Search results for: Ahsan Bin Tufail
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18

Search results for: Ahsan Bin Tufail

18 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods

Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis

Abstract:

An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.

Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
17 Gravitational and Centrifugal Forces in the Nut-Kerr-Newman Space-Time

Authors: Atikur Rahman Baizid, Md. Elias Uddin Biswas, Ahsan Habib

Abstract:

Nayak et al have discussed in detail the inertial forces such as Gravitational, Coriolis-Lense-Thirring and Centrifugal forces in the Kerr-Newman Space-time in the Kerr-Newman Space-time. The main theme of this paper is to study the Gravitational and Centrifugal forces in the NUT-Kerr-Newman Space-time.

Keywords: Gravitational Forces, Centrifugal Forces, Nut-Kerr-Newman, Space time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
16 Efficient Time Synchronization in Wireless Sensor Networks

Authors: Shehzad Ashraf Ch., Aftab Ahmed Khan, Zahid Mehmood, Muhammad Ahsan Habib, Qasim Mehmood

Abstract:

Energy efficiency is the key requirement in wireless sensor network as sensors are small, cheap and are deployed in very large number in a large geographical area, so there is no question of replacing the batteries of the sensors once deployed. Different ways can be used for efficient energy transmission including Multi-Hop algorithms, collaborative communication, cooperativecommunication, Beam- forming, routing algorithm, phase, frequency and time synchronization. The paper reviews the need for time synchronization and proposed a BFS based synchronization algorithm to achieve energy efficiency. The efficiency of our protocol has been tested and verified by simulation

Keywords: time synchronization, sensor networks, energy efficiency, breadth first search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
15 Winged Test Rocket with Fully Autonomous Guidance and Control for Realizing Reusable Suborbital Vehicle

Authors: Koichi Yonemoto, Hiroshi Yamasaki, Masatomo Ichige, Yusuke Ura, Guna S. Gossamsetti, Takumi Ohki, Kento Shirakata, Ahsan R. Choudhuri, Shinji Ishimoto, Takashi Mugitani, Hiroya Asakawa, Hideaki Nanri

Abstract:

This paper presents the strategic development plan of winged rockets WIRES (WInged REusable Sounding rocket) aiming at unmanned suborbital winged rocket for demonstrating future fully reusable space transportation technologies, such as aerodynamics, Navigation, Guidance and Control (NGC), composite structure, propulsion system, and cryogenic tanks etc., by universities in collaboration with government and industries, as well as the past and current flight test results.

Keywords: Autonomous guidance and control, reusable rocket, space transportation system, suborbital vehicle, winged rocket.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553
14 Reduction of Search Space by Applying Controlled Genetic Operators for Weight Constrained Shortest Path Problem

Authors: A.K.M. Khaled Ahsan Talukder, Taibun Nessa, Kaushik Roy

Abstract:

The weight constrained shortest path problem (WCSPP) is one of most several known basic problems in combinatorial optimization. Because of its importance in many areas of applications such as computer science, engineering and operations research, many researchers have extensively studied the WCSPP. This paper mainly concentrates on the reduction of total search space for finding WCSP using some existing Genetic Algorithm (GA). For this purpose, some controlled schemes of genetic operators are adopted on list chromosome representation. This approach gives a near optimum solution with smaller elapsed generation than classical GA technique. From further analysis on the matter, a new generalized schema theorem is also developed from the philosophy of Holland-s theorem.

Keywords: Genetic Algorithm, Evolutionary Optimization, Multi Objective Optimization, Non-linear Schema Theorem, WCSPP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
13 Groundwater Quality Improvement by Using Aeration and Filtration Methods

Authors: Nik N. Nik Daud, Nur H. Izehar, B. Yusuf, Thamer A. Mohamed, A. Ahsan

Abstract:

An experiment was conducted using two aeration methods (water-into-air and air-into-water) and followed by filtration processes using manganese greensand material. The properties of groundwater such as pH, dissolved oxygen, turbidity and heavy metal concentration (iron and manganese) will be assessed. The objectives of this study are i) to determine the effective aeration method and ii) to assess the effectiveness of manganese greensand as filter media in removing iron and manganese concentration in groundwater. Results showed that final pH for all samples after treatment are in range from 7.40 and 8.40. Both aeration methods increased the dissolved oxygen content. Final turbidity for groundwater samples are between 3 NTU to 29 NTU. Only three out of eight samples achieved iron concentration of 0.3mg/L and less and all samples reach manganese concentration of 0.1mg/L and less. Air-into-water aeration method gives higher percentage of iron and manganese removal compare to water-into-air method.

Keywords: Aeration, filtration, groundwater, water quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4112
12 An Innovative Green Cooling Approach Using Peltier Chip in Milling Operation for Surface Roughness Improvement

Authors: Md. Anayet U. Patwari, Mohammad Ahsan Habib, Md. Tanzib Ehsan, Md Golam Ahnaf, Md. S. I. Chowdhury

Abstract:

Surface roughness is one of the key quality parameters of the finished product. During any machining operation, high temperatures are generated at the tool-chip interface impairing surface quality and dimensional accuracy of products. Cutting fluids are generally applied during machining to reduce temperature at the tool-chip interface. However, usages of cutting fluids give rise to problems such as waste disposal, pollution, high cost, and human health hazard. Researchers, now-a-days, are opting towards dry machining and other cooling techniques to minimize use of coolants during machining while keeping surface roughness of products within desirable limits. In this paper, a concept of using peltier cooling effects during aluminium milling operation has been presented and adopted with an aim to improve surface roughness of the machined surface. Experimental evidence shows that peltier cooling effect provides better surface roughness of the machined surface compared to dry machining.

Keywords: Aluminium, surface roughness, Peltier cooling effect, milling operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
11 Analysis of Rural Roads in Developing Countries Using Principal Component Analysis and Simple Average Technique in the Development of a Road Safety Performance Index

Authors: Muhammad Tufail, Jawad Hussain, Hammad Hussain, Imran Hafeez, Naveed Ahmad

Abstract:

Road safety performance index is a composite index which combines various indicators of road safety into single number. Development of a road safety performance index using appropriate safety performance indicators is essential to enhance road safety. However, a road safety performance index in developing countries has not been given as much priority as needed. The primary objective of this research is to develop a general Road Safety Performance Index (RSPI) for developing countries based on the facility as well as behavior of road user. The secondary objectives include finding the critical inputs in the RSPI and finding the better method of making the index. In this study, the RSPI is developed by selecting four main safety performance indicators i.e., protective system (seat belt, helmet etc.), road (road width, signalized intersections, number of lanes, speed limit), number of pedestrians, and number of vehicles. Data on these four safety performance indicators were collected using observation survey on a 20 km road section of the National Highway N-125 road Taxila, Pakistan. For the development of this composite index, two methods are used: a) Principal Component Analysis (PCA) and b) Equal Weighting (EW) method. PCA is used for extraction, weighting, and linear aggregation of indicators to obtain a single value. An individual index score was calculated for each road section by multiplication of weights and standardized values of each safety performance indicator. However, Simple Average technique was used for weighting and linear aggregation of indicators to develop a RSPI. The road sections are ranked according to RSPI scores using both methods. The two weighting methods are compared, and the PCA method is found to be much more reliable than the Simple Average Technique.

Keywords: Aggregation, index score, indicators, principal component analysis, weighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 572
10 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement

Authors: Fatema-Tuz-Zahura, Raquib Ahsan

Abstract:

Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.

Keywords: Flat plate, finite element model, punching shear, reinforcement ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
9 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
8 Modeling of a UAV Longitudinal Dynamics through System Identification Technique

Authors: Asadullah I. Qazi, Mansoor Ahsan, Zahir Ashraf, Uzair Ahmad

Abstract:

System identification of an Unmanned Aerial Vehicle (UAV), to acquire its mathematical model, is a significant step in the process of aircraft flight automation. The need for reliable mathematical model is an established requirement for autopilot design, flight simulator development, aircraft performance appraisal, analysis of aircraft modifications, preflight testing of prototype aircraft and investigation of fatigue life and stress distribution etc.  This research is aimed at system identification of a fixed wing UAV by means of specifically designed flight experiment. The purposely designed flight maneuvers were performed on the UAV and aircraft states were recorded during these flights. Acquired data were preprocessed for noise filtering and bias removal followed by parameter estimation of longitudinal dynamics transfer functions using MATLAB system identification toolbox. Black box identification based transfer function models, in response to elevator and throttle inputs, were estimated using least square error   technique. The identification results show a high confidence level and goodness of fit between the estimated model and actual aircraft response.

Keywords: Black box modeling, fixed wing aircraft, least square error, longitudinal dynamics, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
7 Optimization Based Tuning of Autopilot Gains for a Fixed Wing UAV

Authors: Mansoor Ahsan, Khalid Rafique, Farrukh Mazhar

Abstract:

Unmanned Aerial Vehicles (UAVs) have gained tremendous importance, in both Military and Civil, during first decade of this century. In a UAV, onboard computer (autopilot) autonomously controls the flight and navigation of the aircraft. Based on the aircraft role and flight envelope, basic to complex and sophisticated controllers are used to stabilize the aircraft flight parameters. These controllers constitute the autopilot system for UAVs. The autopilot systems, most commonly, provide lateral and longitudinal control through Proportional-Integral-Derivative (PID) controllers or Phase-lead or Lag Compensators. Various techniques are commonly used to ‘tune’ gains of these controllers. Some techniques used are, in-flight step-by-step tuning, software-in-loop or hardware-in-loop tuning methods. Subsequently, numerous in-flight tests are required to actually ‘fine-tune’ these gains. However, an optimization-based tuning of these PID controllers or compensators, as presented in this paper, can greatly minimize the requirement of in-flight ‘tuning’ and substantially reduce the risks and cost involved in flight-testing.

Keywords: Unmanned aerial vehicle (UAV), autopilot, autonomous controls, PID controler gains tuning, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3657
6 An Algorithm for Autonomous Aerial Navigation using MATLAB® Mapping Tool Box

Authors: Mansoor Ahsan, Suhail Akhtar, Adnan Ali, Farrukh Mazhar, Muddssar Khalid

Abstract:

In the present era of aviation technology, autonomous navigation and control have emerged as a prime area of active research. Owing to the tremendous developments in the field, autonomous controls have led today’s engineers to claim that future of aerospace vehicle is unmanned. Development of guidance and navigation algorithms for an unmanned aerial vehicle (UAV) is an extremely challenging task, which requires efforts to meet strict, and at times, conflicting goals of guidance and control. In this paper, aircraft altitude and heading controllers and an efficient algorithm for self-governing navigation using MATLAB® mapping toolbox is presented which also enables loitering of a fixed wing UAV over a specified area. For this purpose, a nonlinear mathematical model of a UAV is used. The nonlinear model is linearized around a stable trim point and decoupled for controller design. The linear controllers are tested on the nonlinear aircraft model and navigation algorithm is subsequently developed for for autonomous flight of the UAV. The results are presented for trajectory controllers and waypoint based navigation. Our investigation reveals that MATLAB® mapping toolbox can be exploited to successfully deliver an efficient algorithm for autonomous aerial navigation for a UAV.

Keywords: Navigation, trajectory-control, unmanned aerial vehicle, PID-control, MATLAB® mapping toolbox.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4380
5 The Southwestern Bangladesh’s Experience of Tidal River Management: An Analysis of Effectiveness and Challenges

Authors: Md. SajadulAlam, I. Ahmed, A. Naqib Jimmy, M. Haque Munna, N. Ahsan Khan

Abstract:

The construction of coastal polders to reduce salinity ingress at greater Khulna-Jashore region area was initiated in the 1960s by Bangladesh Water Development Board (BWDB). Although successful in a short run the, the Coastal Embankment Project (CEP) and its predecessors are often held accountable for the entire ecological disasters that affected many people. To overcome the water-logging crisis the first Tidal River Management (TRM) at Beel Bhaiana, Bhabodaho was implemented by the affected local people in an unplanned. TRM is an eco-engineering, low cost and participatory approach that utilizes the natural tidal characteristics and the local community’s indigenous knowledge for design and operation of watershed management. But although its outcomes were overwhelming in terms of reducing water-logging, increasing navigability etc. at Beel Bhaina the outcomes of its consequent schemes were debatable. So this study aims to examine the effectiveness and impact of the TRM schemes. Primary data were collected through questionnaire survey, Focus Group Discussion (FGD) and Key Informant Interview (KII) so as to collect mutually complementary quantitative and qualitative information along with extensive literature review. The key aspects that were examined include community participation, community perception on effectiveness and operational challenges.

Keywords: Sustainable, livelihood, salinity, water-logging, shrimp fry collectors, coastal region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547
4 Rescue Emergency Drone for Fast Response to Medical Emergencies Due to Traffic Accidents

Authors: Anders S. Kristensen, Dewan Ahsan, Saqib Mehmood, Shakeel Ahmed

Abstract:

Traffic accidents are a result of the convergence of hazards, malfunctioning of vehicles and human negligence that have adverse economic and health impacts and effects. Unfortunately, avoiding them completely is very difficult, but with quick response to rescue and first aid, the mortality rate of inflicted persons can be reduced significantly. Smart and innovative technologies can play a pivotal role to respond faster to traffic crash emergencies comparing conventional means of transportation. For instance, Rescue Emergency Drone (RED) can provide faster and real-time crash site risk assessment to emergency medical services, thereby helping them to quickly and accurately assess a situation, dispatch the right equipment and assist bystanders to treat inflicted person properly. To conduct a research in this regard, the case of a traffic roundabout that is prone to frequent traffic accidents on the outskirts of Esbjerg, a town located on western coast of Denmark is hypothetically considered. Along with manual calculations, Emergency Disaster Management Simulation (EDMSIM) has been used to verify the response time of RED from a fire station of the town to the presumed crash site. The results of the study demonstrate the robustness of RED into emergency services to help save lives. 

Keywords: Automated external defibrillator, medical emergency, fire and rescue services, response time, unmanned aerial system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
3 Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading

Authors: Raquib Ahsan, Md. Mahir Asif, Md. Zahidul Alam

Abstract:

A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved.

Keywords: Cyclic compression, ferrocement, masonry wall, partially reversed cyclic load, retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
2 Utilization of Rice Husk Ash with Clay to Produce Lightweight Coarse Aggregates for Concrete

Authors: Shegufta Zahan, Muhammad A. Zahin, Muhammad M. Hossain, Raquib Ahsan

Abstract:

Rice Husk Ash (RHA) is one of the agricultural waste byproducts available widely in the world and contains a large amount of silica. In Bangladesh, stones cannot be used as coarse aggregate in infrastructure works as they are not available and need to be imported from abroad. As a result, bricks are mostly used as coarse aggregates in concrete as they are cheaper and easily produced here. Clay is the raw material for producing brick. Due to rapid urban growth and the industrial revolution, demand for brick is increasing, which led to a decrease in the topsoil. This study aims to produce lightweight block aggregates with sufficient strength utilizing RHA at low cost and use them as an ingredient of concrete. RHA, because of its pozzolanic behavior, can be utilized to produce better quality block aggregates at lower cost, replacing clay content in the bricks. The whole study can be divided into three parts. In the first part, characterization tests on RHA and clay were performed to determine their properties. Six different types of RHA from different mills were characterized by XRD and SEM analysis. Their fineness was determined by conducting a fineness test. The result of XRD confirmed the amorphous state of RHA. The characterization test for clay identifies the sample as “silty clay” with a specific gravity of 2.59 and 14% optimum moisture content. In the second part, blocks were produced with six different types of RHA with different combinations by volume with clay. Then mixtures were manually compacted in molds before subjecting them to oven drying at 120 °C for 7 days. After that, dried blocks were placed in a furnace at 1200 °C to produce ultimate blocks. Loss on ignition test, apparent density test, crushing strength test, efflorescence test, and absorption test were conducted on the blocks to compare their performance with the bricks. For 40% of RHA, the crushing strength result was found 60 MPa, where crushing strength for brick was observed 48.1 MPa. In the third part, the crushed blocks were used as coarse aggregate in concrete cylinders and compared them with brick concrete cylinders. Specimens were cured for 7 days and 28 days. The highest compressive strength of block cylinders for 7 days curing was calculated as 26.1 MPa, whereas, for 28 days curing, it was found 34 MPa. On the other hand, for brick cylinders, the value of compressing strength of 7 days and 28 days curing was observed as 20 MPa and 30 MPa, respectively. These research findings can help with the increasing demand for topsoil of the earth, and also turn a waste product into a valuable one.

Keywords: Characterization, furnace, pozzolanic behavior, rice husk ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 471
1 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns

Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan

Abstract:

Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.

Keywords: Composite, columns, experimental, finite element, fully encased, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2858