Search results for: Cross wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1319

Search results for: Cross wall

1049 Stochastic Subspace Modelling of Turbulence

Authors: M. T. Sichani, B. J. Pedersen, S. R. K. Nielsen

Abstract:

Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical cross spectral density function for the along-wind turbulence component over the wind field area is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since the succeeding state space and ARMA modelling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.

Keywords: Turbulence, wind turbine, complex coherence, state space modelling, ARMA modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1048 Finite Element Method for Calculating Temperature Field of Main Cable of Suspension Bridge

Authors: Heng Han, Zhilei Liang, Xiangong Zhou

Abstract:

In this paper, the finite element method is used to study the temperature field of the main cable of the suspension bridge, and the calculation method of the average temperature of the cross-section of the main cable suitable for the construction control of the cable system is proposed. By comparing and analyzing the temperature field of the main cable with five diameters, a reasonable diameter limit for calculating the average temperature of the cross section of the main cable by finite element method is proposed. The results show that the maximum error of this method is less than 1 ℃, which meets the requirements of construction control accuracy. For the main cable with a diameter greater than 400 mm, the surface temperature measuring points combined with the finite element method shall be used to calculate the average cross-section temperature.

Keywords: Suspension bridge, main cable, temperature field, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 270
1047 Static and Dynamic Analysis of Hyperboloidal Helix Having Thin Walled Open and Close Sections

Authors: Merve Ermis, Murat Yılmaz, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

The static and dynamic analyses of hyperboloidal helix having the closed and the open square box sections are investigated via the mixed finite element formulation based on Timoshenko beam theory. Frenet triad is considered as local coordinate systems for helix geometry. Helix domain is discretized with a two-noded curved element and linear shape functions are used. Each node of the curved element has 12 degrees of freedom, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. Finite element matrices are derived by using exact nodal values of curvatures and arc length and it is interpolated linearly throughout the element axial length. The torsional moments of inertia for close and open square box sections are obtained by finite element solution of St. Venant torsion formulation. With the proposed method, the torsional rigidity of simply and multiply connected cross-sections can be also calculated in same manner. The influence of the close and the open square box cross-sections on the static and dynamic analyses of hyperboloidal helix is investigated. The benchmark problems are represented for the literature.

Keywords: Hyperboloidal helix, squared cross section, thin walled cross section, torsional rigidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1046 'Performance-Based' Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures

Authors: Jelena R. Pejović, Nina N. Serdar

Abstract:

This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils.

Keywords: Ductile wall, frame system, nonlinear time-history analysis, performance-based methodology, RC building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1045 A Meta-Model for Tubercle Design of Wing Planforms Inspired by Humpback Whale Flippers

Authors: A. Taheri

Abstract:

Inspired by topology of humpback whale flippers, a meta-model is designed for wing planform design. The net is trained based on experimental data using cascade-forward artificial neural network (ANN) to investigate effects of the amplitude and wavelength of sinusoidal leading edge configurations on the wing performance. Afterwards, the trained ANN is coupled with a genetic algorithm method towards an optimum design strategy. Finally, flow physics of the problem for an optimized rectangular planform and also a real flipper geometry planform is simulated using Lam-Bremhorst low Reynolds number turbulence model with damping wall-functions resolving to the wall. Lift and drag coefficients and also details of flow are presented along with comparisons to available experimental data. Results show that the proposed strategy can be adopted with success as a fast-estimation tool for performance prediction of wing planforms with wavy leading edge at preliminary design phase.  

Keywords: Humpback whale flipper, cascade-forward ANN, GA, CFD, Bionics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3393
1044 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes

Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng

Abstract:

Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.

Keywords: Anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
1043 Finite Element Modelling of Log Wall Corner Joints

Authors: R. Kalantari, G. Hafeez

Abstract:

The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. Variability of 8% is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.

Keywords: dovetail joint, finite element modelling, log shear walls, standard joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443
1042 Characterization of Electrohydrodynamic Force on Dielectric-Barrier-Discharge Plasma Actuator Using Fluid Simulation

Authors: Hiroyuki Nishida, Taku Nonomura, Takashi Abe

Abstract:

Wall-surface jet induced by the dielectric barrier discharge (DBD) has been proposed as an actuator for active flow control in aerodynamic applications. Discharge plasma evolution of the DBD plasma actuator was simulated based on a simple fluid model, in which the electron, one type of positive ion and negative ion were taken into account. Two-dimensional simulation was conducted, and the results are in agreement with the insights obtained from experimental studies. The simulation results indicate that the discharge mode changes depending on applied voltage slope; when the applied voltage is positive-going with high applied voltage slope, the corona-type discharge mode turns into the streamer-type discharge mode and the threshold voltage slope is around 300 kV/ms in this simulation. The characteristics of the electrohydrodynamic (EHD) force, which is the source of the wall-surface jet, also change depending on the discharge mode; the tentative peak value of the EHD force during the positive-going voltage phase is saturated by the periodical formation of the streamer-type discharge.

Keywords: Dielectric barrier discharge, Plasma actuator, Fluid simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
1041 Numerical Simulation of Heat Transfer in Primary Surface with Corrugations Recuperators

Authors: Liu Xuedong, Liu Hanpeng, Zhou Ling

Abstract:

Study fluid flow and heat transfer characteristics of microchannel in a primary Cross-corrugated(CC) surface recuperators with corrugations and without corrugations, using CFD method. The pitch-over-height ratios P/H of Cross-corrugated (CC) surface is from 1.5 to 4.0, included angles β=75º. The study was performed using CFD software FLUENT to create unit model and simulate fluid temperature, velocity, heat transfer coefficient and other parameters. The results from these simulations were compared to experimental data. It is concluded that, when the Reynolds number is constant, if increase P/H, j/f will decrease, also the decreasing trend will become weak. Under the condition of P/H=2.2, if increase the inlet velocity j/f will decrease; in addition, the heat transfer performance in surface with corrugation will increase 10% compared to that without corrugation. The study results can provide the basis to optimize the design, select the type of heat transfer surface, the scale structure, and heat-transfer surface arrangement for recuperators.

Keywords: Cross-corrugated surface, Primary surface, Numerical simulation, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2200
1040 Unsteady Poiseuille Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of spherical cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
1039 Conceptual Investigation of Short-Columns and Masonary Infill Frames Effect in the Earthquakes

Authors: Ebrahim Khalilzadeh Vahidi, Maryam Mokhtari Malekabadi

Abstract:

This paper highlights the importance of the selection of the building-s wall material,and the shortcomings of the most commonly used framed structures with masonry infills .The objective of this study is investigating the behavior of infill walls as structural components in existing structures.Structural infill walls are very important in structural behavior under earthquake effects. Structural capacity under the effect of earthquake,displacement and relative story displacement are affected by the structural irregularities .The presence of nonstructural masonry infill walls can modify extensively the global seismic behavior of framed buildings .The stability and integrity of reinforced concrete frames are enhanced by masonry infill walls. Masonry infill walls alter displacement and base shear of the frame as well. Short columns have great importance during earthquakes,because their failure may lead to additional structural failures and result in total building collapse. Consequently the effects of short columns are considered in this study.

Keywords: Short columns , Infill masonary wall , Buildings , Earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3418
1038 Numerical Analysis of Flow through Abrasive Water Suspension Jet: The Effect of Garnet, Aluminum Oxide and Silicon Carbide Abrasive on Skin Friction Coefficient Due To Wall Shear and Jet Exit Kinetic Energy

Authors: Deepak D, Anjaiah D, Yagnesh Sharma N.

Abstract:

It is well known that the abrasive particles in the abrasive water suspension has significant effect on the erosion characteristics of the inside surface of the nozzle. Abrasive particles moving with the flow cause severe skin friction effect, there by altering the nozzle diameter due to wear which in turn reflects on the life of the nozzle for effective machining. Various commercial abrasives are available for abrasive water jet machining. The erosion characteristic of each abrasive is different. In consideration of this aspect, in the present work, the effect of abrasive materials namely garnet, aluminum oxide and silicon carbide on skin friction coefficient due to wall shear stress and jet kinetic energy has been analyzed. It is found that the abrasive material of lower density produces a relatively higher skin friction effect and higher jet exit kinetic energy.

Keywords: Abrasive water suspension jet, Skin friction coefficient, Jet kinetic energy, Particulate loading, Stokes number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
1037 Unsteady Flow of an Incompressible Elastico-Viscous Fluid of Second order Type in Tube of Ellipsoidal Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of ellipsoidal cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of ellipsoidal cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Ellipsoidal cross-section, Porous media, Second order fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
1036 Critical Points of Prefabricated Reinforced Concrete Wall Systems of Multi-storey Buildings

Authors: J. Witzany, T. Čejka, R. Zigler

Abstract:

With respect to the dissipation of energy through plastic deformation of joints of prefabricated wall units, the paper points out the principal importance of efficient reinforcement of the prefabricated system at its joints. The method, quality and amount of reinforcement are essential for reaching the necessary degree of joint ductility. The paper presents partial results of experimental research of vertical joints of prefabricated units exposed to monotonously rising loading and repetitive shear force and formulates a conclusion that the limit state of the structure as a whole is preceded by the disintegration of joints, or that the structure tends to pass from linearly elastic behaviour to non-linearly elastic to plastic behaviour by exceeding the proportional elastic limit in joints.Experimental verification on a model of a 7-storey prefabricated structure revealed weak points in its load-bearing systems, mainly at places of critical points around openings situated in close proximity to vertical joints of mutually perpendicularly oriented walls.

Keywords: dissipative energy, dynamic and cycling load repetitive load, working diagrams of joints

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
1035 CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity

Authors: A. Khaleel, S. Gao

Abstract:

Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k-ε models such as standard, RNG and Realizable k-ε model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown good ability of this method in predicting more detailed flow structures in the cavity.

Keywords: Mixed convection, Lid-driven cavity, Turbulent flow, RANS model, URANS model, Large eddy simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
1034 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section

Authors: Malcolm R Davidson, Ram P. Bharti, Petar Liovic, Dalton J.E. Harvie

Abstract:

The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced.

Keywords: Contraction, Electroviscous, Microfluidic, Numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
1033 Numerical Study of Laminar Mixed Convection Heat Transfer of a Nanofluid in a Concentric Annular Tube Using Two-Phase Mixture Model

Authors: Roghayyeh Motallebzadeh, Shahin Hajizadeh, Mohammad Reza Ghasemi

Abstract:

Laminar mixed Convection heat transfer of a nanofluid with prescribed constant heat flux on the inner wall of horizontal annular tube has been studied numerically based on two-phase mixture model in different Rayleigh Numbers and Azimuth angles. Effects of applying of different volume fractions of Al2O3 nanoparticles in water as a base fluid on hydrodynamic and thermal behaviors of the fluid flow such as axial velocity, secondary flow, temperature, heat transfer coefficient and friction coefficient at the inner and outer wall region, has been investigated. Conservation equations in elliptical form has been utilized and solved in three dimensions for a steady flow. It is observed that, there is a good agreement between results in this work and previously published experimental and numerical works on mixed convection in horizontal annulus. These particles cause to increase convection heat transfer coefficient of the fluid, meanwhile there is no considerable effect on friction coefficient.

Keywords: Buoyancy force, Laminar mixed convection, Mixture model, Nanofluid, Two-phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
1032 Effects of Rarefaction and Compressibility on Fluid Flow at Slip Flow Regime by Direct Simulation of Roughness

Authors: M. Hakak Khadem, M. Shams, S. Hossainpour

Abstract:

A two dimensional numerical simulation has been performed for incompressible and compressible fluid flow through microchannels in slip flow regime. The Navier-Stokes equations have been solved in conjunction with Maxwell slip conditions for modeling flow field associated with slip flow regime. The wall roughness is simulated with triangular microelements distributed on wall surfaces to study the effects of roughness on fluid flow. Various Mach and Knudsen numbers are used to investigate the effects of rarefaction as well as compressibility. It is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases. In addition, similar to incompressible models the increase in average fRe is more significant at low Knudsen number flows but the increase of Poiseuille number duo to relative roughness is sharper for compressible models. The numerical results have also validated with some available theoretical and experimental relations and good agreements have been seen.

Keywords: Relative roughness, slip flow, Poiseuille number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
1031 Conceptual Design of Experimental Helium Cooling Loop for Indian TBM R&D Experiments

Authors: B. K. Yadav, A. Gandhi, A. K. Verma, T. S. Rao, A. Saraswat, E. R. Kumar, M. Sarkar, K. N. Vyas

Abstract:

This paper deals with the conceptual design of Experimental Helium Cooling Loop (EHCL) for Indian Test Blanket Module (TBM) and its related thermal hydraulic experiments. Indian TBM team is developing Lead Lithium cooled Ceramic Breeder (IN-LLCB) TBM to be tested in ITER. The TBM box structure is cooled by high pressure (8 MPa) and high temperature (300-500C) helium gas.

The first wall of TBM made of complex channel geometry having several parallel channels carrying helium gas for efficient heat extraction. Several mock-ups of these channels need to be tested before finalizing the TBM first wall design and fabrication. Besides the individual testing of such mock-ups of breeding blanket, the testing of Pb-Li to helium heat exchanger, the operational experience of helium loop and understanding of the behavior of high pressure and high temperature system components are very essential for final development of Helium Cooling System for LLCB TBM in ITER. The main requirements and characteristics of the EHCL and its conceptual design are presented in this paper.

Keywords: DEMO, EHCL, ITER, LLCB TBM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3171
1030 Streamwise Conduction of Nanofluidic Flow in Microchannels

Authors: Yew Mun Hung, Ching Sze Lim, Tiew Wei Ting, Ningqun Guo

Abstract:

The effect of streamwise conduction on the thermal characteristics of forced convection for nanofluidic flow in rectangular microchannel heat sinks under isothermal wall has been investigated. By applying the fin approach, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow. These two models were solved to obtain closed form analytical solutions for the nanofluid and solid wall temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the nanofluid heat transport characteristics. The effects of the Peclet number, nanoparticle volume fraction, thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks are analyzed. Due to the anomalous increase in the effective thermal conductivity of nanofluid compared to its base fluid, the effect of streamwise conduction is expected to be more significant. This study reveals the significance of the effect of streamwise conduction under certain conditions of which the streamwise conduction should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.

Keywords: fin approach, microchannel heat sink, nanofluid, streamwise conduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
1029 Numerical Simulation of Conjugated Heat Transfer Characteristics of Laminar Air Flows in Parallel-Plate Dimpled Channels

Authors: Hossein Shokouhmand , Mohammad A. Esmaeili, Koohyar Vahidkhah

Abstract:

This paper presents a numerical study on surface heat transfer characteristics of laminar air flows in parallel-plate dimpled channels. The two-dimensional numerical model is provided by commercial code FLUENT and the results are obtained for channels with symmetrically opposing hemi-cylindrical cavities onto both walls for Reynolds number ranging from 1000 to 2500. The influence of variations in relative depth of dimples (the ratio of cavity depth to the cavity curvature diameter), the number of them and the thermophysical properties of channel walls on heat transfer enhancement is studied. The results are evident for existence of an optimum value for the relative depth of dimples in which the largest wall heat flux and average Nusselt number can be achieved. In addition, the results of conjugation simulation indicate that the overall influence of the ratio of wall thermal conductivity to the one of the fluid on heat transfer rate is not much significant and can be ignored.

Keywords: cavity, conjugation, heat transfer, laminar air flow, Numerical, parallel-plate channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1028 Unsteady MHD Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of spherical cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter (K), magnetic parameter (m) and elasticoviscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section, Magnetic parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
1027 Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels

Authors: Veli Ozbolat, Nehir Tokgoz, Besir Sahin

Abstract:

Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.

Keywords: Corrugated Channel, CFD, Flow Characteristics, Heat Transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3264
1026 Physical Properties and Stability of Emulsions as Affected by Native and Modified Yam Starches

Authors: Nor Hayati Ibrahim, Shamini Nair Achudan

Abstract:

This study was conducted in order to determine the physical properties and stability of mayonnaise-like emulsions as affected by modified yam starches. Native yam starch was modified via pre-gelatinization and cross-linking phosphorylation procedures. The emulsions (50% oil dispersed phase) were prepared with 0.3% native potato, native yam, pre-gelatinized yam and cross-linking phosphorylation yam starches. The droplet size of surface weighted mean diameter was found to be significantly (p < 0.05) lower in the sample with cross-linking phosphorylation yam starch as compared to other samples. Moreover, the viscosity of the sample with pregelatinized yam starch was observed to be higher than that of other samples. The phase separation stability was low in the freshly prepared and stored (45 days, 5°C) emulsions containing native yam starch. This study thus generally suggested that modified yam starches were more suitable (i.e. better physical properties and stability) to be used as stabilizers in a similar system i.e. light mayonnaises, rather than a native yam starch.

Keywords: Oil-in-water emulsions, low-fat mayonnaises, modified yam starches, droplet size distribution, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3408
1025 CMOS Positive and Negative Resistors Based on Complementary Regulated Cascode Topology with Cross-Coupled Regulated Transistors

Authors: Kittipong Tripetch, Nobuhiko Nakano

Abstract:

Two types of floating active resistors based on a complementary regulated cascode topology with cross-coupled regulated transistors are presented in this paper. The first topology is a high swing complementary regulated cascode active resistor. The second topology is a complementary common gate with a regulated cross coupled transistor. The small-signal input resistances of the floating resistors are derived. Three graphs of the input current versus the input voltage for different aspect ratios are designed and plotted using the Cadence Spectre 0.18-µm Rohm Semiconductor process. The total harmonic distortion graphs are plotted for three different aspect ratios with different input-voltage amplitudes and different input frequencies. From the simulation results, it is observed that a resistance of approximately 8.52 MΩ can be obtained from supply voltage at  ±0.9 V.

Keywords: Complementary common gate, complementary regulated cascode, current mirror, floating active resistors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
1024 Numerical Study of Liquefied Petroleum Gas Laminar Flow in Cylindrical Elliptic Pipes

Authors: Olumuyiwa A. Lasode, Tajudeen O. Popoola, B. V. S. S. S. Prasad

Abstract:

Fluid flow in cylinders of elliptic cross-section was investigated. Fluid used is Liquefied petroleum gas (LPG). LPG found in Nigeria contains majorly butane with percentages of propane. Commercial available code FLUENT which uses finite volume method was used to solve fluid flow governing equations. There has been little attention paid to fluid flow in cylindrical elliptic pipes. The present work aims to predict the LPG gas flow in cylindrical pipes of elliptic cross-section. Results of flow parameters of velocity and pressure distributions are presented. Results show that the pressure drop in elliptic pipes is higher than circular pipe of the same cross-sectional area. This is an important result as the pressure drop is related to the pump power needed to drive the flow. Results show that the velocity increases towards centre of the pipe as the flow moves downstream, and also increases towards the outlet of the pipe.

Keywords: Elliptic Pipes, Liquefied Petroleum Gas, Numerical Study, Pressure Drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858
1023 Re-interpreting Ruskin with Respect to the Wall

Authors: Anjali Sadanand, R. V. Nagarajan

Abstract:

Architecture morphs with advances in technology and the roof, wall, and floor as basic elements of a building, follow in redefining themselves over time. Their contribution is bound by time and held by design principles that deal with function, sturdiness, and beauty. Architecture engages with people to give joy through its form, material, design structure, and spatial qualities. This paper attempts to re-interpret John Ruskin’s “Seven lamps of Architecture” in the context of the architecture of the modern and present period. The paper focuses on the “wall” as an element of study in this context. Four of Ruskin’s seven lamps will be discussed, namely beauty, truth, life, and memory, through examples of architecture ranging from modernism to contemporary architecture of today. The study will focus on the relevance of Ruskin’s principles to the “wall” in specific, in buildings of different materials and over a range of typologies from all parts of the world. Two examples will be analyzed for each lamp. It will be shown that in each case, there is relevance to the significance of Ruskin’s lamps in modern and contemporary architecture. Nature to which Ruskin alludes to for his lamp of “beauty” is found in the different expressions of interpretation used by Corbusier in his Villa Stein façade based on proportion found in nature and in the direct expression of Toyo Ito in his translation of an understanding of the structure of trees into his façade design of the showroom for a Japanese bag boutique. “Truth” is shown in Mies van der Rohe’s Crown Hall building with its clarity of material and structure and Studio Mumbai’s Palmyra House, which celebrates the use of natural materials and local craftsmanship. “Life” is reviewed with a sustainable house in Kerala by Ashrams Ravi and Alvar Aalto’s summer house, which illustrate walls as repositories of intellectual thought and craft. “Memory” is discussed with Charles Correa’s Jawahar Kala Kendra and Venturi’s Vana Venturi house and discloses facades as text in the context of its materiality and iconography. Beauty is reviewed in Villa Stein and Toyo Ito’s Branded Retail building in Tokyo. The paper thus concludes that Ruskin’s Lamps can be interpreted in today’s context and add richness to meaning to the understanding of architecture.

Keywords: Beauty, design, façade, modernism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
1022 Evaluation of the End Effect Impact on the Torsion Test for Determining the Shear Modulus of a Timber Beam through a Photogrammetry Approach

Authors: Niaz Gharavi, Hexin Zhang, Yanjun Xie

Abstract:

The timber beam end effect in the torsion test is evaluated using binocular stereo vision system. It is recommended by BS EN 408:2010+A1:2012 to exclude a distance of two to three times of cross-sectional thickness (b) from ends to avoid the end effect; whereas, this study indicates that this distance is not sufficiently far enough to remove this effect in slender cross-sections. The shear modulus of six timber beams with different aspect ratios is determined at the various angles and cross-sections. The result of this experiment shows that the end affected span of each specimen varies depending on their aspect ratios. It is concluded that by increasing the aspect ratio this span will increase. However, by increasing the distance from the ends to the values greater than 6b, the shear modulus trend becomes constant and end effect will be negligible. Moreover, it is concluded that end affected span is preferred to be depth-dependent rather than thickness-dependant.

Keywords: End effect, structural-size torsion test, shear properties, timber engineering, binocular stereo vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
1021 Cross-Cultural Cooperation and Innovation: An Exploration of Chinese Foreign Direct Investment in Europe

Authors: Yongsheng Guo, Shuchao Li

Abstract:

This study explores Chinese Foreign Direct Investment (FDI) in Europe and the cross-cultural cooperation between Chinese and European managers. The aim of this research is to shed light on the phenomenon of investments in developed countries from an emerging market and to gain insights into the cooperation process. A grounded theory approach is adopted, and 46 semi-structured interviews were conducted with 10 case companies in Germany and 13 case companies in the UK. Grounded theory models are developed from primary data and interview quotes are used to support the themes. The interviewees perceived differences between the two parties in cultural traits, management concepts, knowledge structure and resource endowment between the two parties. Chinese and European partners can take advantage of different resources and cooperate in innovative ways to improve corporate performance. Moreover, both parties appreciate different ethical and cultural characteristics and complement each other to develop a combined organizational culture. This study proposes an ethical and cultural diversity theory in international management arguing that a team with diversified values and behaviours may be more excited and motivated. This study suggests that “resource complement” and “cross-cultural cooperation” might be an advantage for international investment. Firms are encouraged to open their minds and cooperate with partners with different resources and cultures. The authorities may review the FDI policies to reduce social and political barriers.

Keywords: Cross-culture, FDI, China, Europe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63
1020 Time-Dependent Behavior of Damaged Reinforced Concrete Shear Walls Strengthened with Composite Plates Having Variable Fibers Spacing

Authors: R. Yeghnem, L. Boulefrakh, S. A. Meftah, A. Tounsi, E. A. Adda Bedia

Abstract:

In this study, the time-dependent behavior of damaged reinforced concrete shear wall structures strengthened with composite plates having variable fibers spacing was investigated to analyze their seismic response. In the analytical formulation, the adherent and the adhesive layers are all modeled as shear walls, using the mixed Finite Element Method (FEM). The anisotropic damage model is adopted to describe the damage extent of the Reinforced Concrete shear walls. The phenomenon of creep and shrinkage of concrete has been determined by Eurocode 2. Large earthquakes recorded in Algeria (El-Asnam and Boumerdes) have been tested to demonstrate the accuracy of the proposed method. Numerical results are obtained for non-uniform distributions of carbon fibers in epoxy matrices. The effects of damage extent and the delay mechanism creep and shrinkage of concrete are highlighted. Prospects are being studied.

Keywords: RC shear wall structures, composite plates, creep and shrinkage, damaged reinforced concrete structures, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628