Search results for: 3-D simulation system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10526

Search results for: 3-D simulation system

10076 Power System Stability Improvement by Simultaneous Tuning of PSS and SVC Based Damping Controllers Employing Differential Evolution Algorithm

Authors: Sangram Keshori Mohapatra, Sidhartha Panda, Prasant Kumar Satpathy

Abstract:

Power-system stability improvement by simultaneous tuning of power system stabilizer (PSS) and a Static Var Compensator (SVC) based damping controller is thoroughly investigated in this paper. Both local and remote signals with associated time delays are considered in the present study. The design problem of the proposed controller is formulated as an optimization problem, and differential evolution (DE) algorithm is employed to search for the optimal controller parameters. The performances of the proposed controllers are evaluated under different disturbances for both single-machine infinite bus power system and multi-machine power system. The performance of the proposed controllers with variations in the signal transmission delays has also been investigated. The proposed stabilizers are tested on a weakly connected power system subjected to different disturbances. Nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance conditions.

Keywords: Differential Evolution Algorithm, Power System Stability, Power System Stabilizer, Static Var Compensator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
10075 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
10074 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode

Authors: N. Ouldcherchali, M. S. Boucherit, L. Barazane, A. Morsli

Abstract:

In this study, we proposed two techniques to track the maximum power point (MPPT) of a photovoltaic system. The first is an intelligent control technique, and the second is robust used for variable structure system. In fact the characteristics I-V and P–V of the photovoltaic generator depends on the solar irradiance and temperature. These climate changes cause the fluctuation of maximum power point; a maximum power point tracking technique (MPPT) is required to maximize the output power. For this we have adopted a control by fuzzy logic (FLC) famous for its stability and robustness. And a Siding Mode Control (SMC) widely used for variable structure system. The system comprises a photovoltaic panel (PV), a DC-DC converter, which is considered as an adaptation stage between the PV and the load. The modelling and simulation of the system is developed using MATLAB/Simulink. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or it is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.

Keywords: Fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
10073 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access

Authors: T. Wanyama, B. Far

Abstract:

Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.

Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
10072 Direct Transient Stability Assessment of Stressed Power Systems

Authors: E. Popov, N. Yorino, Y. Zoka, Y. Sasaki, H. Sugihara

Abstract:

This paper discusses the performance of critical trajectory method (CTrj) for power system transient stability analysis under various loading settings and heavy fault condition. The method obtains Controlling Unstable Equilibrium Point (CUEP) which is essential for estimation of power system stability margins. The CUEP is computed by applying the CTrjto the boundary controlling unstable equilibrium point (BCU) method. The Proposed method computes a trajectory on the stability boundary that starts from the exit point and reaches CUEP under certain assumptions. The robustness and effectiveness of the method are demonstrated via six power system models and five loading conditions. As benchmark is used conventional simulation method whereas the performance is compared with and BCU Shadowing method.

Keywords: Power system, Transient stability, Critical trajectory method, Energy function method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
10071 Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX

Authors: Oliver Mărunţălu, Gheorghe Lăzăroiu, Elena Elisabeta Manea, Dana Andreya Bondrea, Lăcrămioara Diana Robescu

Abstract:

This paper presents the results obtained by numerical simulation using the software ANSYS CFX-CFD for the air pollutants dispersion in the atmosphere coming from the evacuation of combustion gases resulting from the fuel combustion in an electric thermal power plant. The model uses the Navier-Stokes equation to simulate the dispersion of pollutants in the atmosphere. It is considered as important factors in elaboration of simulation the atmospheric conditions (pressure, temperature, wind speed, wind direction), the exhaust velocity of the combustion gases, chimney height and the obstacles (buildings). Using the air quality monitoring stations it is measured the concentrations of main pollutants (SO2, NOx and PM). The pollutants were monitored over a period of 3 months, after that the average concentration are calculated, which is used by the software. The concentrations are: 8.915 μg/m3 (NOx), 9.587 μg/m3 (SO2) and 42 μg/m3 (PM). A comparison of test data with simulation results demonstrated that CFX was able to describe the dispersion of the pollutant as well the concentration of this pollutants in the atmosphere.

Keywords: Air pollutants, computational fluid dynamics, dispersion, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4417
10070 Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning

Authors: Andreas D. Jansson

Abstract:

The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm.

Keywords: Autonomous vehicles, industry 4.0, multi-agent system, obstacle avoidance, Q-learning, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 462
10069 Application of Pattern Search Method to Power System Security Constrained Economic Dispatch

Authors: A. K. Al-Othman, K. M. EL-Nagger

Abstract:

Direct search methods are evolutionary algorithms used to solve optimization problems. (DS) methods do not require any information about the gradient of the objective function at hand while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This paper presents a new approach based on a constrained pattern search algorithm to solve a security constrained power system economic dispatch problem (SCED). Operation of power systems demands a high degree of security to keep the system satisfactorily operating when subjected to disturbances, while and at the same time it is required to pay attention to the economic aspects. Pattern recognition technique is used first to assess dynamic security. Linear classifiers that determine the stability of electric power system are presented and added to other system stability and operational constraints. The problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Pattern search method is then applied to solve the constrained optimization formulation. In particular, the method is tested using one system. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving security constrained power system economic dispatch problem (SCED).

Keywords: Security Constrained Economic Dispatch, Direct Search method, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2173
10068 Research on a Forest Fire Spread Simulation Driven by the Wind Field in Complex Terrain

Authors: Ying Shang, Chencheng Wang

Abstract:

The wind field is the main driving factor for the spread of forest fires. For the simulation results of forest fire spread to be more accurate, it is necessary to obtain more detailed wind field data. Therefore, this paper studied the mountainous fine wind field simulation method coupled with WRF (Weather Research and Forecasting Model) and CFD (Computational Fluid Dynamics) to realize the numerical simulation of the wind field in a mountainous area with a scale of 30 m and a small measurement error. Local topographical changes have an important impact on the wind field. Based on the Rothermel fire spread model, a forest fire in Idaho in the western United States was simulated. The historical data proved that the simulation results had a good accuracy. They showed that the fire spread rate will decrease rapidly with time and then reach a steady state. After reaching a steady state, the fire spread growth area will not only be affected by the slope, but will also show a significant quadratic linear positive correlation with the wind speed change.

Keywords: Wind field, numerical simulation, forest fire spread, fire behavior model, complex terrain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294
10067 Gravitational Search Algorithm (GSA) Optimized SSSC Based Facts Controller to Improve Power System Oscillation Stability

Authors: Gayadhar Panda, P. K. Rautraya

Abstract:

In this paper, an investigation into the use of modified Genetic Algorithm optimized SSSC based controller to aid damping of low frequency inter-area oscillations in power systems is presented. Controller design is formulated as a nonlinear constrained optimization problem and modified Genetic Algorithm (MGA) is employed to search for the optimal controller parameters. For evaluation of effectiveness and robustness of proposed controllers, the performance was tested on multi-machine system subjected to different disturbances, loading conditions and system parameter variations. Simulation results are presented to show the fine performance of the proposed SSSC controller in damping the critical modes without significantly deteriorating the damping characteristics of other modes in multi-machine power system.

Keywords: SSSC, FACTS, Controller Design, Damping of Oscillations, Multi-machine system, Modified Genetic Algorithm (MGA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
10066 A Comparison of Real Valued Transforms for Image Compression

Authors: Shivali D. Kulkarni, Ameya K. Naik, Nitin S. Nagori

Abstract:

In this paper we present simulation results for the application of a bandwidth efficient algorithm (mapping algorithm) to an image transmission system. This system considers three different real valued transforms to generate energy compact coefficients. First results are presented for gray scale and color image transmission in the absence of noise. It is seen that the system performs its best when discrete cosine transform is used. Also the performance of the system is dominated more by the size of the transform block rather than the number of coefficients transmitted or the number of bits used to represent each coefficient. Similar results are obtained in the presence of additive white Gaussian noise. The varying values of the bit error rate have very little or no impact on the performance of the algorithm. Optimum results are obtained for the system considering 8x8 transform block and by transmitting 15 coefficients from each block using 8 bits.

Keywords: Additive white Gaussian noise channel, mapping algorithm, peak signal to noise ratio, transform encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
10065 Optimization Approaches for a Complex Dairy Farm Simulation Model

Authors: Jagannath Aryal, Don Kulasiri, Dishi Liu

Abstract:

This paper describes the optimization of a complex dairy farm simulation model using two quite different methods of optimization, the Genetic algorithm (GA) and the Lipschitz Branch-and-Bound (LBB) algorithm. These techniques have been used to improve an agricultural system model developed by Dexcel Limited, New Zealand, which describes a detailed representation of pastoral dairying scenarios and contains an 8-dimensional parameter space. The model incorporates the sub-models of pasture growth and animal metabolism, which are themselves complex in many cases. Each evaluation of the objective function, a composite 'Farm Performance Index (FPI)', requires simulation of at least a one-year period of farm operation with a daily time-step, and is therefore computationally expensive. The problem of visualization of the objective function (response surface) in high-dimensional spaces is also considered in the context of the farm optimization problem. Adaptations of the sammon mapping and parallel coordinates visualization are described which help visualize some important properties of the model-s output topography. From this study, it is found that GA requires fewer function evaluations in optimization than the LBB algorithm.

Keywords: Genetic Algorithm, Linux Cluster, LipschitzBranch-and-Bound, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
10064 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation

Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang

Abstract:

In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building. Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that no more than 7% prediction error of annual cooling/heating load will be caused by the geometric simplification for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which means this method is applicable for building performance simulation.

Keywords: building energy model, simulation, geometric simplification, design, regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
10063 Simulation and Measurement the Radiation of an Antenna inside a Metallic Case using FDTD

Authors: Shabnam Ladan, M. S. Abrishamian

Abstract:

In this paper we have developed a FDTD simulation code which can treat wave propagation of a monopole antenna in a metallic case which covers with PML, and performed a series of three dimensional FDTD simulations of electromagnetic wave propagation in this space .We also provide a measurement set up in antenna lab and fortunately the simulations and measurements show good agreement. According to simulation and measurement results, we confirmed that the computer program which had been written in FORTRAN, works correctly.

Keywords: FDTD, EMC, monopole antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
10062 An Agent Based Simulation for Network Formation with Heterogeneous Agents

Authors: Hisashi Kojima, Masatora Daito

Abstract:

We investigate an asymmetric connections model with a dynamic network formation process, using an agent based simulation. We permit heterogeneity of agents- value. Valuable persons seem to have many links on real social networks. We focus on this point of view, and examine whether valuable agents change the structures of the terminal networks. Simulation reveals that valuable agents diversify the terminal networks. We can not find evidence that valuable agents increase the possibility that star networks survive the dynamic process. We find that valuable agents disperse the degrees of agents in each terminal network on an average.

Keywords: network formation, agent based simulation, connections model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
10061 Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices

Authors: S. Jadid, S. Jalilzadeh

Abstract:

In this paper, an improved technique for contingency ranking using artificial neural network (ANN) is presented. The proposed approach is based on multi-layer perceptrons trained by backpropagation to contingency analysis. Severity indices in dynamic stability assessment are presented. These indices are based on the concept of coherency and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using several different systems, demonstrates that combination of indices with ANN provides better ranking than a single index. The presented results are obtained through the use of power system simulation (PSS/E) and MATLAB 6.5 software.

Keywords: composite indices, transient stability, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
10060 Traffic Signal Coordinated Control Optimization: A Case Study

Authors: Pengdi Diao, Zhuo Wang, Zundong Zhang, Hua Cheng

Abstract:

In the urban traffic network, the intersections are the “bottleneck point" of road network capacity. And the arterials are the main body in road network and the key factor which guarantees the normal operation of the city-s social and economic activities. The rapid increase in vehicles leads to seriously traffic jam and cause the increment of vehicles- delay. Most cities of our country are traditional single control system, which cannot meet the need for the city traffic any longer. In this paper, Synchro6.0 as a platform to minimize the intersection delay, optimizesingle signal cycle and split for Zhonghua Street in Handan City. Meanwhile, linear control system uses to optimize the phase for the t arterial road in this system. Comparing before and after use the control, capacities and service levels of this road and the adjacent road have improved significantly.

Keywords: linear control system; delay mode; signal optimization; synchro6.0 simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
10059 Research on the Predict Method of Random Vibration Cumulative Fatigue Damage Life Based on the Finite Element Analysis

Authors: Wang Chengcheng, Li Chuanri, Xu Fei, Guo Ying

Abstract:

Aiming at most of the aviation products are facing the problem of fatigue fracture in vibration environment, we makes use of the testing result of a bracket, analysis for the structure with ANSYS-Workbench, predict the life of the bracket by different ways, and compared with the testing result. With the research on analysis methods, make an organic combination of simulation analysis and testing, Not only ensure the accuracy of simulation analysis and life predict, but also make a dynamic supervision of product life process, promote the application of finite element simulation analysis in engineering practice.

Keywords: Random vibration, finite element simulation, fatigue, frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4671
10058 Gaussian Process Model Identification Using Artificial Bee Colony Algorithm and Its Application to Modeling of Power Systems

Authors: Tomohiro Hachino, Hitoshi Takata, Shigeru Nakayama, Ichiro Iimura, Seiji Fukushima, Yasutaka Igarashi

Abstract:

This paper presents a nonparametric identification of continuous-time nonlinear systems by using a Gaussian process (GP) model. The GP prior model is trained by artificial bee colony algorithm. The nonlinear function of the objective system is estimated as the predictive mean function of the GP, and the confidence measure of the estimated nonlinear function is given by the predictive covariance of the GP. The proposed identification method is applied to modeling of a simplified electric power system. Simulation results are shown to demonstrate the effectiveness of the proposed method.

Keywords: Artificial bee colony algorithm, Gaussian process model, identification, nonlinear system, electric power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
10057 Enhancement of MIMO H2S Gas Sweetening Separator Tower Using Fuzzy Logic Controller Array

Authors: Muhammad M. A. S. Mahmoud

Abstract:

Natural gas sweetening process is a controlled process that must be done at maximum efficiency and with the highest quality. In this work, due to complexity and non-linearity of the process, the H2S gas separation and the intelligent fuzzy controller, which is used to enhance the process, are simulated in MATLAB – Simulink. New design of fuzzy control for Gas Separator is discussed in this paper. The design is based on the utilization of linear state-estimation to generate the internal knowledge-base that stores input-output pairs. The obtained input/output pairs are then used to design a feedback fuzzy controller. The proposed closed-loop fuzzy control system maintains the system asymptotically-stability while it enhances the system time response to achieve better control of the concentration of the output gas from the tower. Simulation studies are carried out to illustrate the Gas Separator system performance.

Keywords: Gas separator, gas sweetening, intelligent controller, fuzzy control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
10056 Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process

Authors: M. Massour El Aoud, M. Franceschi, M. Maher

Abstract:

The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.

Keywords: Greenhouse, fuzzy logic, optimization, gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
10055 Operation Assay of an Industrial Single-Source – Single-Detector Gamma CT Using MCNP4C Code Simulation and Experimental Test Comparisons

Authors: M. Ghanadi, M. Rezazadeh*, M. Ardeshiri, R. Gholipour Peyvandi, M. Jafarzadeh, M. Shahriari, M.Rezaei Rad, Z. Gholamzadeh

Abstract:

A 3D industrial computed tomography (CT) manufactured based on a first generation CT systems, single-source – single-detector, was evaluated. Operation accuracy assessment of the manufactured system was achieved using simulation in comparison with experimental tests. 137Cs and 60Co were used as a gamma source. Simulations were achieved using MCNP4C code. Experimental tests of 137Cs were in good agreement with the simulations

Keywords: Gamma source, Industrial CT, MCNP4C, Operation assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
10054 Simulation of Immiscibility Regions in Sodium Borosilicate Glasses

Authors: D. Aboutaleb, B. Safi

Abstract:

In this paper, sodium borosilicates glasses were prepared by melting in air. These heat-resistant transparent glasses have subjected subsequently isothermal treatments at different times, which have transformed them at opaque glass (milky white color). Such changes indicate that these glasses showed clearly phase separation (immiscibility). The immiscibility region in a sodium borosilicate ternary system was investigated in this work, i.e. to determine the regions from which some compositions can show phase separation. For this we went through the conditions of thermodynamic equilibrium, which were translated later by mathematical equations to find an approximate solution. The latter has been translated in a simulation which was established thereafter to find the immiscibility regions in this type of special glasses.

Keywords: Sodium borosilicate, heat-resistant, isothermal treatments, immiscibility, thermodynamics four.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
10053 Analysis of the Diffusion Behavior of an Information and Communication Technology Platform for City Logistics

Authors: Giulio Mangano, Alberto De Marco, Giovanni Zenezini

Abstract:

The concept of City Logistics (CL) has emerged to improve the impacts of last mile freight distribution in urban areas. In this paper, a System Dynamics (SD) model exploring the dynamics of the diffusion of a ICT platform for CL management across different populations is proposed. For the development of the model two sources have been used. On the one hand, the major diffusion variables and feedback loops are derived from a literature review of existing diffusion models. On the other hand, the parameters are represented by the value propositions delivered by the platform as a response to some of the users’ needs. To extract the most important value propositions the Business Model Canvas approach has been used. Such approach in fact focuses on understanding how a company can create value for her target customers. These variables and parameters are thus translated into a SD diffusion model with three different populations namely municipalities, logistics service providers, and own account carriers. Results show that, the three populations under analysis fully adopt the platform within the simulation time frame, highlighting a strong demand by different stakeholders for CL projects aiming at carrying out more efficient urban logistics operations.

Keywords: City logistics, simulation, system dynamics, business model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
10052 The Applications of Quantum Mechanics Simulation for Solvent Selection in Chemicals Separation

Authors: Attapong T., Hong-Ming Ku, Nakarin M., Narin L., Alisa L, Jirut W.

Abstract:

The quantum mechanics simulation was applied for calculating the interaction force between 2 molecules based on atomic level. For the simple extractive distillation system, it is ternary components consisting of 2 closed boiling point components (A,lower boiling point and B, higher boiling point) and solvent (S). The quantum mechanics simulation was used to calculate the intermolecular force (interaction force) between the closed boiling point components and solvents consisting of intermolecular between A-S and B-S. The requirement of the promising solvent for extractive distillation is that solvent (S) has to form stronger intermolecular force with only one component than the other component (A or B). In this study, the systems of aromatic-aromatic, aromatic-cycloparaffin, and paraffindiolefin systems were selected as the demonstration for solvent selection. This study defined new term using for screening the solvents called relative interaction force which is calculated from the quantum mechanics simulation. The results showed that relative interaction force gave the good agreement with the literature data (relative volatilities from the experiment). The reasons are discussed. Finally, this study suggests that quantum mechanics results can improve the relative volatility estimation for screening the solvents leading to reduce time and money consuming

Keywords: Extractive distillation, Interaction force, Quamtum mechanic, Relative volatility, Solvent extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
10051 Roller Guide Design and Manufacturing for Spatial Cylindrical Cams

Authors: Yuan L. Lai, Jui P. Hung, Jian H. Chen

Abstract:

This paper was aimed at developing a computer aided design and manufacturing system for spatial cylindrical cams. In the proposed system, a milling tool with a diameter smaller than that of the roller, instead of the standard cutter for traditional machining process, was used to generate the tool path for spatial cams. To verify the feasibility of the proposed method, a multi-axis machining simulation software was further used to simulate the practical milling operation of spatial cams. It was observed from computer simulation that the tool path of small-sized cutter were within the motion range of a standard cutter, no occurrence of overcutting. Examination of a finished cam component clearly verifies the accuracy of the tool path generated for small-sized milling tool. It is believed that the use of small-sized cutter for the machining of the spatial cylindrical cams can generate a better surface morphology with higher accuracy. The improvement in efficiency and cost for the manufacturing of the spatial cylindrical cam can be expected through the proposed method.

Keywords: Cylindrical cams, Computer-aided manufacturing, Tool path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3409
10050 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)

Authors: Vassilios Moussas, Dimos N. Pantazis, Panagiotis Stratakis

Abstract:

The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.

Keywords: Coastal transport, modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
10049 Application of the Discrete-Event Simulation When Optimizing of Business Processes in Trading Companies

Authors: Maxat Bokambayev, Bella Tussupova, Aisha Mamyrova, Erlan Izbasarov

Abstract:

Optimization of business processes in trading companies is reviewed in the report. There is the presentation of the “Wholesale Customer Order Handling Process” business process model applicable for small and medium businesses. It is proposed to apply the algorithm for automation of the customer order processing which will significantly reduce labor costs and time expenditures and increase the profitability of companies. An optimized business process is an element of the information system of accounting of spare parts trading network activity. The considered algorithm may find application in the trading industry as well.

Keywords: Business processes, discrete-event simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
10048 Investigation of SSR Characteristics of SSSC With GA Based Voltage Controller

Authors: R. Thirumalaivasan, M.Janaki, Nagesh Prabhu

Abstract:

In this paper, investigation of subsynchronous resonance (SSR) characteristics of a hybrid series compensated system and the design of voltage controller for three level 24-pulse Voltage Source Converter based Static Synchronous Series Compensator (SSSC) is presented. Hybrid compensation consists of series fixed capacitor and SSSC which is a active series FACTS controller. The design of voltage controller for SSSC is based on damping torque analysis, and Genetic Algorithm (GA) is adopted for tuning the controller parameters. The SSR Characteristics of SSSC with constant reactive voltage control modes has been investigated. The results show that the constant reactive voltage control of SSSC has the effect of reducing the electrical resonance frequency, which detunes the SSR.The analysis of SSR with SSSC is carried out based on frequency domain method, eigenvalue analysis and transient simulation. While the eigenvalue and damping torque analysis are based on D-Q model of SSSC, the transient simulation considers both D-Q and detailed three phase nonlinear system model using switching functions.

Keywords: FACTS, SSR, SSSC, damping torque, GA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
10047 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control

Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon

Abstract:

Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.

Keywords: Battery Energy Storage System, electrical network frequency stability, frequency control unit, PowerFactory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718