Search results for: Hypercubes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Hypercubes

4 Independent Spanning Trees on Systems-on-chip Hypercubes Routing

Authors: Eduardo Sant'Ana da Silva, Andre Luiz Pires Guedes, Eduardo Todt

Abstract:

Independent spanning trees (ISTs) provide a number of advantages in data broadcasting. One can cite the use in fault tolerance network protocols for distributed computing and bandwidth. However, the problem of constructing multiple ISTs is considered hard for arbitrary graphs. In this paper we present an efficient algorithm to construct ISTs on hypercubes that requires minimum resources to be performed.

Keywords: Hypercube, Independent Spanning Trees, Networks On Chip, Systems On Chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
3 Cycle Embedding in Folded Hypercubes with More Faulty Elements

Authors: Wen-Yin Huang, Jia-Jie Liu, Jou-Ming Chang

Abstract:

Faults in a network may take various forms such as hardware/software errors, vertex/edge faults, etc. Folded hypercube is a well-known variation of the hypercube structure and can be constructed from a hypercube by adding a link to every pair of nodes with complementary addresses. Let FFv (respectively, FFe) be the set of faulty nodes (respectively, faulty links) in an n-dimensional folded hypercube FQn. Hsieh et al. have shown that FQn - FFv - FFe for n ≥ 3 contains a fault-free cycle of length at least 2n -2|FFv|, under the constraints that (1) |FFv| + |FFe| ≤ 2n - 4 and (2) every node in FQn is incident to at least two fault-free links. In this paper, we further consider the constraints |FFv| + |FFe| ≤ 2n - 3. We prove that FQn - FFv - FFe for n ≥ 5 still has a fault-free cycle of length at least 2n - 2|FFv|, under the constraints : (1) |FFv| + |FFe| ≤ 2n - 3, (2) |FFe| ≥ n + 2, and (3) every vertex is still incident with at least two links.

Keywords: Folded hypercubes, interconnection networks, cycle embedding, faulty elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
2 The Panpositionable Hamiltonicity of k-ary n-cubes

Authors: Chia-Jung Tsai, Shin-Shin Kao

Abstract:

The hypercube Qn is one of the most well-known and popular interconnection networks and the k-ary n-cube Qk n is an enlarged family from Qn that keeps many pleasing properties from hypercubes. In this article, we study the panpositionable hamiltonicity of Qk n for k ≥ 3 and n ≥ 2. Let x, y of V (Qk n) be two arbitrary vertices and C be a hamiltonian cycle of Qk n. We use dC(x, y) to denote the distance between x and y on the hamiltonian cycle C. Define l as an integer satisfying d(x, y) ≤ l ≤ 1 2 |V (Qk n)|. We prove the followings: • When k = 3 and n ≥ 2, there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. • When k ≥ 5 is odd and n ≥ 2, we request that l /∈ S where S is a set of specific integers. Then there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. • When k ≥ 4 is even and n ≥ 2, we request l-d(x, y) to be even. Then there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. The result is optimal since the restrictions on l is due to the structure of Qk n by definition.

Keywords: Hamiltonian, panpositionable, bipanpositionable, k-ary n-cube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
1 Hamiltonian Related Properties with and without Faults of the Dual-Cube Interconnection Network and Their Variations

Authors: Shih-Yan Chen, Shin-Shin Kao

Abstract:

In this paper, a thorough review about dual-cubes, DCn, the related studies and their variations are given. DCn was introduced to be a network which retains the pleasing properties of hypercube Qn but has a much smaller diameter. In fact, it is so constructed that the number of vertices of DCn is equal to the number of vertices of Q2n +1. However, each vertex in DCn is adjacent to n + 1 neighbors and so DCn has (n + 1) × 2^2n edges in total, which is roughly half the number of edges of Q2n+1. In addition, the diameter of any DCn is 2n +2, which is of the same order of that of Q2n+1. For selfcompleteness, basic definitions, construction rules and symbols are provided. We chronicle the results, where eleven significant theorems are presented, and include some open problems at the end.

Keywords: Hypercubes, dual-cubes, fault-tolerant hamiltonian property, dual-cube extensive networks, dual-cube-like networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461