, which has been recommended by IEEE Power & Energy society, has been applied for fault detection in load tap changers. Regarding the critical role of load tap changers in electrical network and essential of catastrophic failures prevention, it is necessary to choose "condition based preventative maintenance strategy" which leads to reduction in costs, the number of unnecessary visits as well as the probability of interruptions and also increment in equipment reliability. In current work, considering the condition based preventative maintenance strategy, condition assessment of an Elin tap changer was carried out using dissolved gas analysis.

Keywords: Condition Assessment, Dissolved Gas Analysis, Load Tap Changer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654
78 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

Damping of inter-area electromechanical oscillations is one of the major challenges to the electric power system operators. This paper presents Gravitational Search Algorithm (GSA) for tuning Static Synchronous Series Compensator (SSSC) based damping controller to improve power system oscillation stability. In the proposed algorithm, the searcher agents are a collection of masses which interact with each other based on the Newtonian gravity and the laws of motion. The effectiveness of the scheme in damping power system oscillations during system faults at different loading conditions is demonstrated through time-domain simulation.

Keywords: FACTS, Damping controller design, Gravitational search algorithm (GSA), Power system oscillations, Single-machine infinite Bus power system, SSSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2296
77 Beating Phenomenon of Multi-Harmonics Defect Frequencies in a Rolling Element Bearing: Case Study from Water Pumping Station

Authors: Fathi N. Mayoof

Abstract:

Rolling element bearings are widely used in industry, especially where high load capacity is required. The diagnosis of their conditions is essential matter for downtime reduction and saving cost of maintenance. Therefore, an intensive analysis of frequency spectrum of their faults must be carried out in order to determine the main reason of the fault. This paper focus on a beating phenomena observed in the waveform (time domain) of a cylindrical rolling element bearing. The beating frequencies were not related to any sources nearby the machine nor any other malfunctions (unbalance, misalignment ...etc). More investigation on the spike energy and the frequency spectrum indicated a problem with races of the bearing. Multi-harmonics of the fundamental defects frequencies were observed. Two of them were close to each other in magnitude those were the source of the beating phenomena.

Keywords: Bearing, beating, spike energy, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4127
76 Application of Artificial Neural Network in the Investigation of Bearing Defects

Authors: S. Sendhil Kumar, M. Senthil Kumar

Abstract:

Maintenance and design engineers have great concern for the functioning of rotating machineries due to the vibration phenomenon. Improper functioning in rotating machinery originates from the damage to rolling element bearings. The status of rolling element bearings require advanced technologies to monitor their health status efficiently and effectively. Avoiding vibration during machine running conditions is a complicated process. Vibration simulation should be carried out using suitable sensors/ transducers to recognize the level of damage on bearing during machine operating conditions. Various issues arising in rotating systems are interlinked with bearing faults. This paper presents an approach for fault diagnosis of bearings using neural networks and time/frequencydomain vibration analysis.

Keywords: Bearing vibration, Condition monitoring, Fault diagnosis, Frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2475
75 Suitability of Black Box Approaches for the Reliability Assessment of Component-Based Software

Authors: Anjushi Verma, Tirthankar Gayen

Abstract:

Although, reliability is an important attribute of quality, especially for mission critical systems, yet, there does not exist any versatile model even today for the reliability assessment of component-based software. The existing Black Box models are found to make various assumptions which may not always be realistic and may be quite contrary to the actual behaviour of software. They focus on observing the manner in which the system behaves without considering the structure of the system, the components composing the system, their interconnections, dependencies, usage frequencies, etc.As a result, the entropy (uncertainty) in assessment using these models is much high.Though, there are some models based on operation profile yet sometimes it becomes extremely difficult to obtain the exact operation profile concerned with a given operation. This paper discusses the drawbacks, deficiencies and limitations of Black Box approaches from the perspective of various authors and finally proposes a conceptual model for the reliability assessment of software.

Keywords: Black Box, faults, failure, software reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
74 Transformer Diagnosis Based on Coupled Circuits Method Modelling

Authors: Labar Hocine, Rekik Badri, Bounaya Kamel, Kelaiaia Mounia Samira

Abstract:

Diagnostic goal of transformers in service is to detect the winding or the core in fault. Transformers are valuable equipment which makes a major contribution to the supply security of a power system. Consequently, it is of great importance to minimize the frequency and duration of unwanted outages of power transformers. So, Frequency Response Analysis (FRA) is found to be a useful tool for reliable detection of incipient mechanical fault in a transformer, by finding winding or core defects. The authors propose as first part of this article, the coupled circuits method, because, it gives most possible exhaustive modelling of transformers. And as second part of this work, the application of FRA in low frequency in order to improve and simplify the response reading. This study can be useful as a base data for the other transformers of the same categories intended for distribution grid.

Keywords: Diagnostic, Coupled Circuit Method, FRA, Transformer Faults

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
73 A New Method for Identifying Broken Rotor Bars in Squirrel Cage Induction Motor Based on Particle Swarm Optimization Method

Authors: V. Rashtchi, R. Aghmasheh

Abstract:

Detection of squirrel cage induction motor (SCIM) broken bars has long been an important but difficult job in the detection area of motor faults. Early detection of this abnormality in the motor would help to avoid costly breakdowns. A new detection method based on particle swarm optimization (PSO) is presented in this paper. Stator current in an induction motor will be measured and characteristic frequency components of faylted rotor will be detected by minimizing a fitness function using pso. Supply frequency and side band frequencies and their amplitudes can be estimated by the proposed method. The proposed method is applied to a faulty motor with one and two broken bars in different loading condition. Experimental results prove that the proposed method is effective and applicable.

Keywords: broken bar, PSO, fault detection, SCIM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
72 On the Representation of Actuator Faults Diagnosis and Systems Invertibility

Authors: Sallem F., Dahhou B., Kamoun A.

Abstract:

In this work, the main problem considered is the  detection and the isolation of the actuator fault. A new formulation of  the linear system is generated to obtain the conditions of the actuator  fault diagnosis. The proposed method is based on the representation  of the actuator as a subsystem connected with the process system in  cascade manner. The designed formulation is generated to obtain the  conditions of the actuator fault detection and isolation. Detectability  conditions are expressed in terms of the invertibility notions. An  example and a comparative analysis with the classic formulation  illustrate the performances of such approach for simple actuator fault  diagnosis by using the linear model of nuclear reactor.

 

Keywords: Actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
71 Solving Directional Overcurrent Relay Coordination Problem Using Artificial Bees Colony

Authors: M. H. Hussain, I. Musirin, A. F. Abidin, S. R. A. Rahim

Abstract:

This paper presents the implementation of Artificial Bees Colony (ABC) algorithm in solving Directional OverCurrent Relays (DOCRs) coordination problem for near-end faults occurring in fixed network topology. The coordination optimization of DOCRs is formulated as linear programming (LP) problem. The objective function is introduced to minimize the operating time of the associated relay which depends on the time multiplier setting. The proposed technique is to taken as a technique for comparison purpose in order to highlight its superiority. The proposed algorithms have been tested successfully on 8 bus test system. The simulation results demonstrated that the ABC algorithm which has been proved to have good search ability is capable in dealing with constraint optimization problems.

Keywords: Artificial bees colony, directional overcurrent relay coordination problem, relay settings, time multiplier setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3492
70 States Estimation and Fault Detection of a Doubly Fed Induction Machine by Moving Horizon Estimation

Authors: A. T. Boum, L. Bitjoka, N. N. Léandre, S. Bennet

Abstract:

This paper presents the estimation of the key parameters of a double fed induction machine (DFIM) by the use of the moving horizon estimator (MHE) for control and monitoring purpose. A study was conducted on the behavior of this observer in the presence of some faults which can occur during the operation of the machine. In the first case a stator phase has been suppressed. In the second case the rotor resistance has been multiplied by a factor. The results show a good estimation of different parameters such as rotor flux, rotor speed, stator current with a very small estimation error. The robustness of the observer was also tested in the practical case of DFIM by using another model different from the real one at a constant close. The very small estimation error makes the MHE a good software sensor candidate for monitoring purpose for the DFIM. 

Keywords: Doubly fed induction machine, moving horizon estimator parameters’ estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
69 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 398
68 LabVIEW with Fuzzy Logic Controller Simulation Panel for Condition Monitoring of Oil and Dry Type Transformer

Authors: N. A. Muhamad, S.A.M. Ali

Abstract:

Condition monitoring of electrical power equipment has attracted considerable attention for many years. The aim of this paper is to use Labview with Fuzzy Logic controller to build a simulation system to diagnose transformer faults and monitor its condition. The front panel of the system was designed using LabVIEW to enable computer to act as customer-designed instrument. The dissolved gas-in-oil analysis (DGA) method was used as technique for oil type transformer diagnosis; meanwhile terminal voltages and currents analysis method was used for dry type transformer. Fuzzy Logic was used as expert system that assesses all information keyed in at the front panel to diagnose and predict the condition of the transformer. The outcome of the Fuzzy Logic interpretation will be displayed at front panel of LabVIEW to show the user the conditions of the transformer at any time.

Keywords: LabVIEW, Fuzzy Logic, condition monitoring, oiltransformer, dry transformer, DGA, terminal values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3185
67 Software Maintenance Severity Prediction with Soft Computing Approach

Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.

Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
66 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: Fault, finite element method, parametrical model of transformer, sweep frequency response analysis, transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
65 Time-Frequency Modeling and Analysis of Faulty Rotor

Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen

Abstract:

In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT), and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect nonlinear signal, and obtained results provide a useful tool method for detecting machinery faults.

Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
64 Construct Pairwise Test Suites Based on the Bak-Sneppen Model of Biological Evolution

Authors: Jianjun Yuan, Changjun Jiang

Abstract:

Pairwise testing, which requires that every combination of valid values of each pair of system factors be covered by at lease one test case, plays an important role in software testing since many faults are caused by unexpected 2-way interactions among system factors. Although meta-heuristic strategies like simulated annealing can generally discover smaller pairwise test suite, they may cost more time to perform search, compared with greedy algorithms. We propose a new method, improved Extremal Optimization (EO) based on the Bak-Sneppen (BS) model of biological evolution, for constructing pairwise test suites and define fitness function according to the requirement of improved EO. Experimental results show that improved EO gives similar size of resulting pairwise test suite and yields an 85% reduction in solution time over SA.

Keywords: Covering Arrays, Extremal Optimization, Simulated Annealing, Software Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
63 Analysis of the Benefits of Motion Simulators in 5th Generation Fighter Pilots' Training

Authors: Ali Mithad Emre

Abstract:

In military aviation, the use of flight simulators has proliferated recently in order to train fifth generation fighter pilots. With these simulators, pilots can carry out real-time flights resulting in seeing their faults and can perform emergency drills prior to real flights. Since we cannot risk losing the aircraft and the pilot himself/herself in the flight training process, flight simulators are of great importance to adapt the fighter pilots competently to real flights aboard the fifth generation aircraft. The real flights are impossible to simulate thoroughly on the ground. To some extent, the fixed-based simulators may assist the pilot to steer aircraft technically and visually but flight simulators can’t trick the pilot’s vestibular, sensory, and perceptual systems without motion platforms. This paper discusses the benefits of motion simulators for fifth generation fighter pilots’ training in preference to the fixed-based counterparts by analyzing their pros and cons.

Keywords: Centrifuge, g-loc, military, pilot, sickness, simulator, VMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
62 Formal Verification of a Multicast Protocol in Mobile Networks

Authors: M. Matash Borujerdi, S.M. Mirzababaei

Abstract:

As computer network technology becomes increasingly complex, it becomes necessary to place greater requirements on the validity of developing standards and the resulting technology. Communication networks are based on large amounts of protocols. The validity of these protocols have to be proved either individually or in an integral fashion. One strategy for achieving this is to apply the growing field of formal methods. Formal methods research defines systems in high order logic so that automated reasoning can be applied for verification. In this research we represent and implement a formerly announced multicast protocol in Prolog language so that certain properties of the protocol can be verified. It is shown that by using this approach some minor faults in the protocol were found and repaired. Describing the protocol as facts and rules also have other benefits i.e. leads to a process-able knowledge. This knowledge can be transferred as ontology between systems in KQML format. Since the Prolog language can increase its knowledge base every time, this method can also be used to learn an intelligent network.

Keywords: Formal methods, MobiCast, Mobile Network, Multicast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
61 The Effects of System Change on Buildings Equipped with Structural Systems with the Sandwich Composite Wall with J-Hook Connectors and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The sandwich composite walls (SCSSC) have more ductility and energy dissipation than conventional reinforced concrete shear walls. SCSSCs have acceptable compressive, shear, in-plane bending, and out-of-plane bending capacities. The use of sandwich-composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. In this paper, incremental dynamic analyses for 10- and 15-story steel structures were performed under seven far-faults by OpenSees. The demand values of 10- and 15-story models are reduced by up to 32% and 45%, respectively, while the structural system change from shear walls (SW) to SCSSC.

Keywords: Sandwich composite wall, SCSSC, fling step, fragility curve, IDA, inter story drift ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210
60 Transceiver for Differential Wave Pipe-Lined Serial Interconnect with Surfing

Authors: Bhaskar M., Venkataramani B.

Abstract:

In the literature, surfing technique has been proposed for single ended wave-pipelined serial interconnects to increase the data transfer rate. In this paper a novel surfing technique is proposed for differential wave-pipelined serial interconnects, which uses a 'Controllable inverter pair' for surfing. To evaluate the efficiency of this technique, a transceiver with transmitter, receiver, delay locked loop (DLL) along with 40mm metal 4 interconnects using the proposed surfing technique is implemented in UMC 180nm technology and their performances are studied through post layout simulations. From the study, it is observed that the proposed scheme permits 1.875 times higher data transmission rate compared to the single ended scheme whose maximum data transfer rate is 1.33 GB/s. The proposed scheme has the ability to receive the correct data even with stuck-at-faults in the complementary line.

Keywords: Controllable inverter pair, differential interconnect, serial link, surfing, wave pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
59 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.

Keywords: Adaptive estimation, fault detection, GNSS, residual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501