Search results for: Error estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2137

Search results for: Error estimation

217 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data

Authors: M. A. Meslem

Abstract:

For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.

Keywords: Quasigeoid, gravity anomalies, covariance, GGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
216 Multistage Data Envelopment Analysis Model for Malmquist Productivity Index Using Grey's System Theory to Evaluate Performance of Electric Power Supply Chain in Iran

Authors: Mesbaholdin Salami, Farzad Movahedi Sobhani, Mohammad Sadegh Ghazizadeh

Abstract:

Evaluation of organizational performance is among the most important measures that help organizations and entities continuously improve their efficiency. Organizations can use the existing data and results from the comparison of units under investigation to obtain an estimation of their performance. The Malmquist Productivity Index (MPI) is an important index in the evaluation of overall productivity, which considers technological developments and technical efficiency at the same time. This article proposed a model based on the multistage MPI, considering limited data (Grey’s theory). This model can evaluate the performance of units using limited and uncertain data in a multistage process. It was applied by the electricity market manager to Iran’s electric power supply chain (EPSC), which contains uncertain data, to evaluate the performance of its actors. Results from solving the model showed an improvement in the accuracy of future performance of the units under investigation, using the Grey’s system theory. This model can be used in all case studies, in which MPI is used and there are limited or uncertain data.

Keywords: Malmquist Index, Grey's Theory, Charnes Cooper & Rhodes (CCR) Model, network data envelopment analysis, Iran electricity power chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518
215 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama

Abstract:

Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.

Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
214 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children

Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman

Abstract:

Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.

Keywords: Automatic speech recognition system, children speech, adaptation, Malay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
213 Identifying Knowledge Gaps in Incorporating Toxicity of Particulate Matter Constituents for Developing Regulatory Limits on Particulate Matter

Authors: Ananya Das, Arun Kumar, Gazala Habib, Vivekanandan Perumal

Abstract:

Regulatory bodies has proposed limits on Particulate Matter (PM) concentration in air; however, it does not explicitly indicate the incorporation of effects of toxicities of constituents of PM in developing regulatory limits. This study aimed to provide a structured approach to incorporate toxic effects of components in developing regulatory limits on PM. A four-step human health risk assessment framework consists of - (1) hazard identification (parameters: PM and its constituents and their associated toxic effects on health), (2) exposure assessment (parameters: concentrations of PM and constituents, information on size and shape of PM; fate and transport of PM and constituents in respiratory system), (3) dose-response assessment (parameters: reference dose or target toxicity dose of PM and its constituents), and (4) risk estimation (metric: hazard quotient and/or lifetime incremental risk of cancer as applicable). Then parameters required at every step were obtained from literature. Using this information, an attempt has been made to determine limits on PM using component-specific information. An example calculation was conducted for exposures of PM2.5 and its metal constituents from Indian ambient environment to determine limit on PM values. Identified data gaps were: (1) concentrations of PM and its constituents and their relationship with sampling regions, (2) relationship of toxicity of PM with its components.

Keywords: Air, component-specific toxicity, human health risks, particulate matter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135
212 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results

Authors: C. Villegas-Quezada, J. Climent

Abstract:

Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.

Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
211 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection

Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary

Abstract:

Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.

Keywords: K-nearest neighbor, face detection, vitiligo, bone deformity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
210 Surface Flattening Assisted with 3D Mannequin Based On Minimum Energy

Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin

Abstract:

The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.

Keywords: Surface flattening, Strain energy, Minimum energy, approximate implicit method, Fashion design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
209 Analysis of Codebook Based Channel Feedback Techniques for MIMO-OFDM Systems

Authors: Muhammad Rehan Khalid, Ahmed Farhan Hanif, Adnan Ahmed Khan

Abstract:

This paper investigates the performance of Multiple- Input Multiple-Output (MIMO) feedback system combined with Orthogonal Frequency Division Multiplexing (OFDM). Two types of codebook based channel feedback techniques are used in this work. The first feedback technique uses a combination of both the long-term and short-term channel state information (CSI) at the transmitter, whereas the second technique uses only the short term CSI. The long-term and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The effectiveness of these techniques has been demonstrated through the simulation of a MIMO-OFDM feedback system. The results have been evaluated for 4x4 MIMO channels. Simulation results indicate the benefits of the MIMO-OFDM channel feedback system over the one without incorporating OFDM. Performance gain of about 3 dB is observed for MIMO-OFDM feedback system as compared to the one without employing OFDM. Hence MIMO-OFDM becomes an attractive approach for future high speed wireless communication systems.

Keywords: MIMO systems, OFDM, Codebooks, Channel Feedback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
208 Detecting Earnings Management via Statistical and Neural Network Techniques

Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie

Abstract:

Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.

Keywords: Earnings management, generalized regression neural networks, linear regression, multi-layer perceptron, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
207 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals

Authors: Fahad Alhussein, Huaping Liu

Abstract:

This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.

Keywords: Correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 428
206 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
205 Material Density Mapping on Deformable 3D Models of Human Organs

Authors: Petru Manescu, Joseph Azencot, Michael Beuve, Hamid Ladjal, Jacques Saade, Jean-Michel Morreau, Philippe Giraud, Behzad Shariat

Abstract:

Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach.

Keywords: Biomechanical simulation, dose distribution, image guided radiation therapy, organ motion, tetrahedral mesh, 4D-CT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970
204 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining  the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.

Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
203 Application of Neural Network in User Authentication for Smart Home System

Authors: A. Joseph, D.B.L. Bong, D.A.A. Mat

Abstract:

Security has been an important issue and concern in the smart home systems. Smart home networks consist of a wide range of wired or wireless devices, there is possibility that illegal access to some restricted data or devices may happen. Password-based authentication is widely used to identify authorize users, because this method is cheap, easy and quite accurate. In this paper, a neural network is trained to store the passwords instead of using verification table. This method is useful in solving security problems that happened in some authentication system. The conventional way to train the network using Backpropagation (BPN) requires a long training time. Hence, a faster training algorithm, Resilient Backpropagation (RPROP) is embedded to the MLPs Neural Network to accelerate the training process. For the Data Part, 200 sets of UserID and Passwords were created and encoded into binary as the input. The simulation had been carried out to evaluate the performance for different number of hidden neurons and combination of transfer functions. Mean Square Error (MSE), training time and number of epochs are used to determine the network performance. From the results obtained, using Tansig and Purelin in hidden and output layer and 250 hidden neurons gave the better performance. As a result, a password-based user authentication system for smart home by using neural network had been developed successfully.

Keywords: Neural Network, User Authentication, Smart Home, Security

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
202 Establishing Econometric Modeling Equations for Lumpy Skin Disease Outbreaks in the Nile Delta of Egypt under Current Climate Conditions

Authors: Abdelgawad, Salah El-Tahawy

Abstract:

This paper aimed to establish econometrical equation models for the Nile delta region in Egypt, which will represent a basement for future predictions of Lumpy skin disease outbreaks and its pathway in relation to climate change. Data of lumpy skin disease (LSD) outbreaks were collected from the cattle farms located in the provinces representing the Nile delta region during 1 January, 2015 to December, 2015. The obtained results indicated that there was a significant association between the degree of the LSD outbreaks and the investigated climate factors (temperature, wind speed, and humidity) and the outbreaks peaked during the months of June, July, and August and gradually decreased to the lowest rate in January, February, and December. The model obtained depicted that the increment of these climate factors were associated with evidently increment on LSD outbreaks on the Nile Delta of Egypt. The model validation process was done by the root mean square error (RMSE) and means bias (MB) which compared the number of LSD outbreaks expected with the number of observed outbreaks and estimated the confidence level of the model. The value of RMSE was 1.38% and MB was 99.50% confirming that this established model described the current association between the LSD outbreaks and the change on climate factors and also can be used as a base for predicting the of LSD outbreaks depending on the climatic change on the future.

Keywords: LSD, climate factors, econometric models, Nile Delta.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
201 Visualization and Indexing of Spectral Databases

Authors: Tibor Kulcsar, Gabor Sarossy, Gabor Bereznai, Robert Auer, Janos Abonyi

Abstract:

On-line (near infrared) spectroscopy is widely used to support the operation of complex process systems. Information extracted from spectral database can be used to estimate unmeasured product properties and monitor the operation of the process. These techniques are based on looking for similar spectra by nearest neighborhood algorithms and distance based searching methods. Search for nearest neighbors in the spectral space is an NP-hard problem, the computational complexity increases by the number of points in the discrete spectrum and the number of samples in the database. To reduce the calculation time some kind of indexing could be used. The main idea presented in this paper is to combine indexing and visualization techniques to reduce the computational requirement of estimation algorithms by providing a two dimensional indexing that can also be used to visualize the structure of the spectral database. This 2D visualization of spectral database does not only support application of distance and similarity based techniques but enables the utilization of advanced clustering and prediction algorithms based on the Delaunay tessellation of the mapped spectral space. This means the prediction has not to use the high dimension space but can be based on the mapped space too. The results illustrate that the proposed method is able to segment (cluster) spectral databases and detect outliers that are not suitable for instance based learning algorithms.

Keywords: indexing high dimensional databases, dimensional reduction, clustering, similarity, k-nn algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
200 Artificial Intelligence: A Comprehensive and Systematic Literature Review of Applications and Comparative Technologies

Authors: Z. M. Najmi

Abstract:

Over the years, the question around Artificial Intelligence has always been one with many answers. Whether by means of use in business and industry or complicated algorithmic programming, management of these technologies has always been the core focus. More recently, technologies have been questioned in industry and society alike as to whether they have improved human-centred design, assisted choices and objectives, and had a hand in systematic processes across the board. With these questions the answer may lie within AI technologies, and the steps needed in removing common human error. Elements such as Machine Learning, Deep Learning, Recommender Systems and Natural Language Processing will all be features to consider moving forward. Our previous intervention with AI applications has resulted in increased productivity, however, raised concerns for the continuation of traditional human-centred occupations. Emerging technologies such as Augmented Reality and Virtual Reality have all played a part in this during AI’s prominent rise. As mentioned, AI has been constantly under the microscope; the benefits and drawbacks may seem endless is wide, but AI is something we must take notice of and adapt into our everyday lives. The aim of this paper is to give an overview of the technologies surrounding A.I. and its’ related technologies. A comprehensive review has been written as a timeline of the developing events and key points in the history of Artificial Intelligence. This research is gathered entirely from secondary research, academic statements of knowledge and gathered to produce an understanding of the timeline of AI.

Keywords: Artificial Intelligence, Deep Learning, Augmented Reality, Reinforcement Learning, Machine Learning, Supervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486
199 Numerical Analysis of the SIR-SI Differential Equations with Application to Dengue Disease Mapping in Kuala Lumpur, Malaysia

Authors: N. A. Samat, D. F. Percy

Abstract:

The main aim of this study is to describe and introduce a method of numerical analysis in obtaining approximate solutions for the SIR-SI differential equations (susceptible-infectiverecovered for human populations; susceptible-infective for vector populations) that represent a model for dengue disease transmission. Firstly, we describe the ordinary differential equations for the SIR-SI disease transmission models. Then, we introduce the numerical analysis of solutions of this continuous time, discrete space SIR-SI model by simplifying the continuous time scale to a densely populated, discrete time scale. This is followed by the application of this numerical analysis of solutions of the SIR-SI differential equations to the estimation of relative risk using continuous time, discrete space dengue data of Kuala Lumpur, Malaysia. Finally, we present the results of the analysis, comparing and displaying the results in graphs, table and maps. Results of the numerical analysis of solutions that we implemented offers a useful and potentially superior model for estimating relative risks based on continuous time, discrete space data for vector borne infectious diseases specifically for dengue disease. 

Keywords: Dengue disease, disease mapping, numerical analysis, SIR-SI differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
198 Neuron Efficiency in Fluid Dynamics and Prediction of Groundwater Reservoirs'' Properties Using Pattern Recognition

Authors: J. K. Adedeji, S. T. Ijatuyi

Abstract:

The application of neural network using pattern recognition to study the fluid dynamics and predict the groundwater reservoirs properties has been used in this research. The essential of geophysical survey using the manual methods has failed in basement environment, hence the need for an intelligent computing such as predicted from neural network is inevitable. A non-linear neural network with an XOR (exclusive OR) output of 8-bits configuration has been used in this research to predict the nature of groundwater reservoirs and fluid dynamics of a typical basement crystalline rock. The control variables are the apparent resistivity of weathered layer (p1), fractured layer (p2), and the depth (h), while the dependent variable is the flow parameter (F=λ). The algorithm that was used in training the neural network is the back-propagation coded in C++ language with 300 epoch runs. The neural network was very intelligent to map out the flow channels and detect how they behave to form viable storage within the strata. The neural network model showed that an important variable gr (gravitational resistance) can be deduced from the elevation and apparent resistivity pa. The model results from SPSS showed that the coefficients, a, b and c are statistically significant with reduced standard error at 5%.

Keywords: Neural network, gravitational resistance, pattern recognition, non-linear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
197 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
196 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network. 

Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
195 Optimal Sliding Mode Controller for Knee Flexion During Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99
194 Longitudinal Shear Modulus of Single Aramid, Carbon and Glass Fibres by Torsion Pendulum Tests

Authors: I Prasanna Kumar, Satya Prakash Kushwaha, Preetamkumar Mohite, Sudhir Kamle

Abstract:

The longitudinal shear moduli of a single aramid, carbon and glass fibres are measured in the present study. A popularly known concept of freely oscillating torsion pendulum has been used to characterize the torsional modulus. A simple freely oscillating torsional pendulum setup is designed with two different types of plastic discs: horizontal and vertical, as the known mass of the pendulum. The time period of the torsional oscillation is measured to determine the torsional rigidity of the fibre. Then the shear modulus of the fibre is calculated from its torsional rigidity. The mean shear modulus of aramid, carbon and glass fibres  measured are 6.22±0.09, 18.5±0.91, 38.1±3.55 GPa by horizontal disc pendulum and 6.19±0.13, 18.1±1.34 and 39.5±1.83 GPa by vertical disc pendulum, respectively. The results obtained by both pendulums differed by less than 5% and agreed well with the results reported in literature for these three types of fibres. A detailed uncertainty calculations are carried out for the measurements. It is seen that scatter as well as uncertainty (or error) in the measured shear modulus of these fibres is less than 10%. For aramid fibres the effect of gauge length on the shear modulus value is also studied. It is verified that the scatter in measured shear modulus value increases with gauge length and scatter in fibre diameter.

Keywords: Aramid; Carbon; Glass fibres, Longitudinal shear modulus, Torsion pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3722
193 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1023
192 The Estimation of Bird Diversity Loss and Gain as an Impact of Oil Palm Plantation: Study Case in KJNP Estate Riau Province

Authors: Yanto Santosa, Catharina Yudea

Abstract:

The rapid growth of oil palm industry in Indonesia raised many negative accusations from various parties, who said that oil palm plantation is damaging the environment and biodiversity, including birds. Since research on oil palm plantation impacts on bird diversity is still limited, this study needs to be developed in order to gain further learning and understanding. Data on bird diversity were collected in March 2018 in KJNP Estate, Riau Province using strip transect method on five different land cover types (young, intermediate, and old growth of oil palm plantation, high conservation value area, and crops field or the baseline). The observations were conducted simultaneously, with three repetitions. The result shows that the baseline has 19 species of birds and land cover after the oil palm plantation has 39 species. HCV (high conservation value) area has the highest increase in diversity value. Oil palm plantation has changed the composition of bird species. The highest similarity index is shown by young growth oil palm land cover with total score 0.65, meanwhile the lowest similarity index with total score 0.43 is shown by HCV area. Overall, the existence of oil palm plantation made a positive impact by increasing bird species diversity, with total 23 species gained and 3 species lost.

Keywords: Bird diversity, crops field, impact of oil palm plantation, KJNP estate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
191 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
190 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States

Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi

Abstract:

The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.

Keywords: Economic growth, energy demand, income, real GDP, urbanization, VECM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
189 Spectral Amplitude Coding Optical CDMA: Performance Analysis of PIIN Reduction Using VC Code Family

Authors: Hassan Yousif Ahmed, Ibrahima Faye, N.M.Saad, S.A. Aljined

Abstract:

Multi-user interference (MUI) is the main reason of system deterioration in the Spectral Amplitude Coding Optical Code Division Multiple Access (SAC-OCDMA) system. MUI increases with the number of simultaneous users, resulting into higher probability bit rate and limits the maximum number of simultaneous users. On the other hand, Phase induced intensity noise (PIIN) problem which is originated from spontaneous emission of broad band source from MUI severely limits the system performance should be addressed as well. Since the MUI is caused by the interference of simultaneous users, reducing the MUI value as small as possible is desirable. In this paper, an extensive study for the system performance specified by MUI and PIIN reducing is examined. Vectors Combinatorial (VC) codes families are adopted as a signature sequence for the performance analysis and a comparison with reported codes is performed. The results show that, when the received power increases, the PIIN noise for all the codes increases linearly. The results also show that the effect of PIIN can be minimized by increasing the code weight leads to preserve adequate signal to noise ratio over bit error probability. A comparison study between the proposed code and the existing codes such as Modified frequency hopping (MFH), Modified Quadratic- Congruence (MQC) has been carried out.

Keywords: FBG, MUI, PIIN, SAC-OCDMA, VCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
188 Estimation of the Park-Ang Damage Index for Floating Column Building with Infill Wall

Authors: Susanta Banerjee, Sanjaya Kumar Patro

Abstract:

Buildings with floating column are highly undesirable built in seismically active areas. Many urban multi-storey buildings today have floating column buildings which are adopted to accommodate parking at ground floor or reception lobbies in the first storey. The earthquake forces developed at different floor levels in a building need to be brought down along the height to the ground by the shortest path; any deviation or discontinuity in this load transfer path results in poor performance of the building. Floating column buildings are severely damaged during earthquake. Damage on this structure can be reduce by taking the effect of infill wall. This paper presents the effect of stiffness of infill wall to the damage occurred in floating column building when ground shakes. Modelling and analysis are carried out by non linear analysis programme IDARC-2D. Damage occurred in beams, columns, storey are studied by formulating modified Park & Ang model to evaluate damage indices. Overall structural damage indices in buildings due to shaking of ground are also obtained. Dynamic response parameters i.e. lateral floor displacement, storey drift, time period, base shear of buildings are obtained and results are compared with the ordinary moment resisting frame buildings. Formation of cracks, yield, plastic hinge, are also observed during analysis.

Keywords: Floating column, Infill Wall, Park-Ang Damage Index, Damage State.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3066