Search results for: (2+1)-dimensional breaking solution equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3413

Search results for: (2+1)-dimensional breaking solution equation

3053 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: Nonlinear optics, propagation equation, plasmonic waveguide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
3052 Production Planning and Measuring Method for Non Patterned Production System Using Stock Cutting Model

Authors: S. Homrossukon, D. Aromstain

Abstract:

The simple methods used to plan and measure non patterned production system are developed from the basic definition of working efficiency. Processing time is assigned as the variable and used to write the equation of production efficiency. Consequently, such equation is extensively used to develop the planning method for production of interest using one-dimensional stock cutting problem. The application of the developed method shows that production efficiency and production planning can be determined effectively.

Keywords: Production Planning, Parallel Machine, Production Measurement, Cutting and Packing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
3051 The Extraction and Stripping of Hg (II) from Produced Water via Hollow Fiber Contactor

Authors: Dolapop Sribudda, Ura Pancharoen

Abstract:

The separation of Hg (II) from produced water by hollow fiber contactors (HFC) was investigation. This system included of two hollow fiber modules in the series connecting. The first module used for the extraction reaction and the second module for stripping reaction. Aliquat336 extractant was fed from the organic reservoirs into the shell side of the first hollow fiber module and continuous to the shell side of the second module. The organic liquid was continuously feed recirculate and back to the reservoirs. The feed solution was pumped into the lumen (tube side) of the first hollow fiber module. Simultaneously, the stripping solution was pumped in the same way in tube side of the second module. The feed and stripping solution was fed which had a countercurrent flow. Samples were kept in the outlet of feed and stripping solution at 1 hour and characterized concentration of Hg (II) by Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES). Feed solution was produced water from natural gulf of Thailand. The extractant was Aliquat336 dissolved in kerosene diluent. Stripping solution used was nitric acid (HNO3) and thiourea (NH2CSNH2). The effect of carrier concentration and type of stripping solution were investigated. Results showed that the best condition were 10 % (v/v) Aliquat336 and 1.0 M NH2CSNH2. At the optimum condition, the extraction and stripping of Hg (II) were 98% and 44.2%, respectively.

Keywords: Hg (II), hollow fiber contactor, produced water, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
3050 A New Analytic Solution for the Heat Conduction with Time-Dependent Heat Transfer Coefficient

Authors: Te Wen Tu, Sen Yung Lee

Abstract:

An alternative approach is proposed to develop the analytic solution for one dimensional heat conduction with one mixed type boundary condition and general time-dependent heat transfer coefficient. In this study, the physic meaning of the solution procedure is revealed. It is shown that the shifting function takes the physic meaning of the reciprocal of Biot function in the initial time. Numerical results show the accuracy of this study. Comparing with those given in the existing literature, the difference is less than 0.3%.

Keywords: Analytic solution, heat transfer coefficient, shifting function method, time-dependent boundary condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2954
3049 A New Algorithm for Determining the Leading Coefficient of in the Parabolic Equation

Authors: Shiping Zhou, Minggen Cui

Abstract:

This paper investigates the inverse problem of determining the unknown time-dependent leading coefficient in the parabolic equation using the usual conditions of the direct problem and an additional condition. An algorithm is developed for solving numerically the inverse problem using the technique of space decomposition in a reproducing kernel space. The leading coefficients can be solved by a lower triangular linear system. Numerical experiments are presented to show the efficiency of the proposed methods.

Keywords: parabolic equations, coefficient inverse problem, reproducing kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
3048 Existence of Solution of Nonlinear Second Order Neutral Stochastic Differential Inclusions with Infinite Delay

Authors: Yong Li

Abstract:

The paper is concerned with the existence of solution of nonlinear second order neutral stochastic differential inclusions with infinite delay in a Hilbert Space. Sufficient conditions for the existence are obtained by using a fixed point theorem for condensing maps.

Keywords: Mild solution, Convex multivalued map, Neutral stochastic differential inclusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
3047 Group Contribution Parameters for Nonrandom Lattice Fluid Equation of State involving COSMO-RS

Authors: Alexander Breitholz, Wolfgang Arlt, Ki-Pung Yoo

Abstract:

Group contribution based models are widely used in industrial applications for its convenience and flexibility. Although a number of group contribution models have been proposed, there were certain limitations inherent to those models. Models based on group contribution excess Gibbs free energy are limited to low pressures and models based on equation of state (EOS) cannot properly describe highly nonideal mixtures including acids without introducing additional modification such as chemical theory. In the present study new a new approach derived from quantum chemistry have been used to calculate necessary EOS group interaction parameters. The COSMO-RS method, based on quantum mechanics, provides a reliable tool for fluid phase thermodynamics. Benefits of the group contribution EOS are the consistent extension to hydrogen-bonded mixtures and the capability to predict polymer-solvent equilibria up to high pressures. The authors are confident that with a sufficient parameter matrix the performance of the lattice EOS can be improved significantly.

Keywords: COSMO-RS, Equation of State, Group contribution, Lattice Fluid, Phase equilibria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
3046 Solving Transient Conduction and Radiation Using Finite Volume Method

Authors: Ashok K. Satapathy, Prerana Nashine

Abstract:

Radiative heat transfer in participating medium was carried out using the finite volume method. The radiative transfer equations are formulated for absorbing and anisotropically scattering and emitting medium. The solution strategy is discussed and the conditions for computational stability are conferred. The equations have been solved for transient radiative medium and transient radiation incorporated with transient conduction. Results have been obtained for irradiation and corresponding heat fluxes for both the cases. The solutions can be used to conclude incident energy and surface heat flux. Transient solutions were obtained for a slab of heat conducting in slab and by thermal radiation. The effect of heat conduction during the transient phase is to partially equalize the internal temperature distribution. The solution procedure provides accurate temperature distributions in these regions. A finite volume procedure with variable space and time increments is used to solve the transient radiation equation. The medium in the enclosure absorbs, emits, and anisotropically scatters radiative energy. The incident radiations and the radiative heat fluxes are presented in graphical forms. The phase function anisotropy plays a significant role in the radiation heat transfer when the boundary condition is non-symmetric.

Keywords: Participating media, finite volume method, radiation coupled with conduction, heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2900
3045 Single Image Defogging Method Using Variational Approach for Edge-Preserving Regularization

Authors: Wan-Hyun Cho, In-Seop Na, Seong-ChaeSeo, Sang-Kyoon Kim, Soon-Young Park

Abstract:

In this paper, we propose the variational approach to solve single image defogging problem. In the inference process of the atmospheric veil, we defined new functional for atmospheric veil that satisfy edge-preserving regularization property. By using the fundamental lemma of calculus of variations, we derive the Euler-Lagrange equation foratmospheric veil that can find the maxima of a given functional. This equation can be solved by using a gradient decent method and time parameter. Then, we can have obtained the estimated atmospheric veil, and then have conducted the image restoration by using inferred atmospheric veil. Finally we have improved the contrast of restoration image by various histogram equalization methods. The experimental results show that the proposed method achieves rather good defogging results.

Keywords: Image defogging, Image restoration, Atmospheric veil, Transmission, Variational approach, Euler-Lagrange equation, Image enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2891
3044 Study on Optimal Control Strategy of PM2.5 in Wuhan, China

Authors: Qiuling Xie, Shanliang Zhu, Zongdi Sun

Abstract:

In this paper, we analyzed the correlation relationship among PM2.5 from other five Air Quality Indices (AQIs) based on the grey relational degree, and built a multivariate nonlinear regression equation model of PM2.5 and the five monitoring indexes. For the optimal control problem of PM2.5, we took the partial large Cauchy distribution of membership equation as satisfaction function. We established a nonlinear programming model with the goal of maximum performance to price ratio. And the optimal control scheme is given.

Keywords: Grey relational degree, multiple linear regression, membership function, nonlinear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
3043 Arsenate Removal by Nano Zero-valent Iron in the Gas Bubbling System

Authors: V. Tanboonchuy, J.C. Hsu, N. Grisdanurak, C.H. Liao

Abstract:

This study focused on arsenate removal by nano zero-valent iron (NZVI) in the gas-bubbled aqueous solution. It appears that solution acidified by H2SO4 is far more favorable than by CO2-bubbled acidification. In addition, as dissolved oxygen was stripped out of solution by N2 gas bubbling, the arsenate removal dropped significantly. To take advantages of common practice of carbonation and oxic condition, pretreatment of CO2 and air bubbling in sequence are recommended for a better removal of arsenate.

Keywords: Arsenic, arsenate, zero-valent iron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
3042 A Collusion-Resistant Distributed Signature Delegation Based on Anonymous Mobile Agent

Authors: Omaima Bamasak

Abstract:

This paper presents a novel method that allows an agent host to delegate its signing power to an anonymous mobile agent in such away that the mobile agent does not reveal any information about its host-s identity and, at the same time, can be authenticated by the service host, hence, ensuring fairness of service provision. The solution introduces a verification server to verify the signature generated by the mobile agent in such a way that even if colluding with the service host, both parties will not get more information than what they already have. The solution incorporates three methods: Agent Signature Key Generation method, Agent Signature Generation method, Agent Signature Verification method. The most notable feature of the solution is that, in addition to allowing secure and anonymous signature delegation, it enables tracking of malicious mobile agents when a service host is attacked. The security properties of the proposed solution are analyzed, and the solution is compared with the most related work.

Keywords: Anonymous signature delegation, collusion resistance, e-commerce fairness, mobile agent security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
3041 Lagrange and Multilevel Wavelet-Galerkin with Polynomial Time Basis for Heat Equation

Authors: Watcharakorn Thongchuay, Puntip Toghaw, Montri Maleewong

Abstract:

The Wavelet-Galerkin finite element method for solving the one-dimensional heat equation is presented in this work. Two types of basis functions which are the Lagrange and multi-level wavelet bases are employed to derive the full form of matrix system. We consider both linear and quadratic bases in the Galerkin method. Time derivative is approximated by polynomial time basis that provides easily extend the order of approximation in time space. Our numerical results show that the rate of convergences for the linear Lagrange and the linear wavelet bases are the same and in order 2 while the rate of convergences for the quadratic Lagrange and the quadratic wavelet bases are approximately in order 4. It also reveals that the wavelet basis provides an easy treatment to improve numerical resolutions that can be done by increasing just its desired levels in the multilevel construction process.

Keywords: Galerkin finite element method, Heat equation , Lagrange basis function, Wavelet basis function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
3040 Investigation of Electrical, Thermal and Structural Properties on Polyacrylonitrile Nano-Fiber

Authors: N. Demirsoy, N. Uçar, A. Önen, N. Kızıldağ, Ö. F. Vurur, O. Eren, İ. Karacan

Abstract:

Polymer composite nano-fibers including (1, 3 wt %) silver nano-particles have been produced by electrospinning method. Polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) solution have been prepared and the amount of silver nitrate have been adjusted to PAN weight. Silver nano-particles were obtained from reduction of silver ions into silver nano-particles by chemical reduction by hydrazine hydroxide (N2H5OH). The different amount of silver salt was loaded into polymer matrix to obtain polyacrylonitrile composite nano-fiber containing silver nano-particles. The effect of the amount of silver nano-particles on the properties of composite nano-fiber web was investigated. Electrical conductivity, mechanical properties, thermal properties were examined by Microtest LCR Meter 6370 (0.01 mΩ-100 MΩ), Tensile tester, Differential scanning calorimeter DSC (Q10) and SEM respectively. Also antimicrobial efficiency test (ASTM E2149-10) was done against to Staphylococcus aureus bacteria. It has been seen that breaking strength, conductivity, antimicrobial effect, enthalpy during cyclization increase by use of silver nano-particles while the diameter of nano-fiber decreases.

Keywords: Composite polyacrylonitrile nano-fiber, electrical conductivity, electrospinning, mechanical and thermal properties, silver nano-particles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566
3039 Application of He-s Amplitude Frequency Formulation for a Nonlinear Oscillator with Fractional Potential

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, He-s amplitude frequency formulation is used to obtain a periodic solution for a nonlinear oscillator with fractional potential. By calculation and computer simulations, compared with the exact solution shows that the result obtained is of high accuracy.

Keywords: He's amplitude frequency formulation, Periodic solution, Nonlinear oscillator, Fractional potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1320
3038 Exact Solution of the Ising Model on the 15 X 15 Square Lattice with Free Boundary Conditions

Authors: Seung-Yeon Kim

Abstract:

The square-lattice Ising model is the simplest system showing phase transitions (the transition between the paramagnetic phase and the ferromagnetic phase and the transition between the paramagnetic phase and the antiferromagnetic phase) and critical phenomena at finite temperatures. The exact solution of the squarelattice Ising model with free boundary conditions is not known for systems of arbitrary size. For the first time, the exact solution of the Ising model on the square lattice with free boundary conditions is obtained after classifying all ) spin configurations with the microcanonical transfer matrix. Also, the phase transitions and critical phenomena of the square-lattice Ising model are discussed using the exact solution on the square lattice with free boundary conditions.

Keywords: Phase transition, Ising magnet, Square lattice, Freeboundary conditions, Exact solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
3037 Kinetics of Aggregation in Media with Memory

Authors: A. Brener, B. Balabekov, N. Zhumataev

Abstract:

In the paper we submit the non-local modification of kinetic Smoluchowski equation for binary aggregation applying to dispersed media having memory. Our supposition consists in that that intensity of evolution of clusters is supposed to be a function of the product of concentrations of the lowest orders clusters at different moments. The new form of kinetic equation for aggregation is derived on the base of the transfer kernels approach. This approach allows considering the influence of relaxation times hierarchy on kinetics of aggregation process in media with memory.

Keywords: Binary aggregation, Media with memory, Non-local model, Relaxation times

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
3036 Microstructure and Aging Behavior of Nonflammable AZ91D Mg Alloy

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment could be performed at temperatures from 400 to 450oC. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420oC and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y; however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200oC for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200oC for 10 hrs.

Keywords: Mg alloy, AZ91D, nonflammable alloy, phase equilibrium, peak aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195
3035 The Finite Difference Scheme for the Suspended String Equation with the Nonlinear External Forces

Authors: Jaipong Kasemsuwan

Abstract:

This paper presents the finite difference scheme and the numerical simulation of suspended string. The vibration solutions when the various external forces are taken into account are obtained and compared with the solutions without external force. In addition, we also investigate how the external forces and their powers and coefficients affect the amplitude of vibration.

Keywords: Nonlinear external forces, Numerical simulation, Suspended string equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
3034 Autonomous Vehicle Navigation Using Harmonic Functions via Modified Arithmetic Mean Iterative Method

Authors: Azali Saudi, Jumat Sulaiman

Abstract:

Harmonic functions are solutions to Laplace’s equation that are known to have an advantage as a global approach in providing the potential values for autonomous vehicle navigation. However, the computation for obtaining harmonic functions is often too slow particularly when it involves very large environment. This paper presents a two-stage iterative method namely Modified Arithmetic Mean (MAM) method for solving 2D Laplace’s equation. Once the harmonic functions are obtained, the standard Gradient Descent Search (GDS) is performed for path finding of an autonomous vehicle from arbitrary initial position to the specified goal position. Details of the MAM method are discussed. Several simulations of vehicle navigation with path planning in a static known indoor environment were conducted to verify the efficiency of the MAM method. The generated paths obtained from the simulations are presented. The performance of the MAM method in computing harmonic functions in 2D environment to solve path planning problem for an autonomous vehicle navigation is also provided.

Keywords: Modified Arithmetic Mean method, Harmonic functions, Laplace’s equation, path planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
3033 Contributions to Differential Geometry of Pseudo Null Curves in Semi-Euclidean Space

Authors: Melih Turgut, Süha Yılmaz

Abstract:

In this paper, first, a characterization of spherical Pseudo null curves in Semi-Euclidean space is given. Then, to investigate position vector of a pseudo null curve, a system of differential equation whose solution gives the components of the position vector of a pseudo null curve on the Frenet axis is established by means of Frenet equations. Additionally, in view of some special solutions of mentioned system, characterizations of some special pseudo null curves are presented.

Keywords: Semi-Euclidean Space, Pseudo Null Curves, Position Vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
3032 Damping and Stability Evaluation for the Dynamical Hunting Motion of the Bullet Train Wheel Axle Equipped with Cylindrical Wheel Treads

Authors: Barenten Suciu

Abstract:

Classical matrix calculus and Routh-Hurwitz stability conditions, applied to the snake-like motion of the conical wheel axle, lead to the conclusion that the hunting mode is inherently unstable, and its natural frequency is a complex number. In order to analytically solve such a complicated vibration model, either the inertia terms were neglected, in the model designated as geometrical, or restrictions on the creep coefficients and yawing diameter were imposed, in the so-called dynamical model. Here, an alternative solution is proposed to solve the hunting mode, based on the observation that the bullet train wheel axle is equipped with cylindrical wheels. One argues that for such wheel treads, the geometrical hunting is irrelevant, since its natural frequency becomes nil, but the dynamical hunting is significant since its natural frequency reduces to a real number. Moreover, one illustrates that the geometrical simplification of the wheel causes the stabilization of the hunting mode, since the characteristic quartic equation, derived for conical wheels, reduces to a quadratic equation of positive coefficients, for cylindrical wheels. Quite simple analytical expressions for the damping ratio and natural frequency are obtained, without applying restrictions into the model of contact. Graphs of the time-depending hunting lateral perturbation, including the maximal and inflexion points, are presented both for the critically-damped and the over-damped wheel axles.

Keywords: Bullet train, dynamical hunting, cylindrical wheels, damping, stability, creep, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
3031 An Approximation Method for Exact Boundary Controllability of Euler-Bernoulli System

Authors: Abdelaziz Khernane, Naceur Khelil, Leila Djerou

Abstract:

The aim of this work is to study the numerical implementation of the Hilbert Uniqueness Method for the exact boundary controllability of Euler-Bernoulli beam equation. This study may be difficult. This will depend on the problem under consideration (geometry, control and dimension) and the numerical method used. Knowledge of the asymptotic behaviour of the control governing the system at time T may be useful for its calculation. This idea will be developed in this study. We have characterized as a first step, the solution by a minimization principle and proposed secondly a method for its resolution to approximate the control steering the considered system to rest at time T.

Keywords: Boundary control, exact controllability, finite difference methods, functional optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
3030 Heat Transfer of an Impinging Jet on a Plane Surface

Authors: Jian-Jun Shu

Abstract:

A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

Keywords: Flux, free impinging jet, solid-surface, uniform wall temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
3029 Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder in the Absence of Buoyancy Forces

Authors: S. Mehran, S. Rouhi, F.Rouzbahani, E. Haghgoo

Abstract:

In this paper, growth and collapse of a vapour bubble generated due to a local energy input inside a rigid cylinder and in the absence of buoyancy forces is investigated using Boundary Integral Equation Method and Finite Difference Method .The fluid is treated as potential flow and Boundary Integral Equation Method is used to solve Laplace-s equation for velocity potential. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.

Keywords: Vapour bubble, Vertical rigid cylinder, Boundaryelement method, Finite difference method, Buoyancy forces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
3028 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: Numerical simulation, immiscible, finite difference, IADI, IADE, waterflooding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
3027 n-Butanol as an Extractant for Lactic Acid Recovery

Authors: Kanungnit Chawong, Panarat Rattanaphanee

Abstract:

Extraction of lactic acid from aqueous solution using n-butanol as an extractant was studied. Effect of mixing time, pH of the aqueous solution, initial lactic acid concentration, and volume ratio between the organic and the aqueous phase were investigated. Distribution coefficient and degree of lactic acid extraction was found to increase when the pH of aqueous solution was decreased. The pH Effect was substantially pronounced at pH of the aqueous solution less than 1. Initial lactic acid concentration and organic-toaqueous volume ratio appeared to have positive effect on the distribution coefficient and the degree of extraction. Due to the nature of n-butanol that is partially miscible in water, incorporation of aqueous solution into organic phase was observed in the extraction with large organic-to-aqueous volume ratio.

Keywords: Lactic acid, liquid-liquid extraction, n-Butanol, Solvating extractant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3114
3026 The Global Stability Using Lyapunov Function

Authors: R. Kongnuy, E. Naowanich, T. Kruehong

Abstract:

An important technique in stability theory for differential equations is known as the direct method of Lyapunov. In this work we deal global stability properties of Leptospirosis transmission model by age group in Thailand. First we consider the data from Division of Epidemiology Ministry of Public Health, Thailand between 1997-2011. Then we construct the mathematical model for leptospirosis transmission by eight age groups. The Lyapunov functions are used for our model which takes the forms of an Ordinary Differential Equation system. The globally asymptotically for equilibrium states are analyzed.

Keywords: Age Group, Leptospirosis, Lyapunov Function, Ordinary Differential Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
3025 The Inverse Problem of Nonsymmetric Matrices with a Submatrix Constraint and its Approximation

Authors: Yongxin Yuan, Hao Liu

Abstract:

In this paper, we first give the representation of the general solution of the following least-squares problem (LSP): Given matrices X ∈ Rn×p, B ∈ Rp×p and A0 ∈ Rr×r, find a matrix A ∈ Rn×n such that XT AX − B = min, s. t. A([1, r]) = A0, where A([1, r]) is the r×r leading principal submatrix of the matrix A. We then consider a best approximation problem: given an n × n matrix A˜ with A˜([1, r]) = A0, find Aˆ ∈ SE such that A˜ − Aˆ = minA∈SE A˜ − A, where SE is the solution set of LSP. We show that the best approximation solution Aˆ is unique and derive an explicit formula for it. Keyw

Keywords: Inverse problem, Least-squares solution, model updating, Singular value decomposition (SVD), Optimal approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
3024 CuO Thin Films Deposition by Spray Pyrolysis: Influence of Precursor Solution Properties

Authors: M. Lamri Zeggar, F. Bourfaa, A. Adjimi, F. Boutbakh, M. S. Aida, N. Attaf

Abstract:

CuO thin films were deposited by spray ultrasonic pyrolysis with different precursor solution. Two staring solution slats were used namely: copper acetate and copper chloride. The influence of these solutions on CuO thin films proprieties of is instigated. The X rays diffraction (XDR) analysis indicated that the films deposed with copper acetate are amorphous however the films elaborated with copper chloride have monoclinic structure. UV- Visible transmission spectra showed a strong absorbance of the deposited CuO thin films in the visible region. Electrical characterization has shown that CuO thin films prepared with copper acetate have a higher electrical conductivity.

Keywords: Thin films, cuprous oxide, spray pyrolysis, precursor solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247