Search results for: Biogenic magnetic nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 649

Search results for: Biogenic magnetic nanoparticles

499 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture

Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis

Abstract:

During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.

Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
498 Structure and Magnetic Properties of Nanocomposite Fe2O3/TiO2 Catalysts Fabricated by Heterogeneous Precipitation

Authors: Jana P. Vejpravova, Daniel Niznansky, Vaclav Vales, Barbara Bittova, Vaclav Tyrpekl, Stanislav Danis, Vaclav Holy, Stephen Doyle

Abstract:

The aim of our work is to study phase composition, particle size and magnetic response of Fe2O3/TiO2 nanocomposites with respect to the final annealing temperature. Those nanomaterials are considered as smart catalysts, separable from a liquid/gaseous phase by applied magnetic field. The starting product was obtained by an ecologically acceptable route, based on heterogeneous precipitation of the TiO2 on modified g-Fe2O3 nanocrystals dispersed in water. The precursor was subsequently annealed on air at temperatures ranging from 200 oC to 900 oC. The samples were investigated by synchrotron X-ray powder diffraction (S-PXRD), magnetic measurements and Mössbauer spectroscopy. As evidenced by S-PXRD and Mössbauer spectroscopy, increasing the annealing temperature causes evolution of the phase composition from anatase/maghemite to rutile/hematite, finally above 700 oC the pseudobrookite (Fe2TiO5) also forms. The apparent particle size of the various Fe2O3/TiO2 phases has been determined from the highquality S-PXRD data by using two different approaches: the Rietveld refinement and the Debye method. Magnetic response of the samples is discussed in considering the phase composition and the particle size.

Keywords: X-ray diffraction, profile analysis, Mössbauer spectroscopy, magnetic properties, TiO2, Fe2O3, Fe2TiO5

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
497 Magnetic Field Effects on Parabolic Graphene Quantum Dots with Topological Defects

Authors: Defne Akay, Bekir S. Kandemir

Abstract:

In this paper, we investigate the low-lying energy levels of the two-dimensional parabolic graphene quantum dots (GQDs) in the presence of topological defects with long range Coulomb impurity and subjected to an external uniform magnetic field. The low-lying energy levels of the system are obtained within the framework of the perturbation theory. We theoretically demonstrate that a valley splitting can be controlled by geometrical parameters of the graphene quantum dots and/or by tuning a uniform magnetic field, as well as topological defects. It is found that, for parabolic graphene dots, the valley splitting occurs due to the introduction of spatial confinement. The corresponding splitting is enhanced by the introduction of a uniform magnetic field and it increases by increasing the angle of the cone in subcritical regime.

Keywords: Coulomb impurity, graphene cones, graphene quantum dots, topological defects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
496 Enhancement Effect of Superparamagnetic Iron Oxide Nanoparticle-Based MRI Contrast Agent at Different Concentrations and Magnetic Field Strengths

Authors: Bimali Sanjeevani Weerakoon, Toshiaki Osuga, Takehisa Konishi

Abstract:

Magnetic Resonance Imaging Contrast Agents (MRI-CM) are significant in the clinical and biological imaging as they have the ability to alter the normal tissue contrast, thereby affecting the signal intensity to enhance the visibility and detectability of images. Superparamagnetic Iron Oxide (SPIO) nanoparticles, coated with dextran or carboxydextran are currently available for clinical MR imaging of the liver. Most SPIO contrast agents are T2 shortening agents and Resovist (Ferucarbotran) is one of a clinically tested, organ-specific, SPIO agent which has a low molecular carboxydextran coating. The enhancement effect of Resovist depends on its relaxivity which in turn depends on factors like magnetic field strength, concentrations, nanoparticle properties, pH and temperature. Therefore, this study was conducted to investigate the impact of field strength and different contrast concentrations on enhancement effects of Resovist. The study explored the MRI signal intensity of Resovist in the physiological range of plasma from T2-weighted spin echo sequence at three magnetic field strengths: 0.47 T (r1=15, r2=101), 1.5 T (r1=7.4, r2=95), and 3 T (r1=3.3, r2=160) and the range of contrast concentrations by a mathematical simulation. Relaxivities of r1 and r2 (L mmol-1 Sec-1) were obtained from a previous study and the selected concentrations were 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 mmol/L. T2-weighted images were simulated using TR/TE ratio as 2000 ms /100 ms. According to the reference literature, with increasing magnetic field strengths, the r1 relaxivity tends to decrease while the r2 did not show any systematic relationship with the selected field strengths. In parallel, this study results revealed that the signal intensity of Resovist at lower concentrations tends to increase than the higher concentrations. The highest reported signal intensity was observed in the low field strength of 0.47 T. The maximum signal intensities for 0.47 T, 1.5 T and 3 T were found at the concentration levels of 0.05, 0.06 and 0.05 mmol/L, respectively. Furthermore, it was revealed that, the concentrations higher than the above, the signal intensity was decreased exponentially. An inverse relationship can be found between the field strength and T2 relaxation time, whereas, the field strength was increased, T2 relaxation time was decreased accordingly. However, resulted T2 relaxation time was not significantly different between 0.47 T and 1.5 T in this study. Moreover, a linear correlation of transverse relaxation rates (1/T2, s–1) with the concentrations of Resovist can be observed. According to these results, it can conclude that the concentration of SPIO nanoparticle contrast agents and the field strengths of MRI are two important parameters which can affect the signal intensity of T2-weighted SE sequence. Therefore, when MR imaging those two parameters should be considered prudently.

Keywords: Concentration, Resovist, Field strength, Relaxivity, Signal intensity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
495 Characterization of Silica Nanoparticles in Interaction with Escherichia coli Bacteria

Authors: Ibtissem Gammoudi, Ndeye Rokhaya Faye, Fabien Moroté, Daniel Moynet, Christine Grauby-Heywang, Touria Cohen-Bouhacina

Abstract:

The objective of the present investigation was to evaluate the morphology of Escherchia coli bacteria in interaction with SiO2 nanoparticles. This study was made by atomic force microscopy and quartz crystal microbalance using SiO2 nanoparticles with 10nm, 50nm and 100nm diameter and bacteria immobilized on polyelectrolyte multilayer films obtained by spin coating or by “layer by layer” (LbL) method.

Keywords: Atomic Force Microscopy, Escherichia coli, Quartz Crystal Microbalance, polyelectrolyte, silica nanoparticle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
494 “Magnetic Cleansing” for the Provision of a ‘Quick Clean’ to Oiled Wildlife

Authors: Lawrence N. Ngeh, John D. Orbell, Stephen W. Bigger, Kasup Munaweera, Peter Dann

Abstract:

This research is part of a broad program aimed at advancing the science and technology involved in the rescue and rehabilitation of oiled wildlife. One aspect of this research involves the use of oil-sequestering magnetic particles for the removal of contaminants from plumage – so-called “magnetic cleansing". This treatment offers a number of advantages over conventional detergent-based methods including portability - which offers the possibility of providing a “quick clean" to the animal upon first encounter in the field. This could be particularly advantageous when the contaminant is toxic and/or corrosive and/or where there is a delay in transporting the victim to a treatment centre. The method could also be useful as part of a stabilization protocol when large numbers of affected animals are awaiting treatment. This presentation describes the design, development and testing of a prototype field kit for providing a “quick clean" to contaminated wildlife in the field.

Keywords: Magnetic Particles, Oiled Wildlife, Quick Clean, Wildlife Rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
493 Self-Sensing versus Reference Air Gaps

Authors: Alexander Schulz, Ingrid Rottensteiner, Manfred Neumann, Michael Wehse, Johann Wassermann

Abstract:

Self-sensing estimates the air gap within an electro magnetic path by analyzing the bearing coil current and/or voltage waveform. The self-sensing concept presented in this paper has been developed within the research project “Active Magnetic Bearings with Supreme Reliability" and is used for position sensor fault detection. Within this new concept gap calculation is carried out by an alldigital analysis of the digitized coil current and voltage waveform. For analysis those time periods within the PWM period are used, which give the best results. Additionally, the concept allows the digital compensation of nonlinearities, for example magnetic saturation, without degrading signal quality. This increases the accuracy and robustness of the air gap estimation and additionally reduces phase delays. Beneath an overview about the developed concept first measurement results are presented which show the potential of this all-digital self-sensing concept.

Keywords: digital signal analysis, active magnetic bearing, reliability, fault detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
492 Petro-Mineralogical Studies of Phosphorite Deposit of Sallopat Block of Banswara District, Rajasthan, India

Authors: K. F. Khan, Samsuddin Khan

Abstract:

The Paleoproterozoic phosphorite deposit of Sallopat block of Banswara district of Rajasthan belongs to kalinjara formation of lunavada group of Aravalli Super Group. The phosphorites are found to occur as massive, brecciated, laminated and stromatolitic associated with calcareous quartzite, interbedded dolomite and multi coloured chert. The phosphorites are showing alternate brown and grey coloured concentric rims which are composed of phosphate, calcite and quartz minerals. Petro-mineralogical studies of phosphorite samples using petrological microscope, XRD, FEG- SEM and EDX reveal that apatite-(CaF) and apatite-(CaOH) are phosphate minerals which are intermixed with minor amount of carbonate materials. Sporadic findings of the uniform tiny granules of partially anisotropic apatite-(CaF) along with dolomite, calcite, quartz, muscovite, zeolite and other gangue minerals have been observed with the replacement of phosphate material by quartz and carbonate. The presence of microbial filaments of organic matter and alternate concentric rims of stromatolitic structure may suggest that the deposition of the phosphate took place in shallow marine oxidizing environmental conditions leading to the formation of phosphorite layers as primary biogenic precipitates by bacterial or algal activities. Different forms and texture of phosphate minerals may be due to environmental vicissitudes at the time of deposition followed by some replacement processes and biogenic activities.

Keywords: Petro-mineralogy, phosphorites, sallopat, apatite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
491 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: Catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
490 Environmental Analysis of the Zinc Oxide Nanophotocatalyst Synthesis

Authors: Natália B. Pompermayer, Mariana B. Porto, Elizabeth F. Souza

Abstract:

Nanophotocatalysts such as titanium (TiO2), zinc (ZnO), and iron (Fe2O3) oxides can be used in organic pollutants oxidation, and in many other applications. But among the challenges for technological application (scale-up) of the nanotechnology scientific developments two aspects are still little explored: research on environmental risk of the nanomaterials preparation methods, and the study of nanomaterials properties and/or performance variability. The environmental analysis was performed for six different methods of ZnO nanoparticles synthesis, and showed that it is possible to identify the more environmentally compatible process even at laboratory scale research. The obtained ZnO nanoparticles were tested as photocatalysts, and increased the degradation rate of the Rhodamine B dye up to 30 times.

Keywords: Environmental impact analysis, inorganic nanoparticles, photocatalysts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3412
489 Unsteady MHD Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of spherical cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter (K), magnetic parameter (m) and elasticoviscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section, Magnetic parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
488 Hydrogen Gas Sensing Properties of Multiwalled Carbon Nanotubes Network Partially Coated with SnO2 Nanoparticles at Room Temperature

Authors: Neena Jaggi, Shivani Dhall

Abstract:

In the present work, hydrogen gas sensor of modest sensitivity utilizing functionalized multiwalled carbon nanotubes partially decorated with tin oxide nanoparticles (F-MWCNTs/SnO2) has been fabricated. This sensing material was characterized by scanning electron microscopy (SEM). In addition, a remarkable finding was that the F-MWCNTs/SnO2 sensor shows good sensitivity as compared to F-MWCNTs for low concentration (0.05-1% by volume) of H2 gas. The fabricated sensors show complete resistance recovery and good repeatability when exposed to H2 gas at the room temperature conditions.

Keywords: F-MWCNTs, SnO2 nanoparticles, Chemiresistor, I-V Characteristics, H2 Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2432
487 Use of Opti-Jet Cs Md1mr Device for Biocide Aerosolisation in 3t Magnetic Resonance

Authors: Robert Pintaric, Joze Matela, Stefan Pintaric, Stanka Vadnjal

Abstract:

Introduction: This work is aimed to represent the use of the OPTI-JET CS MD1 MR prototype for application of neutral electrolyzed oxidizing water (NEOW) in magnetic resonance rooms. Material and Methods: We produced and used OPTI-JET CS MD1 MR aerosolisator whereby was performed aerosolization. The presence of microorganisms before and after the aerosolisation was recorded with the help of cyclone air sampling. Colony formed units (CFU) was counted. Results: The number of microorganisms in magnetic resonance 3T room was low as expected. Nevertheless, a possible CFU reduction of 87% was recorded. Conclusions: The research has shown that the use of EOW for the air and hard surface disinfection can considerably reduce the presence of microorganisms and consequently the possibility of hospital infections. It has also demonstrated that the use of OPTI-JET CS MD1 MR is very good. With this research, we started new guidelines for aerosolization in magnetic resonance rooms. Future work: We predict that presented technique works very good but we must focus also on time capacity sensors, and new appropriate toxicological studies.

Keywords: Biocide, electrolyzed oxidizing water (EOW), disinfection, microorganisms, OPTI-JET CS MD1MR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
486 An Ultra-Low Output Impedance Power Amplifier for Tx Array in 7-Tesla Magnetic Resonance Imaging

Authors: Ashraf Abuelhaija, Klaus Solbach

Abstract:

In Ultra high-field MRI scanners (3T and higher), parallel RF transmission techniques using multiple RF chains with multiple transmit elements are a promising approach to overcome the high-field MRI challenges in terms of inhomogeneity in the RF magnetic field and SAR. However, mutual coupling between the transmit array elements disturbs the desirable independent control of the RF waveforms for each element. This contribution demonstrates a 18 dB improvement of decoupling (isolation) performance due to the very low output impedance of our 1 kW power amplifier.

Keywords: EM coupling, Inter-element isolation, Magnetic resonance imaging (MRI), Parallel Transmit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
485 Numerical Investigation of Unsteady MHD Flow of Second Order Fluid in a Tube of Elliptical Cross-Section on the Porous Boundary

Authors: S. B. Kulkarni, Hasim A. Chikte, V. Murali Mohan

Abstract:

Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of elliptic cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter, magnetic parameter and elastico-viscosity parameter, which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter, magnetic parameter tends to zero, and porosity tends to infinity. The numerical results were simulated in MATLAB software to analyze the effect of Elastico-viscous parameter, porosity parameter, and magnetic parameter on velocity profile. Boundary conditions were satisfied. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Elliptic cross-section, Magnetic parameter, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
484 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: The linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
483 Design of the Miniature Maglev Using Hybrid Magnets in Magnetic Levitation System

Authors: Jeong-Min Jo, Young-Jae Han, Chang-Young Lee

Abstract:

Attracting ferromagnetic forces between magnet and reaction rail provide the supporting force in Electromagnetic Suspension. Miniature maglev using permanent magnets and electromagnets is based on the idea to generate the nominal magnetic force by permanent magnets and superimpose the variable magnetic field required for stabilization by currents flowing through control windings in electromagnets. Permanent magnets with a high energy density have lower power losses with regard to supporting force and magnet weight. So the advantage of the maglev using electromagnets and permanent magnets is partially reduced by the power required to feed the remaining onboard supply system so that the overall onboard power is diminished as compared to that of the electromagnet. In this paper we proposed the how to design and control the miniature maglev and confirmed the feasibility of the levitation system using electromagnets and permanent magnets through the manufacturing the miniature maglev

Keywords: Magnetic Levitation system, Maglev, Permanent Magnets, Hybrid Magnet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
482 Optical Limiting Characteristics of Core-Shell Nanoparticles

Authors: G.Vinitha, A.Ramalingam

Abstract:

TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.

Keywords: hydrothermal method, optical limiting devicesseeded polymerization technique, three-photon type absorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
481 Structural Study of Boron - Nitride Nanotube with Magnetic Resonance (NMR) Parameters Calculation via Density Functional Theory Method (DFT)

Authors: Asadollah Boshra, Ahmad Seif, Mehran Aghaei

Abstract:

A model of (4, 4) single-walled boron-nitride nanotube as a representative of armchair boron-nitride nanotubes studied. At first the structure optimization performed and then Nuclear Magnetic Resonance parameters (NMR) by Density Functional Theory (DFT) method at 11B and 15N nuclei calculated. Resulted parameters evaluation presents electrostatic environment heterogeneity along the nanotube and especially at the ends but the nuclei in a layer feel the same electrostatic environment. All of calculations carried out using Gaussian 98 Software package.

Keywords: Boron-nitride nanotube, Density Functional Theory, Nuclear Magnetic Resonance (NMR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
480 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids

Authors: N. Targui, H. Kahalerras

Abstract:

The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy- Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.

Keywords: Double pipe heat exchanger, Nanofluids, Nanoparticles, Porous baffles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3464
479 Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles

Authors: M. Ishak, K. Yamasaki, K. Maekawa

Abstract:

Magnesium alloys have gained increased attention in recent years in automotive, electronics, and medical industry. This because of magnesium alloys have better properties than aluminum alloys and steels in respects of their low density and high strength to weight ratio. However, the main problems of magnesium alloy welding are the crack formation and the appearance of porosity during the solidification. This paper proposes a unique technique to weld two thin sheets of AZ31B magnesium alloy using a paste containing Ag nanoparticles. The paste containing Ag nanoparticles of 5 nm in average diameter and an organic solvent was used to coat the surface of AZ31B thin sheet. The coated sheet was heated at 100 °C for 60 s to evaporate the solvent. The dried sheet was set as a lower AZ31B sheet on the jig, and then lap fillet welding was carried out by using a pulsed Nd:YAG laser in a closed box filled with argon gas. The characteristics of the microstructure and the corrosion behavior of the joints were analyzed by opticalmicroscopy (OM), energy dispersive spectrometry (EDS), electron probe micro-analyzer (EPMA), scanning electron microscopy (SEM), and immersion corrosion test. The experimental results show that the wrought AZ31B magnesium alloy can be joined successfully using Ag nanoparticles. Ag nanoparticles insert promote grain refinement, narrower the HAZ width and wider bond width compared to weld without and insert. Corrosion rate of welded AZ31B with Ag nanoparticles reduced up to 44 % compared to base metal. The improvement of corrosion resistance of welded AZ31B with Ag nanoparticles due to finer grains and large grain boundaries area which consist of high Al content. β-phase Mg17Al12 could serve as effective barrier and suppressed further propagation of corrosion. Furthermore, Ag distribution in fusion zone provide much more finer grains and may stabilize the magnesium solid solution making it less soluble or less anodic in aqueous

Keywords: Laser welding, magnesium alloys, nanoparticles, mechanical property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
478 Design of Salbutamol Sulphate Gastroretentive Nanoparticles via Surface Charge Manipulation

Authors: Diky Mudhakir, M. Fauzi Bostanudin, Fiki Firmawan, Rachmat Mauludin

Abstract:

In the present study, development of salbutamol sulphate nanoparticles that adhere to gastric mucus was investigated. Salbutamol sulphate has low bioavailability due to short transit time in gastric. It also has a positive surface charge that provides hurdles to be encapsulated by the positively strong mucoadhesive polymer of chitosan. To overcome the difficulties, the surface charge of active ingredient was modified using several nonionic and anionic stomach-specific polymers. The nanoparticles were prepared using ionotropic gelation technique. The evaluation involved determination of particle size, zeta potential, entrapment efficiency, in vitro drug release and in vitro mucoadhesion test. Results exhibited that the use of anionic alginate polymer was more satisfactory than that of nonionic polymer. Characteristics of the particles was nano-size, high encapsulation efficiency, fulfilled the drug release requirements and adhesive towards stomach for around 11 hours. This result shows that the salbutamol sulphate nanoparticles can be utilized for improvement its delivery.

Keywords: Mucoadhesive, salbutamol sulphate, nanosize, anionic polymer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
477 Simulation of a Boost PFC Converter with Electro Magnetic Interference Filter

Authors: P. Ram Mohan, M. Vijaya Kumar, O. V. Raghava Reddy

Abstract:

This paper deals with the simulation of a Boost Power Factor Correction (PFC) Converter with Electro Magnetic Interference (EMI) Filter. The diode rectifier with output capacitor gives poor power factor. The Boost Converter of PFC Circuit is analyzed and then simulated with diode rectifier. The Boost PFC Converter with EMI Filter is simulated for resistive load. The power factor is improved using the proposed converter.

Keywords: Boost Converter, Power Factor Correction, Electro Magnetic Interference, Diode Rectifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3387
476 Thermal and Mechanical Properties of Modified CaCO3 /PP Nanocomposites

Authors: A. Buasri, N. Chaiyut, K. Borvornchettanuwat, N. Chantanachai, K. Thonglor

Abstract:

Inorganic nanoparticles filled polymer composites have extended their multiple functionalities to various applications, including mechanical reinforcement, gas barrier, dimensional stability, heat distortion temperature, flame-retardant, and thermal conductivity. Sodium stearate-modified calcium carbonate (CaCO3) nanoparticles were prepared using surface modification method. The results showed that sodium stearate attached to the surface of CaCO3 nanoparticles with the chemical bond. The effect of modified CaCO3 nanoparticles on thermal properties of polypropylene (PP) was studied by means of differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). It was found that CaCO3 significantly affected the crystallization temperature and crystallization degree of PP. Effect of the modified CaCO3 content on mechanical properties of PP/CaCO3 nanocomposites was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of PP. In comparison with PP, the impact strength of PP/CaCO3 nanocomposites increased by about 65% and the hardness increased by about 5%.

Keywords: Polypropylene Nanocomposites, Modified Calcium Carbonate, Sodium Stearate, Surface Treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4326
475 Contrast-Enhanced Magnetic Resonance Angiography in Rats with Gadobenate Dimeglumine at 3T

Authors: Jo-Chi Jao, Yen-Ku Chen, Twei-Shiun Jaw, Po-Chou Chen

Abstract:

This study aimed to investigate the magnetic resonance (MR) signal enhancement ratio (ER) of contrast-enhanced MR angiography (CE-MRA) in normal rats with gadobenate dimeglumine (Gd-BOPTA) using a clinical 3T scanner and an extremity coil. The relaxivities of Gd-BOPTA with saline only and with 4.5% human serum albumin (HSA) were also measured. Compared with Gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA), Gd-BOPTA had higher relaxivities. The maximum ER of aorta (ERa), kidney, liver and muscle with Gd-BOPTA were higher than those with Gd-DTPA. The maximum ERa appeared at 1.2 min and decayed to half at 10 min after Gd-BOPTA injection. This information is helpful for the design of CE-MRA study of rats.

Keywords: Contrast-Enhanced Magnetic Resonance Angiography, Gd-BOPTA, Gd-DTPA, Rat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
474 The Effect of Type of Nanoparticles on the Quenching Process

Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Harun Cifci

Abstract:

In this study, the experiments were carried out to determine the best coolant for the quenching process among waterbased silica, alumina, titania and copper oxide nanofluids (0.1 vol%). A sphere made up off brass material was used in the experiments. When the spherical test specimen was heated at high temperatures, it was suddenly immersed into the nanofluids. All experiments were carried out at saturated conditions and under atmospheric pressure. After the experiments, the cooling curves were obtained by using the temperature-time data of the specimen. The experimental results showed that the cooling performance of test specimen depended on the type of nanofluids. The silica nanoparticles enhanced the performance of boiling heat transfer and it is the best coolant for the quenching among other nanoparticles.

Keywords: Heat transfer, nanofluid, pool boiling, quenching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
473 Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches

Authors: Sergey M. Karabanov, Dmitry V. Suvorov, Dmitry Yu. Tarabrin

Abstract:

The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode.

Keywords: MEMS switch, magnetic sensitivity, magnetic concentrator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684
472 Detecting Subsurface Circular Objects from Low Contrast Noisy Images: Applications in Microscope Image Enhancement

Authors: Soham De, Nupur Biswas, Abhijit Sanyal, Pulak Ray, Alokmay Datta

Abstract:

Particle detection in very noisy and low contrast images is an active field of research in image processing. In this article, a method is proposed for the efficient detection and sizing of subsurface spherical particles, which is used for the processing of softly fused Au nanoparticles. Transmission Electron Microscopy is used for imaging the nanoparticles, and the proposed algorithm has been tested with the two-dimensional projected TEM images obtained. Results are compared with the data obtained by transmission optical spectroscopy, as well as with conventional circular object detection algorithms.

Keywords: Transmission Electron Microscopy, Circular Hough Transform, Au Nanoparticles, Median Filter, Laplacian Sharpening Filter, Canny Edge Detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
471 Unsteady Flow of an Incompressible Viscous Electrically Conducting Fluid in Tube of Elliptical Cross Section under the Influence of Magnetic Field

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous electrically conducting fluid through a porous media in a tube of elliptical cross section under the influence of constant pressure gradient and magnetic field has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the transverse magnetic field and porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K), magnetic parameter (m) and elastico-viscosity parameter (β), which depends on the Non- Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, magnetic parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Elliptic cross-section, Porous media, Second order fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
470 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes

Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng

Abstract:

Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.

Keywords: Anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075