Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Nyquist criterion

3 Frequency Domain Analysis for Hopf Bifurcation in a Delayed Competitive Web-site Model

Authors: Changjin Xu, Yusen Wu

Abstract:

In this paper, applying frequency domain approach, a delayed competitive web-site system is investigated. By choosing the parameter α as a bifurcation parameter, it is found that Hopf bifurcation occurs as the bifurcation parameter α passes a critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.

Keywords: Web-site system, stability, Nyquist criterion, Hopf bifurcation, frequency domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
2 Bifurcations for a FitzHugh-Nagumo Model with Time Delays

Authors: Changjin Xu, Peiluan Li

Abstract:

In this paper, a FitzHugh-Nagumo model with time delays is investigated. The linear stability of the equilibrium and the existence of Hopf bifurcation with delay τ is investigated. By applying Nyquist criterion, the length of delay is estimated for which stability continues to hold. Numerical simulations for justifying the theoretical results are illustrated. Finally, main conclusions are given.

Keywords: FitzHugh-Nagumo model, Time delay, Stability, Hopf bifurcation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
1 Bifurcation Analysis of a Delayed Predator-prey Fishery Model with Prey Reserve in Frequency Domain

Authors: Changjin Xu

Abstract:

In this paper, applying frequency domain approach, a delayed predator-prey fishery model with prey reserve is investigated. By choosing the delay τ as a bifurcation parameter, It is found that Hopf bifurcation occurs as the bifurcation parameter τ passes a sequence of critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. The length of delay which preserves the stability of the positive equilibrium is calculated. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.

Keywords: Predator-prey model, stability, Hopf bifurcation, frequency domain, Nyquist criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085