Search results for: Artificial Immune Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5150

Search results for: Artificial Immune Systems

5150 Hybrid Model Based on Artificial Immune System and Cellular Automata

Authors: Ramin Javadzadeh, Zahra Afsahi, MohammadReza Meybodi

Abstract:

The hybridization of artificial immune system with cellular automata (CA-AIS) is a novel method. In this hybrid model, the cellular automaton within each cell deploys the artificial immune system algorithm under optimization context in order to increase its fitness by using its neighbor-s efforts. The hybrid model CA-AIS is introduced to fix the standard artificial immune system-s weaknesses. The credibility of the proposed approach is evaluated by simulations and it shows that the proposed approach achieves better results compared to standard artificial immune system.

Keywords: Artificial Immune System, Cellular Automat, neighborhood

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
5149 Improved Artificial Immune System Algorithm with Local Search

Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi

Abstract:

The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithms

Keywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
5148 The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem

Authors: Meng-Hui Chen, Pei-Chann Chang, Wei-Hsiu Huang

Abstract:

Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.

Keywords: Artificial Immune System, Clonal Selection, Immune Response, Permutation Flow-shop Scheduling Problems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
5147 Optimizing Spatial Trend Detection By Artificial Immune Systems

Authors: M. Derakhshanfar, B. Minaei-Bidgoli

Abstract:

Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.

Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
5146 Apoptosis Inspired Intrusion Detection System

Authors: R. Sridevi, G. Jagajothi

Abstract:

Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.

Keywords: Apoptosis, Artificial Immune System (AIS), Fisher Score, KDD dataset, Network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
5145 Hybrid Artificial Immune System for Job Shop Scheduling Problem

Authors: Bin Cai, Shilong Wang, Haibo Hu

Abstract:

The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. This paper presents a hybrid artificial immune system for the JSSP with the objective of minimizing makespan. The proposed approach combines the artificial immune system, which has a powerful global exploration capability, with the local search method, which can exploit the optimal antibody. The antibody coding scheme is based on the operation based representation. The decoding procedure limits the search space to the set of full active schedules. In each generation, a local search heuristic based on the neighborhood structure proposed by Nowicki and Smutnicki is applied to improve the solutions. The approach is tested on 43 benchmark problems taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.

Keywords: Artificial immune system, Job shop scheduling problem, Local search, Metaheuristic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
5144 Self-evolving Artificial Immune System via Developing T and B Cell for Permutation Flow-shop Scheduling Problems

Authors: Pei-Chann Chang, Wei-Hsiu Huang, Ching-Jung Ting, Hwei-Wen Luo, Yu-Peng Yu

Abstract:

Artificial Immune System is applied as a Heuristic Algorithm for decades. Nevertheless, many of these applications took advantage of the benefit of this algorithm but seldom proposed approaches for enhancing the efficiency. In this paper, a Self-evolving Artificial Immune System is proposed via developing the T and B cell in Immune System and built a self-evolving mechanism for the complexities of different problems. In this research, it focuses on enhancing the efficiency of Clonal selection which is responsible for producing Affinities to resist the invading of Antigens. T and B cell are the main mechanisms for Clonal Selection to produce different combinations of Antibodies. Therefore, the development of T and B cell will influence the efficiency of Clonal Selection for searching better solution. Furthermore, for better cooperation of the two cells, a co-evolutional strategy is applied to coordinate for more effective productions of Antibodies. This work finally adopts Flow-shop scheduling instances in OR-library to validate the proposed algorithm.

Keywords: Artificial Immune System, Clonal Selection, Flow-shop Scheduling Problems, Co-evolutional strategy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
5143 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.

As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
5142 Combine a Population-based Incremental Learning with Artificial Immune System for Intrusion Detection System

Authors: Jheng-Long Wu, Pei-Chann Chang, Hsuan-Ming Chen

Abstract:

This research focus on the intrusion detection system (IDS) development which using artificial immune system (AIS) with population based incremental learning (PBIL). AIS have powerful distinguished capability to extirpate antigen when the antigen intrude into human body. The PBIL is based on past learning experience to adjust new learning. Therefore we propose an intrusion detection system call PBIL-AIS which combine two approaches of PBIL and AIS to evolution computing. In AIS part we design three mechanisms such as clonal selection, negative selection and antibody level to intensify AIS performance. In experimental result, our PBIL-AIS IDS can capture high accuracy when an intrusion connection attacks.

Keywords: Artificial immune system, intrusion detection, population-based incremental learning, evolution computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
5141 Optimal Dynamic Economic Load Dispatch Using Artificial Immune System

Authors: I. A. Farhat

Abstract:

The The dynamic economic dispatch (DED) problem is one of the complex constrained optimization problems that have nonlinear, con-convex and non-smooth objective functions. The purpose of the DED is to determine the optimal economic operation of the committed units while meeting the load demand. Associated to this constrained problem there exist highly nonlinear and non-convex practical constraints to be satisfied. Therefore, classical and derivative-based methods are likely not to converge to an optimal or near optimal solution to such a dynamic and large-scale problem. In this paper, an Artificial Immune System technique (AIS) is implemented and applied to solve the DED problem considering the transmission power losses and the valve-point effects in addition to the other operational constraints. To demonstrate the effectiveness of the proposed technique, two case studies are considered. The results obtained using the AIS are compared to those obtained by other methods reported in the literature and found better.

Keywords: Artificial Immune System (AIS), Dynamic Economic Dispatch (DED).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
5140 Optimal Dynamic Economic Load Dispatch Using Artificial Immune System

Authors: I. A. Farhat

Abstract:

The dynamic economic dispatch (DED) problem is one of the complex constrained optimization problems that have nonlinear, con-convex and non-smooth objective functions. The purpose of the DED is to determine the optimal economic operation of the committed units while meeting the load demand.  Associated to this constrained problem there exist highly nonlinear and non-convex practical constraints to be satisfied. Therefore, classical and derivative-based methods are likely not to converge to an optimal or near optimal solution to such a dynamic and large-scale problem. In this paper, an Artificial Immune System technique (AIS) is implemented and applied to solve the DED problem considering the transmission power losses and the valve-point effects in addition to the other operational constraints. To demonstrate the effectiveness of the proposed technique, two case studies are considered. The results obtained using the AIS are compared to those obtained by other methods reported in the literature and found better.

Keywords: Artificial Immune System (AIS), Dynamic Economic Dispatch (DED).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
5139 Danger Theory and Intelligent Data Processing

Authors: Anjum Iqbal, Mohd Aizaini Maarof

Abstract:

Artificial Immune System (AIS) is relatively naive paradigm for intelligent computations. The inspiration for AIS is derived from natural Immune System (IS). Classically it is believed that IS strives to discriminate between self and non-self. Most of the existing AIS research is based on this approach. Danger Theory (DT) argues this approach and proposes that IS fights against danger producing elements and tolerates others. We, the computational researchers, are not concerned with the arguments among immunologists but try to extract from it novel abstractions for intelligent computation. This paper aims to follow DT inspiration for intelligent data processing. The approach may introduce new avenue in intelligent processing. The data used is system calls data that is potentially significant in intrusion detection applications.

Keywords: artificial immune system, danger theory, intelligent processing, system calls

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
5138 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
5137 Analyzing the Relationship between the Systems Decisions Process and Artificial Intelligence: A Machine Vision Case Study

Authors: Mitchell J. McHugh, John J. Case

Abstract:

Systems engineering is a holistic discipline that seeks to organize and optimize complex, interdisciplinary systems. With the growth of artificial intelligence, systems engineers must face the challenge of leveraging artificial intelligence systems to solve complex problems. This paper analyzes the integration of systems engineering and artificial intelligence and discusses how artificial intelligence systems embody the systems decision process (SDP). The SDP is a four-stage problem-solving framework that outlines how systems engineers can design and implement solutions using value-focused thinking. This paper argues that artificial intelligence models can replicate the SDP, thus validating its flexible, value-focused foundation. The authors demonstrate this by developing a machine vision mobile application that can classify weapons to augment the decision-making role of an Army subject matter expert. This practical application was an end-to-end design challenge that highlights how artificial intelligence systems embody systems engineering principles. The impact of this research demonstrates that the SDP is a dynamic tool that systems engineers should leverage when incorporating artificial intelligence within the systems that they develop.

Keywords: Computer vision, machine learning, mobile application, systems engineering, systems decision process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
5136 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: Delayed systems, Fuzzy Immune PID, Optimization, Smith predictor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2221
5135 An Artificial Immune System for a Multi Agent Robotics System

Authors: Chingtham Tejbanta Singh, Shivashankar B. Nair

Abstract:

This paper explores an application of an adaptive learning mechanism for robots based on the natural immune system. Most of the research carried out so far are based either on the innate or adaptive characteristics of the immune system, we present a combination of these to achieve behavior arbitration wherein a robot learns to detect vulnerable areas of a track and adapts to the required speed over such portions. The test bed comprises of two Lego robots deployed simultaneously on two predefined near concentric tracks with the outer robot capable of helping the inner one when it misaligns. The helper robot works in a damage-control mode by realigning itself to guide the other robot back onto its track. The panic-stricken robot records the conditions under which it was misaligned and learns to detect and adapt under similar conditions thereby making the overall system immune to such failures.

Keywords: Adaptive, AIS, Behavior Arbitration, ClonalSelection, Immune System, Innate, Robot, Self Healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
5134 Locating Critical Failure Surface in Rock Slope Stability with Hybrid Model Based on Artificial Immune System and Cellular Learning Automata (CLA-AIS)

Authors: Ramin Javadzadeh, Emad Javadzadeh

Abstract:

Locating the critical slip surface with the minimum factor of safety for a rock slope is a difficult problem. In recent years, some modern global optimization methods have been developed with success in treating various types of problems, but very few of such methods have been applied to rock mechanical problems. In this paper, use of hybrid model based on artificial immune system and cellular learning automata is proposed. The results show that the algorithm is an effective and efficient optimization method with a high level of confidence rate.

Keywords: CLA-AIS, failure surface, optimization methods, rock slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
5133 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen

Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi

Abstract:

In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.

Keywords: Chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
5132 On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm

Authors: Tomohiro Hachino, Kengo Nagatomo, Hitoshi Takata

Abstract:

This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.

Keywords: Continuous-time System, Hammerstein System, OnlineIdentification, Immune Algorithm, RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361
5131 Bio-inspired Audio Content-Based Retrieval Framework (B-ACRF)

Authors: Noor A. Draman, Campbell Wilson, Sea Ling

Abstract:

Content-based music retrieval generally involves analyzing, searching and retrieving music based on low or high level features of a song which normally used to represent artists, songs or music genre. Identifying them would normally involve feature extraction and classification tasks. Theoretically the greater features analyzed, the better the classification accuracy can be achieved but with longer execution time. Technique to select significant features is important as it will reduce dimensions of feature used in classification and contributes to the accuracy. Artificial Immune System (AIS) approach will be investigated and applied in the classification task. Bio-inspired audio content-based retrieval framework (B-ACRF) is proposed at the end of this paper where it embraces issues that need further consideration in music retrieval performances.

Keywords: Bio-inspired audio content-based retrieval framework, features selection technique, low/high level features, artificial immune system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
5130 Computational Networks for Knowledge Representation

Authors: Nhon Van Do

Abstract:

In the artificial intelligence field, knowledge representation and reasoning are important areas for intelligent systems, especially knowledge base systems and expert systems. Knowledge representation Methods has an important role in designing the systems. There have been many models for knowledge such as semantic networks, conceptual graphs, and neural networks. These models are useful tools to design intelligent systems. However, they are not suitable to represent knowledge in the domains of reality applications. In this paper, new models for knowledge representation called computational networks will be presented. They have been used in designing some knowledge base systems in education for solving problems such as the system that supports studying knowledge and solving analytic geometry problems, the program for studying and solving problems in Plane Geometry, the program for solving problems about alternating current in physics.

Keywords: Artificial intelligence, artificial intelligence and education, knowledge engineering, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
5129 Robust Artificial Neural Network Architectures

Authors: A. Schuster

Abstract:

Many artificial intelligence (AI) techniques are inspired by problem-solving strategies found in nature. Robustness is a key feature in many natural systems. This paper studies robustness in artificial neural networks (ANNs) and proposes several novel, nature inspired ANN architectures. The paper includes encouraging results from experimental studies on these networks showing increased robustness.

Keywords: robustness, robust artificial neural networks architectures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
5128 Extractable Heavy Metal Concentrations in Bottom Ash from Incineration of Wood-Based Residues in a BFB Boiler Using Artificial Sweat and Gastric Fluids

Authors: Risto Pöykiö, Olli Dahl, Hannu Nurmesniemi

Abstract:

The highest extractable concentration in the artificial sweat fluid was observed for Ba (120mg/kg; d.w.). The highest extractable concentration in the artificial gastric fluid was observed for Al (9030mg/kg; d.w.). Furthermore, the extractable concentrations of Ba (550mg/kg; d.w.) and Zn (400mg/kg: d.w.) in the bottom ash using artificial gastric fluid were elevated. The extractable concentrations of all heavy metals in the artificial gastric fluid were higher than those in the artificial sweat fluid. These results are reasonable in the light of the fact that the pH of the artificial gastric fluid was extremely acidic both before (pH 1.54) and after (pH 1.94) extraction, whereas the pH of the artificial sweat fluid was slightly alkaline before (pH 6.50) and after extraction (pH 8.51).

Keywords: Ash, artificial fluid, heavy metals, in vitro, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2929
5127 Artificial Visual Percepts for Image Understanding

Authors: Jeewanee Bamunusinghe, Damminda Alahakoon

Abstract:

Visual inputs are one of the key sources from which humans perceive the environment and 'understand' what is happening. Artificial systems perceive the visual inputs as digital images. The images need to be processed and analysed. Within the human brain, processing of visual inputs and subsequent development of perception is one of its major functionalities. In this paper we present part of our research project, which aims at the development of an artificial model for visual perception (or 'understanding') based on the human perceptive and cognitive systems. We propose a new model for perception from visual inputs and a way of understaning or interpreting images using the model. We demonstrate the implementation and use of the model with a real image data set.

Keywords: Image understanding, percept, visual perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
5126 Mimicking Morphogenesis for Robust Behaviour of Cellular Architectures

Authors: David Jones, Richard McWilliam, Alan Purvis

Abstract:

Morphogenesis is the process that underpins the selforganised development and regeneration of biological systems. The ability to mimick morphogenesis in artificial systems has great potential for many engineering applications, including production of biological tissue, design of robust electronic systems and the co-ordination of parallel computing. Previous attempts to mimick these complex dynamics within artificial systems have relied upon the use of evolutionary algorithms that have limited their size and complexity. This paper will present some insight into the underlying dynamics of morphogenesis, then show how to, without the assistance of evolutionary algorithms, design cellular architectures that converge to complex patterns.

Keywords: Morphogenesis, regeneration, robustness, convergence, cellular automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
5125 Using Fuzzy Controller in Induction Motor Speed Control with Constant Flux

Authors: Hassan Baghgar Bostan Abad, Ali Yazdian Varjani, Taheri Asghar

Abstract:

Variable speed drives are growing and varying. Drives expanse depend on progress in different part of science like power system, microelectronic, control methods, and so on. Artificial intelligent contains hard computation and soft computation. Artificial intelligent has found high application in most nonlinear systems same as motors drive. Because it has intelligence like human but there are no sentimental against human like angriness and.... Artificial intelligent is used for various points like approximation, control, and monitoring. Because artificial intelligent techniques can use as controller for any system without requirement to system mathematical model, it has been used in electrical drive control. With this manner, efficiency and reliability of drives increase and volume, weight and cost of them decrease.

Keywords: Artificial intelligent, electrical motor, intelligent drive and control,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2483
5124 Blood Lymphocyte and Neutrophil Response of Cultured Rainbow Trout, Oncorhynchus mykiss, Administered Varying Dosages of an Oral Immunomodulator – ‘Fin-Immune™’

Authors: Duane Barker, John Holliday

Abstract:

In a 10-week (May – August, 2008) Phase I trial, 840, 1+ rainbow trout, Oncorhynchus mykiss, received a commercial oral immunomodulator, Fin Immune™, at four different dosages (0, 10, 20 and 30 mg g-1) to evaluate immune response and growth. The overall objective of was to determine an optimal dosage of this product for rainbow trout that provides enhanced immunity with maximal growth and health. Biweekly blood samples were taken from 10 randomly selected fish in each tank (30 samples per treatment) to evaluate the duration of enhanced immunity conferred by Fin-Immune™. The immunological assessment included serum white blood cell (lymphocyte, neutrophil) densities and blood hematocrit (packed cell volume %). Of these three variables, only lymphocyte density increased significantly among trout fed Fin- Immune™ at 20 and 30 mg g-1 which peaked at week 6. At week 7, all trout were switched to regular feed (lacking Fin-Immune™) and by week 10, lymphocyte levels decreased among all levels but were still greater than at week 0. There was growth impairment at the highest dose of Fin-Immune™ tested (30 mg g-1) which can be associated with a physiological compensatory mechanism due to a dose-specific threshold level. Thus, our main objective of this Phase I study was achieved, the 20 mg g-1 dose of Fin-Immune™ should be the most efficacious (of those we tested) to use for a Phase II disease challenge trial.

Keywords: Blood Lymphocyte, Neutrophil Response of Cultured Rainbow Trout, Oncorhynchus mykiss, Oral Immunomodulator – 'Fin-ImmuneTM'.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
5123 Proactive Approach to Innovation Management

Authors: Andrus Pedai, Igor Astrov

Abstract:

The focus of this paper is to compare common approaches for Systems of Innovation (SI) and identify proactive alternatives for driving the innovation. Proactive approaches will also consider short and medium term perspectives with developments in the field of Computer Technology and Artificial Intelligence. Concerning Computer Technology and Large Connected Information Systems, it is reasonable to predict that during current or the next century intelligence and innovation will be separated from the constraints of human driven management. After this happens, humans will be no longer driving the innovation and there is possibility that SI for new intelligent systems will set its own targets and exclude humans. Over long time scale these developments could result in scenario, which will lead to the development of larger, cross galactic (universal) proactive SI and Intelligence.

Keywords: Artificial intelligence, DARPA, Moore’s law, proactive innovation, singularity, systems of innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
5122 Application of Artificial Neural Networks for Temperature Forecasting

Authors: Mohsen Hayati, Zahra Mohebi

Abstract:

In this paper, the application of neural networks to study the design of short-term temperature forecasting (STTF) Systems for Kermanshah city, west of Iran was explored. One important architecture of neural networks named Multi-Layer Perceptron (MLP) to model STTF systems is used. Our study based on MLP was trained and tested using ten years (1996-2006) meteorological data. The results show that MLP network has the minimum forecasting error and can be considered as a good method to model the STTF systems.

Keywords: Artificial neural networks, Forecasting, Weather, Multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4356
5121 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142