Search results for: Digital social networks
1303 Disidentification of Historical City Centers: A Comparative Study of the Old and New Settlements of Mardin, Turkey
Authors: Fatma Kürüm Varolgüneş, Fatih Canan
Abstract:
Mardin is one of the unique cities in Turkey with its rich cultural and historical heritage. Mardin’s traditional dwellings have been affected both by natural data such as climate and topography and by cultural data like lifestyle and belief. However, in the new settlements, housing is formed with modern approaches and unsuitable forms clashing with Mardin’s culture and environment. While the city is expanding, traditional textures are ignored. Thus, traditional settlements are losing their identity and are vanishing because of the rapid change and transformation. The main aim of this paper is to determine the physical and social data needed to define the characteristic features of Mardin’s old and new settlements. In this context, based on social and cultural data, old and new settlement formations of Mardin have been investigated from various aspects. During this research, the following methods have been utilized: observations, interviews, public surveys, literature review, as well as site examination via maps, photographs and questionnaire methodology. In conclusion, this paper focuses on how changes in the physical forms of cities affect the typology and the identity of cities, as in the case of Mardin.
Keywords: Urban and local identity, historical city center, traditional settlements, Mardin, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10421302 An Evaluation of Pesticide Stress Induced Proteins in three Cyanobacterial Species-Anabaena Fertilissima, Aulosira Fertilissima and Westiellopsis Prolifica using SDS-PAGE
Authors: Nirmal Kumar, Rita N. Kumar, Anubhuti Bora, Manmeet Kaur Amb
Abstract:
The whole-cell protein-profiling technique was evaluated for studying differences in banding pattern of three different species of Cyanobacteria i.e. Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica under the influence of four different pesticides-2,4-D (Ethyl Ester of 2,4-Dichloro Phenoxy Acetic Acid), Pencycuron (N-[(4-chlorophenyl)methyl]-Ncyclopentyl- N'–phenylurea), Endosulfan (6,7,8,9,10,10hexachloro- 1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine-3- oxide) and Tebuconazole (1-(4-Chlorophenyl)-4,4-dimethyl-3-(1,2,4- triazol-1-ylmethyl)pentan-3-ol). Whole-cell extracts were obtained by sonication treatment (Sonifier cell disruptor -Branson Digital Sonifier S-450D, USA) and were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE analyses of the total protein profile of Anabaena fertilissima, Aulosira fertilissima and Westiellopsis prolifica showed a linear decrease in the protein content with increasing pesticide stress when administered to different concentrations of 2, 4-D, Pencycuron, Endosulfan and Tebuconazole. The results indicate that different stressors exert specific effects on cyanobacterial protein synthesis.Keywords: Cyanobacteria, pesticide, SDS-PAGE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25091301 Efficient System for Speech Recognition using General Regression Neural Network
Authors: Abderrahmane Amrouche, Jean Michel Rouvaen
Abstract:
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21851300 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy
Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua
Abstract:
Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may damage ToM by affecting on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks, (1) each patient group performed worse than HC; (2) there were no significant differences between LTLE and RTLE groups; and (3) the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.Keywords: Cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20401299 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.
Keywords: Identification, Neural networks, Predictive control, Transient stability, UPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20791298 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.Keywords: JPSO, operation, optimization, water distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20521297 Movement Optimization of Robotic Arm Movement Using Soft Computing
Authors: V. K. Banga
Abstract:
Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.
Keywords: Artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17781296 Democracy in Pakistan: A Critical Review Through the Lens of Dr. Israr Ahmed and Western Philosophers
Authors: Zoaib Mirza
Abstract:
Pakistan is an Islamic country that got its partition from India in 1947 so that the people could practice the religion of Islam. The political slogan to strive for independence was “What does Pakistan mean? There is no God but Allah”. The ideology of Pakistan was based on the notion that sovereignty only belonged to God Almighty (in Arabic, God means “Allah”), and Muslims will live in accordance with Islam principles. The Quran (Holy Book) and Sunnah (authentic practices of Prophet Mohammad, Peace Be Upon Him, that explains the application of the Quran) are foundations of the Islamic principles. It has been over 75 years, but unfortunately, Pakistan, due to its own political, social, and economic mistakes, is responsible for not being able to become a true Islamic nation to justify its partition from India. The rationale for writing this paper is to analyze the factors that led to changes in the democratic movements impacting the country's political, social, and economic growth. The methodology to examine the historical and political context of Pakistan’s history is by referencing the scholarly work of Israr Ahmed. He focused on Islamic theology, philosophy, and studies, offering insights into the historical and political context of the country. While from a Western perspective, Karl Marx, Mar Weber, Hannah Arendt, Sheldon Wolin, Paulo Freire, and Jacques Ranciere's philosophies specific to totalitarianism, politics, military rule, religion, capitalism, and superpower are used as the framework to analyze Pakistan’s democracy. The study's findings conclude that Pakistan's democracy is unstable and has been impacted by military and civilian governance, which led to political, social, and economic downfall. To improve the current situation, the citizens of Pakistan have to realize that the success of a nation is only dependent on the level of consciousness of the leader and not the political system. Therefore, it is the responsibility of every citizen to be conscious of how they select their leader and take responsibility for the current situation in Pakistan.
Keywords: Pakistan, Islam, democracy, totalitarianism, military, religion, capitalism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3831295 Prioritizing Service Quality Dimensions: A Neural Network Approach
Authors: A. Golmohammadi, B. Jahandideh
Abstract:
One of the determinants of a firm-s prosperity is the customers- perceived service quality and satisfaction. While service quality is wide in scope, and consists of various dimensions, there may be differences in the relative importance of these dimensions in affecting customers- overall satisfaction of service quality. Identifying the relative rank of different dimensions of service quality is very important in that it can help managers to find out which service dimensions have a greater effect on customers- overall satisfaction. Such an insight will consequently lead to more effective resource allocation which will finally end in higher levels of customer satisfaction. This issue – despite its criticality- has not received enough attention so far. Therefore, using a sample of 240 bank customers in Iran, an artificial neural network is developed to address this gap in the literature. As customers- evaluation of service quality is a subjective process, artificial neural networks –as a brain metaphor- may appear to have a potentiality to model such a complicated process. Proposing a neural network which is able to predict the customers- overall satisfaction of service quality with a promising level of accuracy is the first contribution of this study. In addition, prioritizing the service quality dimensions in affecting customers- overall satisfaction –by using sensitivity analysis of neural network- is the second important finding of this paper.Keywords: service quality, customer satisfaction, relative importance, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431294 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.
Keywords: Local nonlinear estimation, LWPR algorithm, Online training method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16011293 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10931292 Adaptive Image Transmission with P-V Diversity in Multihop Wireless Mesh Networks
Authors: Wei Wang, Dongming Peng, Honggang Wang, Hamid Sharif
Abstract:
Multirate multimedia delivery applications in multihop Wireless Mesh Network (WMN) are data redundant and delay-sensitive, which brings a lot of challenges for designing efficient transmission systems. In this paper, we propose a new cross layer resource allocation scheme to minimize the receiver side distortion within the delay bound requirements, by exploring application layer Position and Value (P-V) diversity as well as the multihop Effective Capacity (EC). We specifically consider image transmission optimization here. First of all, the maximum supportable source traffic rate is identified by exploring the multihop Effective Capacity (EC) model. Furthermore, the optimal source coding rate is selected according to the P-V diversity of multirate media streaming, which significantly increases the decoded media quality. Simulation results show the proposed approach improved media quality significantly compared with traditional approaches under the same QoS requirements.Keywords: Multirate Multimedia Streaming, Effective CapacityMultihop Wireless Mesh Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14701291 Confronting the Uncertainty of Systemic Innovation in Public Welfare Services
Authors: Harri Jalonen
Abstract:
Faced with social and health system capacity constraints and rising and changing demand for welfare services, governments and welfare providers are increasingly relying on innovation to help support and enhance services. However, the evidence reported by several studies indicates that the realization of that potential is not an easy task. Innovations can be deemed inherently complex to implement and operate, because many of them involve a combination of technological and organizational renewal within an environment featuring a diversity of stakeholders. Many public welfare service innovations are markedly systemic in their nature, which means that they emerge from, and must address, the complex interplay between political, administrative, technological, institutional and legal issues. This paper suggests that stakeholders dealing with systemic innovation in welfare services must deal with ambiguous and incomplete information in circumstances of uncertainty. Employing a literature review methodology and case study, this paper identifies, categorizes and discusses different aspects of the uncertainty of systemic innovation in public welfare services, and argues that uncertainty can be classified into eight categories: technological uncertainty, market uncertainty, regulatory/institutional uncertainty, social/political uncertainty, acceptance/legitimacy uncertainty, managerial uncertainty, timing uncertainty and consequence uncertainty.Keywords: Systemic innovation, uncertainty, welfare services
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16171290 Improved Modulo 2n +1 Adder Design
Authors: Somayeh Timarchi, Keivan Navi
Abstract:
Efficient modulo 2n+1 adders are important for several applications including residue number system, digital signal processors and cryptography algorithms. In this paper we present a novel modulo 2n+1 addition algorithm for a recently represented number system. The proposed approach is introduced for the reduction of the power dissipated. In a conventional modulo 2n+1 adder, all operands have (n+1)-bit length. To avoid using (n+1)-bit circuits, the diminished-1 and carry save diminished-1 number systems can be effectively used in applications. In the paper, we also derive two new architectures for designing modulo 2n+1 adder, based on n-bit ripple-carry adder. The first architecture is a faster design whereas the second one uses less hardware. In the proposed method, the special treatment required for zero operands in Diminished-1 number system is removed. In the fastest modulo 2n+1 adders in normal binary system, there are 3-operand adders. This problem is also resolved in this paper. The proposed architectures are compared with some efficient adders based on ripple-carry adder and highspeed adder. It is shown that the hardware overhead and power consumption will be reduced. As well as power reduction, in some cases, power-delay product will be also reduced.Keywords: Modulo 2n+1 arithmetic, residue number system, low power, ripple-carry adders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29051289 A Mixed Method Study Investigating Dyslexia and Students’ Experiences of Anxiety and Coping
Authors: Amanda Abbott-Jones
Abstract:
Adult students with dyslexia can receive support for cognitive needs but may also experience anxiety, which is less understood. This study aims to test the hypothesis that dyslexic learners in higher education have a higher prevalence of academic and social anxiety than their non-dyslexic peers and explores wider emotional consequences of studying with dyslexia and the ways that adults with dyslexia cope cognitively and emotionally. A mixed method approach was used in two stages. Stage one compared survey responses from students with dyslexia (N = 102) and students without dyslexia (N = 72) after completion of an anxiety inventory. Stage two explored emotional consequences of studying with dyslexia and types of coping strategies used through semi-structured interviews with 20 dyslexic students. Results revealed a statistically significant effect for academic anxiety but not for social anxiety. Findings for stage two showed that: (1) students’ emotional consequences were characterised by a mixture of negative and positive responses, yet negative responses were more frequent in response to questions about academic tasks than positive responses; (2) participants had less to say on coping emotionally, than coping cognitively.
Keywords: Dyslexia, higher education, anxiety, emotion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9391288 Site Selection of Traffic Camera based on Dempster-Shafer and Bagging Theory
Authors: S. Rokhsari, M. Delavar, A. Sadeghi-Niaraki, A. Abed-Elmdoust, B. Moshiri
Abstract:
Traffic incident has bad effect on all parts of society so controlling road networks with enough traffic devices could help to decrease number of accidents, so using the best method for optimum site selection of these devices could help to implement good monitoring system. This paper has considered here important criteria for optimum site selection of traffic camera based on aggregation methods such as Bagging and Dempster-Shafer concepts. In the first step, important criteria such as annual traffic flow, distance from critical places such as parks that need more traffic controlling were identified for selection of important road links for traffic camera installation, Then classification methods such as Artificial neural network and Decision tree algorithms were employed for classification of road links based on their importance for camera installation. Then for improving the result of classifiers aggregation methods such as Bagging and Dempster-Shafer theories were used.Keywords: Aggregation, Bagging theory, Dempster-Shafer theory, Site selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17061287 Semantic Support for Hypothesis-Based Research from Smart Environment Monitoring and Analysis Technologies
Authors: T. S. Myers, J. Trevathan
Abstract:
Improvements in the data fusion and data analysis phase of research are imperative due to the exponential growth of sensed data. Currently, there are developments in the Semantic Sensor Web community to explore efficient methods for reuse, correlation and integration of web-based data sets and live data streams. This paper describes the integration of remotely sensed data with web-available static data for use in observational hypothesis testing and the analysis phase of research. The Semantic Reef system combines semantic technologies (e.g., well-defined ontologies and logic systems) with scientific workflows to enable hypothesis-based research. A framework is presented for how the data fusion concepts from the Semantic Reef architecture map to the Smart Environment Monitoring and Analysis Technologies (SEMAT) intelligent sensor network initiative. The data collected via SEMAT and the inferred knowledge from the Semantic Reef system are ingested to the Tropical Data Hub for data discovery, reuse, curation and publication.
Keywords: Information architecture, Semantic technologies Sensor networks, Ontologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17151286 Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle
Authors: F. Titouna, S. Benferhat, K. Aksa, C. Titouna
Abstract:
A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.
Keywords: Traffic light, Wireless sensor network, Controller, Possibilistic network/Bayesain network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18131285 Generator Capability Curve Constraint for PSO Based Optimal Power Flow
Authors: Mat Syai'in, Adi Soeprijanto, Takashi Hiyama
Abstract:
An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.Keywords: Optimal Power Flow, Generator Capability Curve, Particle Swarm Optimization, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25751284 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator
Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang
Abstract:
This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22081283 On-line Handwritten Character Recognition: An Implementation of Counterpropagation Neural Net
Authors: Muhammad Faisal Zafar, Dzulkifli Mohamad, Razib M. Othman
Abstract:
On-line handwritten scripts are usually dealt with pen tip traces from pen-down to pen-up positions. Time evaluation of the pen coordinates is also considered along with trajectory information. However, the data obtained needs a lot of preprocessing including filtering, smoothing, slant removing and size normalization before recognition process. Instead of doing such lengthy preprocessing, this paper presents a simple approach to extract the useful character information. This work evaluates the use of the counter- propagation neural network (CPN) and presents feature extraction mechanism in full detail to work with on-line handwriting recognition. The obtained recognition rates were 60% to 94% using the CPN for different sets of character samples. This paper also describes a performance study in which a recognition mechanism with multiple thresholds is evaluated for counter-propagation architecture. The results indicate that the application of multiple thresholds has significant effect on recognition mechanism. The method is applicable for off-line character recognition as well. The technique is tested for upper-case English alphabets for a number of different styles from different peoples.
Keywords: On-line character recognition, character digitization, counter-propagation neural networks, extreme coordinates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24311282 Ranking of Performance Measures of GSCM towards Sustainability: Using Analytic Hierarchy Process
Authors: Dixit Garg, S. Luthra, A. Haleem
Abstract:
During recent years, the natural environment has become a challenging topic that business organizations must consider due to the economic and ecological impacts and increasing awareness of environment protection among society. Organizations are trying to achieve the goals of improvement in environment, low cost, high quality, flexibility and more customer satisfaction. Performance measurement frameworks are very useful to monitor the performance of any organization. The basic goal of this paper is to identify performance measures and ranking of these performance measures of GSCM performance measurement towards sustainability framework. Five perspectives (Environment, Economic, Social, Operational and Cost performances) and nineteen performance measures of GSCM performance towards sustainability have been have been identified from extensive literature review. Analytical Hierarchy Process (AHP) technique has been utilized for ranking of these performance perspectives and measures. All pair comparisons in AHP have been made on the basis on the experts’ opinions (selected from academia and industry). Ranking of these performance perspectives and measures will help to understand the importance of environmental, economic, social, operational performances and cost performances in the supply chain.
Keywords: Analytical Hierarchy Process (AHP), Green Supply Chain Management, Performance Measures (PM), Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32501281 A Novel Computer Vision Method for Evaluating Deformations of Fibers Cross Section in False Twist Textured Yarns
Authors: Dariush Semnani, Mehdi Ahangareianabhari, Hossein Ghayoor
Abstract:
In recent five decades, textured yarns of polyester fiber produced by false twist method are the most important and mass-produced manmade fibers. There are many parameters of cross section which affect the physical and mechanical properties of textured yarns. These parameters are surface area, perimeter, equivalent diameter, large diameter, small diameter, convexity, stiffness, eccentricity, and hydraulic diameter. These parameters were evaluated by digital image processing techniques. To find trends between production criteria and evaluated parameters of cross section, three criteria of production line have been adjusted and different types of yarns were produced. These criteria are temperature, drafting ratio, and D/Y ratio. Finally the relations between production criteria and cross section parameters were considered. The results showed that the presented technique can recognize and measure the parameters of fiber cross section in acceptable accuracy. Also, the optimum condition of adjustments has been estimated from results of image analysis evaluation.Keywords: Computer Vision, Cross Section Analysis, Fibers Deformation, Textured Yarn
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16471280 Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier
Authors: Chia-Hung Lin, Mei-Sung Kang, Cong-Hui Huang, Chao-Lin Kuo
Abstract:
This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.Keywords: Power Quality (PQ), Color Relational Analysis(CRA), Iterated Function System (IFS), Non-linear InterpolationFunction (NIF), Fractal Dimension (FD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481279 Iranian Bazaars: The Illustration of Stable Thoughts
Authors: Aida Amirazodi
Abstract:
"Bazaar" is a Persian word from the language of Iranians of 2500 years ago which has entered the languages of other countries. “Bazaar", the trading or marketing place with the architectural principles and concerns, was formed in Iran because of the long experience of marketing. This has become a valuable inheritance of Islamic ideological civilization and Iranian advanced architecture and a model of Islamic-marketing places with spectacular elements and parts, and the place for economical, social and cultural exchanges. “Bazaars" are found in cities of Iran and many Islamic countries in west of Asia and north of Africa. With the stable structure and function as a symbol of social values, this place has become the economic center and the illustration of stable architecture and advanced principles. “Bazaars" as the heart of Iranian cities economy with several major and minor rows of shops, in closed and open areas, along a fixed line or branches with beautiful arcs, patios, and frameworks are among the main national inheritance of Iran and one of the important Iranian architectural treasures because of its Iranian nobility.
Keywords: Traditional Bazaar, Form of Bazaar, Iranian Architecture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17481278 User Behavior Based Enhanced Protocol (UBEP) for Secure Near Field Communication
Authors: Vinay Gautam, Vivek Gautam
Abstract:
With increase in the unauthorized users access, it is required to increase the security in the Near Field Communication (NFC). In the paper we propose a user behavior based enhanced protocol entitled ‘User Behavior based Enhanced Protocol (UBEP)’ to increase the security in NFC enabled devices. The UBEP works on the history of interaction of a user with system.The propose protocol considers four different factors (touch, time and distance & angle) of user behavior to know the authenticity or authorization of the users. These factors can be same for a user during interaction with the system. The UBEP uses two phase user verification system to authenticate a user. Firstly the acquisition phase is used to acquire and store the user interaction with NFC device and the same information is used in future to detect the authenticity of the user. The second phase (recognition) uses analysis of current and previous scenario of user interaction and digital signature verification system to finally authenticate user. The analysis of user based input makes a NFC transaction more advance and secure. This security is very tactical because it is completely depends on usage of the device.
Keywords: Security, Network Field communication, NFC Protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20081277 Linear Phase High Pass FIR Filter Design using Improved Particle Swarm Optimization
Authors: Sangeeta Mondal, Vasundhara, Rajib Kar, Durbadal Mandal, S. P. Ghoshal
Abstract:
This paper presents an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Improved Particle Swarm Optimization (IPSO). In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. An iterative method is introduced to find the optimal solution of FIR filter design problem. Evolutionary algorithms like real code genetic algorithm (RGA), particle swarm optimization (PSO), improved particle swarm optimization (IPSO) have been used in this work for the design of linear phase high pass FIR filter. IPSO is an improved PSO that proposes a new definition for the velocity vector and swarm updating and hence the solution quality is improved. A comparison of simulation results reveals the optimization efficacy of the algorithm over the prevailing optimization techniques for the solution of the multimodal, nondifferentiable, highly non-linear, and constrained FIR filter design problems.Keywords: FIR Filter, IPSO, GA, PSO, Parks and McClellan Algorithm, Evolutionary Optimization, High Pass Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30991276 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation
Authors: Christhu Raj M. R., Rajeev Sukumaran
Abstract:
Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21991275 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction
Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic
Abstract:
Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.Keywords: Bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28571274 Study on Construction of 3D Topography by UAV-Based Images
Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li
Abstract:
In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.
Keywords: 3D, topography, UAV, images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802