Search results for: Reception Rate
63 Farmers’ Perception, Willingness and Capacity in Utilization of Household Sewage Sludge as Organic Resources for Peri-Urban Agriculture around Jos Nigeria
Authors: C. C. Alamanjo, A. O. Adepoju, H. Martin, R. N. Baines
Abstract:
Peri-urban agriculture in Jos Nigeria serves as a major means of livelihood for both urban and peri-urban poor, and constitutes huge commercial inclination with a target market that has spanned beyond Plateau State. Yet, the sustainability of this sector is threatened by intensive application of urban refuse ash contaminated with heavy metals, as a result of the highly heterogeneous materials used in ash production. Hence, this research aimed to understand the current fertilizer employed by farmers, their perception and acceptability in utilization of household sewage sludge for agricultural purposes and their capacity in mitigating risks associated with such practice. Mixed methods approach was adopted, and data collection tools used include survey questionnaire, focus group discussion with farmers, participants and field observation. The study identified that farmers maintain a complex mixture of organic and chemical fertilizers, with mixture composition that is dependent on fertilizer availability and affordability. Also, farmers have decreased the rate of utilization of urban refuse ash due to labor and increased logistic cost and are keen to utilize household sewage sludge for soil fertility improvement but are mainly constrained by accessibility of this waste product. Nevertheless, farmers near to sewage disposal points have commenced utilization of household sewage sludge for improving soil fertility. Farmers were knowledgeable on composting but find their strategic method of dewatering and sun drying more convenient. Irrigation farmers were not enthusiastic for treatment, as they desired both water and sludge. Secondly, household sewage sludge observed in the field is heterogeneous due to nearness between its disposal point and that of urban refuse, which raises concern for possible cross-contamination of pollutants and also portrays lack of extension guidance as regards to treatment and management of household sewage sludge for agricultural purposes. Hence, farmers concerns need to be addressed, particularly in providing extension advice and establishment of decentralized household sewage sludge collection centers, for continuous availability of liquid and concentrated sludge. Urgent need is also required for the Federal Government of Nigeria to increase commitment towards empowering her subsidiaries for efficient discharge of corporate responsibilities.
Keywords: Ash, farmers, household, peri-urban, refuse, sewage, sludge, urban.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77662 The Threats of Deforestation, Forest Fire, and CO2 Emission toward Giam Siak Kecil Bukit Batu Biosphere Reserve in Riau, Indonesia
Authors: S. B. Rushayati, R. Meilani, R. Hermawan
Abstract:
A biosphere reserve is developed to create harmony amongst economic development, community development, and environmental protection, through partnership between human and nature. Giam Siak Kecil Bukit Batu Biosphere Reserve (GSKBB BR) in Riau Province, Indonesia, is unique in that it has peat soil dominating the area, many springs essential for human livelihood, high biodiversity. Furthermore, it is the only biosphere reserve covering privately managed production forest areas. In this research, we aimed at analyzing the threat of deforestation and forest fire, and the potential of CO2 emission at GSKBB BR. We used Landsat image, arcView software, and ERDAS IMAGINE 8.5 Software to conduct spatial analysis of land cover and land use changes, calculated CO2 emission based on emission potential from each land cover and land use type, and exercised simple linear regression to demonstrate the relation between CO2 emission potential and deforestation. The result showed that, beside in the buffer zone and transition area, deforestation also occurred in the core area. Spatial analysis of land cover and land use changes from years 2010, 2012, and 2014 revealed that there were changes of land cover and land use from natural forest and industrial plantation forest to other land use types, such as garden, mixed garden, settlement, paddy fields, burnt areas, and dry agricultural land. Deforestation in core area, particularly at the Giam Siak Kecil Wildlife Reserve and Bukit Batu Wildlife Reserve, occurred in the form of changes from natural forest in to garden, mixed garden, shrubs, swamp shrubs, dry agricultural land, open area, and burnt area. In the buffer zone and transition area, changes also happened, what once swamp forest changed into garden, mixed garden, open area, shrubs, swamp shrubs, and dry agricultural land. Spatial analysis on land cover and land use changes indicated that deforestation rate in the biosphere reserve from 2010 to 2014 had reached 16 119 ha/year. Beside deforestation, threat toward the biosphere reserve area also came from forest fire. The occurrence of forest fire in 2014 had burned 101 723 ha of the area, in which 9 355 ha of core area, and 92 368 ha of buffer zone and transition area. Deforestation and forest fire had increased CO2 emission as much as 24 903 855 ton/year.Keywords: Biosphere reserve, CO2 emission, deforestation, forest fire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214561 Satellite Interferometric Investigations of Subsidence Events Associated with Groundwater Extraction in Sao Paulo, Brazil
Authors: B. Mendonça, D. Sandwell
Abstract:
The Metropolitan Region of Sao Paulo (MRSP) has suffered from serious water scarcity. Consequently, the most convenient solution has been building wells to extract groundwater from local aquifers. However, it requires constant vigilance to prevent over extraction and future events that can pose serious threat to the population, such as subsidence. Radar imaging techniques (InSAR) have allowed continuous investigation of such phenomena. The analysis of data in the present study consists of 23 SAR images dated from October 2007 to March 2011, obtained by the ALOS-1 spacecraft. Data processing was made with the software GMTSAR, by using the InSAR technique to create pairs of interferograms with ground displacement during different time spans. First results show a correlation between the location of 102 wells registered in 2009 and signals of ground displacement equal or lower than -90 millimeters (mm) in the region. The longest time span interferogram obtained dates from October 2007 to March 2010. As a result, from that interferogram, it was possible to detect the average velocity of displacement in millimeters per year (mm/y), and which areas strong signals have persisted in the MRSP. Four specific areas with signals of subsidence of 28 mm/y to 40 mm/y were chosen to investigate the phenomenon: Guarulhos (Sao Paulo International Airport), the Greater Sao Paulo, Itaquera and Sao Caetano do Sul. The coverage area of the signals was between 0.6 km and 1.65 km of length. All areas are located above a sedimentary type of aquifer. Itaquera and Sao Caetano do Sul showed signals varying from 28 mm/y to 32 mm/y. On the other hand, the places most likely to be suffering from stronger subsidence are the ones in the Greater Sao Paulo and Guarulhos, right beside the International Airport of Sao Paulo. The rate of displacement observed in both regions goes from 35 mm/y to 40 mm/y. Previous investigations of the water use at the International Airport highlight the risks of excessive water extraction that was being done through 9 deep wells. Therefore, it is affirmed that subsidence events are likely to occur and to cause serious damage in the area. This study could show a situation that has not been explored with proper importance in the city, given its social and economic consequences. Since the data were only available until 2011, the question that remains is if the situation still persists. It could be reaffirmed, however, a scenario of risk at the International Airport of Sao Paulo that needs further investigation.Keywords: Ground subsidence, interferometric satellite aperture radar (InSAR), metropolitan region of Sao Paulo, water extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139760 Corrosion Study of Magnetically Driven Components in Spinal Implants by Immersion Testing in Simulated Body Fluids
Authors: Benjawan Saengwichian, Alasdair E. Charles, Philip J. Hyde
Abstract:
Magnetically controlled growing rods (MCGRs) have been used to stabilise and correct spinal curvature in children to support non-invasive scoliosis adjustment. Although the encapsulated driving components are intended to be isolated from body fluid contact, in vivo corrosion was observed on these components due to sealing mechanism damage. Consequently, a corrosion circuit is created with the body fluids, resulting in malfunction of the lengthening mechanism. Particularly, the chloride ions in blood plasma or cerebrospinal fluid (CSF) may corrode the MCGR alloys, possibly resulting in metal ion release in long-term use. However, there is no data available on the corrosion resistance of spinal implant alloys in CSF. In this study, an in vitro immersion configuration was designed to simulate in vivo corrosion of 440C SS-Ti6Al4V couples. The 440C stainless steel (SS) was heat-treated to investigate the effect of tempering temperature on intergranular corrosion (IGC), while crevice and galvanic corrosion were studied by limiting the clearance of dissimilar couples. Tests were carried out in a neutral artificial cerebrospinal fluid (ACSF) and phosphate-buffered saline (PBS) under aeration and deaeration for 2 months. The composition of the passive films and metal ion release were analysed. The effect of galvanic coupling, pH, dissolved oxygen and anion species on corrosion rates and corrosion mechanisms are discussed based on quantitative and qualitative measurements. The results suggest that ACSF is more aggressive than PBS due to the combination of aggressive chlorides and sulphate anions, while phosphate in PBS acts as an inhibitor to delay corrosion. The presence of Vivianite on the SS surface in PBS lowered the corrosion rate (CR) more than 5 times for aeration and nearly 2 times for deaeration, compared with ACSF. The CR of 440C is dependent on passive film properties varied by tempering temperature and anion species. Although the CR of Ti6Al4V is insignificant, it tends to release more Ti ions in deaerated ACSF than under aeration, about 6 µg/L. It seems the crevice-like design has more effect on macroscopic corrosion than combining the dissimilar couple, whereas IGC is dominantly observed on sensitized microstructure.
Keywords: Cerebrospinal fluid, crevice corrosion, intergranular corrosion, magnetically controlled growing rods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69859 Evaluation of Bone and Body Mineral Profile in Association with Protein Content, Fat, Fat-Free, Skeletal Muscle Tissues According to Obesity Classification among Adult Men
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Obesity is associated with increased fat mass as well as fat percentage. Minerals are the elements, which are of vital importance. In this study, the relationships between body as well as bone mineral profile and the percentage as well as mass values of fat, fat-free portion, protein, skeletal muscle were evaluated in adult men with normal body mass index (N-BMI), and those classified according to different stages of obesity. A total of 103 adult men classified into five groups participated in this study. Ages were within 19-79 years range. Groups were N-BMI (Group 1), overweight (OW) (Group 2), first level of obesity (FLO) (Group 3), second level of obesity (SLO) (Group 4) and third level of obesity (TLO) (Group 5). Anthropometric measurements were performed. BMI values were calculated. Obesity degree, total body fat mass, fat percentage, basal metabolic rate (BMR), visceral adiposity, body mineral mass, body mineral percentage, bone mineral mass, bone mineral percentage, fat-free mass, fat-free percentage, protein mass, protein percentage, skeletal muscle mass and skeletal muscle percentage were determined by TANITA body composition monitor using bioelectrical impedance analysis technology. Statistical package (SPSS) for Windows Version 16.0 was used for statistical evaluations. The values below 0.05 were accepted as statistically significant. All the groups were matched based upon age (p > 0.05). BMI values were calculated as 22.6 ± 1.7 kg/m2, 27.1 ± 1.4 kg/m2, 32.0 ± 1.2 kg/m2, 37.2 ± 1.8 kg/m2, and 47.1 ± 6.1 kg/m2 for groups 1, 2, 3, 4, and 5, respectively. Visceral adiposity and BMR values were also within an increasing trend. Percentage values of mineral, protein, fat-free portion and skeletal muscle masses were decreasing going from normal to TLO. Upon evaluation of the percentages of protein, fat-free portion and skeletal muscle, statistically significant differences were noted between NW and OW as well as OW and FLO (p < 0.05). However, such differences were not observed for body and bone mineral percentages. Correlation existed between visceral adiposity and BMI was stronger than that detected between visceral adiposity and obesity degree. Correlation between visceral adiposity and BMR was significant at the 0.05 level. Visceral adiposity was not correlated with body mineral mass but correlated with bone mineral mass whereas significant negative correlations were observed with percentages of these parameters (p < 0.001). BMR was not correlated with body mineral percentage whereas a negative correlation was found between BMR and bone mineral percentage (p < 0.01). It is interesting to note that mineral percentages of both body as well as bone are highly affected by the visceral adiposity. Bone mineral percentage was also associated with BMR. From these findings, it is plausible to state that minerals are highly associated with the critical stages of obesity as prominent parameters.
Keywords: Bone, men, minerals, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69858 Preferences of Electric Buses in Public Transport; Conclusions from Real Life Testing in Eight Swedish Municipalities
Authors: Sven Borén, Lisiana Nurhadi, Henrik Ny
Abstract:
From a theoretical perspective, electric buses can be more sustainable and can be cheaper than fossil fuelled buses in city traffic. The authors have not found other studies based on actual urban public transport in Swedish winter climate. Further on, noise measurements from buses for the European market were found old. The aims of this follow-up study was therefore to test and possibly verify in a real-life environment how energy efficient and silent electric buses are, and then conclude on if electric buses are preferable to use in public transport. The Ebusco 2.0 electric bus, fitted with a 311 kWh battery pack, was used and the tests were carried out during November 2014-April 2015 in eight municipalities in the south of Sweden. Six tests took place in urban traffic and two took place in more of a rural traffic setting. The energy use for propulsion was measured via logging of the internal system in the bus and via an external charging meter. The average energy use turned out to be 8% less (0,96 kWh/km) than assumed in the earlier theoretical study. This rate allows for a 320 km range in public urban traffic. The interior of the bus was kept warm by a diesel heater (biodiesel will probably be used in a future operational traffic situation), which used 0,67 kWh/km in January. This verified that electric buses can be up to 25% cheaper when used in public transport in cities for about eight years. The noise was found to be lower, primarily during acceleration, than for buses with combustion engines in urban bus traffic. According to our surveys, most passengers and drivers appreciated the silent and comfortable ride and preferred electric buses rather than combustion engine buses. Bus operators and passenger transport executives were also positive to start using electric buses for public transport. The operators did however point out that procurement processes need to account for eventual risks regarding this new technology, along with personnel education. The study revealed that it is possible to establish a charging infrastructure for almost all studied bus lines. However, design of a charging infrastructure for each municipality requires further investigations, including electric grid capacity analysis, smart location of charging points, and tailored schedules to allow fast charging. In conclusion, electric buses proved to be a preferable alternative for all stakeholders involved in public bus transport in the studied municipalities. However, in order to electric buses to be a prominent support for sustainable development, they need to be charged either by stand-alone units or via an expansion of the electric grid, and the electricity should be made from new renewable sources.Keywords: Sustainability, Electric, Bus, Noise, GreenCharge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228557 Virtual Reality in COVID-19 Stroke Rehabilitation: Preliminary Outcomes
Authors: Kasra Afsahi, Maryam Soheilifar, S. Hossein Hosseini
Abstract:
Background: There is growing evidence that Cerebral Vascular Accident (CVA) can be a consequence of COVID-19 infection. Understanding novel treatment approaches is important in optimizing patient outcomes. Case: This case explores the use of Virtual Reality (VR) in the treatment of a 23-year-old COVID-positive female presenting with left hemiparesis in August 2020. Imaging showed right globus pallidus, thalamus, and internal capsule ischemic stroke. Conventional rehabilitation was started two weeks later, with VR included. This game-based VR technology developed for stroke patients was based on upper extremity exercises and functions for stroke. Physical examination showed left hemiparesis with muscle strength 3/5 in the upper extremity and 4/5 in the lower extremity. The range of motion of the shoulder was 90-100 degrees. The speech exam showed a mild decrease in fluency. Mild lower lip dynamic asymmetry was seen. Babinski was positive on the left. Gait speed was decreased (75 steps per minute). Intervention: Our game-based VR system was developed based on upper extremity physiotherapy exercises for post-stroke patients to increase the active, voluntary movement of the upper extremity joints and improve the function. The conventional program was initiated with active exercises, shoulder sanding for joint ROMs, walking shoulder, shoulder wheel, and combination movements of the shoulder, elbow, and wrist joints, alternative flexion-extension, pronation-supination movements, Pegboard and Purdo pegboard exercises. Also, fine movements included smart gloves, biofeedback, finger ladder, and writing. The difficulty of the game increased at each stage of the practice with progress in patient performances. Outcome: After 6 weeks of treatment, gait and speech were normal and upper extremity strength was improved to near normal status. No adverse effects were noted. Conclusion: This case suggests that VR is a useful tool in the treatment of a patient with COVID-19 related CVA. The safety of developed instruments for such cases provides approaches to improve the therapeutic outcomes and prognosis as well as increased satisfaction rate among patients.
Keywords: COVID-19, stroke, virtual reality, rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44656 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction
Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari
Abstract:
Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.Keywords: Catalytic membrane, hydrogen, methane steam reforming, permeance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89555 Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature
Authors: A. M. Alaskari, S. E. Oraby
Abstract:
The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.
Keywords: Dynamic force signals, surface roughness (finish), tool wear and deformation, tool wear modes (nose, flank)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 134954 Bioleaching for Efficient Copper Ore Recovery
Authors: Zh. Karaulova, D. Baizhigitov
Abstract:
At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus acidophilus (S.a.), represent mixed cultures utilized in bacterial oxidation systems. They can stay active in the 20-40 °C temperature range. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33 оC. The growth rate decreased by one-half for each 4-5 °C fall in temperature from 30 °C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (> 600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores.
Keywords: Bacterial recovery, copper ore, bioleaching, bacterial inoculum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16053 Association of Maternal Diet Quality Indices and Dietary Patterns during Lactation and the Growth of Exclusive Breastfed Infant
Authors: Leila Azadbakht, Maedeh Moradi, Mohammad Reza Merasi, Farzaneh Jahangir
Abstract:
Maternal dietary intake during lactation might affect the growth rate of an exclusive breastfed infant. The present study was conducted to evaluate the effect of maternal dietary patterns and quality during lactation on the growth of the exclusive breastfed infant. Methods: 484 healthy lactating mothers with their infant were enrolled in this study. Only exclusive breastfed infants were included in this study which was conducted in Iran. Dietary intake of lactating mothers was assessed using a validated and reliable semi-quantitative food frequency questionnaire. Diet quality indices such as alternative Healthy eating index (HEI), Dietary energy density (DED), and adherence to Mediterranean dietary pattern score, Nordic and dietary approaches to stop hypertension (DASH) eating pattern were created. Anthropometric features of infant (weight, height, and head circumference) were recorded at birth, two and four months. Results: Weight, length, weight for height and head circumference of infants at two months and four months age were mostly in the normal range among those that mothers adhered more to the HEI in lactation period (normal weight: 61%; normal height: 59%). The prevalence of stunting at four months of age among those whose mothers adhered more to the HEI was 31% lower than those with the least adherence to HEI. Mothers in the top tertiles of HEI score had the lowest frequency of having underweight infants (18% vs. 33%; P=0.03). Odds ratio of being overweight or obese at four months age was the lowest among those infants whose mothers adhered more to the HEI (OR: 0.67 vs 0.91; Ptrend=0.03). However, there was not any significant association between adherence of mothers to Mediterranean diet as well as DASH diet and Nordic eating pattern and the growth of infants (none of weight, height or head circumference). Infant weight, length, weight for height and head circumference at two months and four months did not show significant differences among different tertile categories of mothers’ DED. Conclusions: Higher diet quality indices and more adherence of lactating mother to HEI (as an indicator of diet quality) may be associated with better growth indices of the breastfed infant. However, it seems that DED of the lactating mother does not affect the growth of the breastfed infant. Adherence to the different dietary patterns such as Mediterranean, DASH or Nordic among mothers had no different effect on the growth indices of the infants. However, higher diet quality indices and more adherence of lactating mother to HEI may be associated with better growth indices of the breastfed infant. Breastfeeding is a complete way that is not affected much by the dietary patterns of the mother. However, better diet quality might be associated with better growth.Keywords: Breastfeeding, growth, infant, maternal diet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76252 Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel
Authors: R. Blythman, N. Jeffers, T. Persoons, D. B. Murray
Abstract:
The exploitation of flow pulsation in micro- and mini-channels is a potentially useful technique for enhancing cooling of high-end photonics and electronics systems. It is thought that pulsation alters the thickness of the hydrodynamic and thermal boundary layers, and hence affects the overall thermal resistance of the heat sink. Although the fluid mechanics and heat transfer are inextricably linked, it can be useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. Using two-dimensional, two-component particle image velocimetry, the current work intends to characterize the heat transfer mechanisms in pulsating flow with a mean Reynolds number of 48 by experimentally quantifying the hydrodynamics of a generic liquid-cooled channel geometry. Flows circulated through the test section by a gear pump are modulated using a controller to achieve sinusoidal flow pulsations with Womersley numbers of 7.45 and 2.36 and an amplitude ratio of 0.75. It is found that the transient characteristics of the measured velocity profiles are dependent on the speed of oscillation, in accordance with the analytical solution for flow in a rectangular channel. A large velocity overshoot is observed close to the wall at high frequencies, resulting from the interaction of near-wall viscous stresses and inertial effects of the main fluid body. The steep velocity gradients at the wall are indicative of augmented heat transfer, although the local flow reversal may reduce the upstream temperature difference in heat transfer applications. While unsteady effects remain evident at the lower frequency, the annular effect subsides and retreats from the wall. The shear rate at the wall is increased during the accelerating half-cycle and decreased during deceleration compared to steady flow, suggesting that the flow may experience both enhanced and diminished heat transfer during a single period. Hence, the thickness of the hydrodynamic boundary layer is reduced for positively moving flow during one half of the pulsation cycle at the investigated frequencies. It is expected that the size of the thermal boundary layer is similarly reduced during the cycle, leading to intervals of heat transfer enhancement.Keywords: Heat transfer enhancement, particle image velocimetry, localized and time-resolved velocity, photonics and electronics cooling, pulsating flow, Richardson’s annular effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230651 Greenhouse Gasses’ Effect on Atmospheric Temperature Increase and the Observable Effects on Ecosystems
Authors: Alexander J. Severinsky
Abstract:
Radiative forces of greenhouse gases (GHG) increase the temperature of the Earth's surface, more on land, and less in oceans, due to their thermal capacities. Given this inertia, the temperature increase is delayed over time. Air temperature, however, is not delayed as air thermal capacity is much lower. In this study, through analysis and synthesis of multidisciplinary science and data, an estimate of atmospheric temperature increase is made. Then, this estimate is used to shed light on current observations of ice and snow loss, desertification and forest fires, and increased extreme air disturbances. The reason for this inquiry is due to the author’s skepticism that current changes cannot be explained by a "~1 oC" global average surface temperature rise within the last 50-60 years. The only other plausible cause to explore for understanding is that of atmospheric temperature rise. The study utilizes an analysis of air temperature rise from three different scientific disciplines: thermodynamics, climate science experiments, and climactic historical studies. The results coming from these diverse disciplines are nearly the same, within ± 1.6%. The direct radiative force of GHGs with a high level of scientific understanding is near 4.7 W/m2 on average over the Earth’s entire surface in 2018, as compared to one in pre-Industrial time in the mid-1700s. The additional radiative force of fast feedbacks coming from various forms of water gives approximately an additional ~15 W/m2. In 2018, these radiative forces heated the atmosphere by approximately 5.1 oC, which will create a thermal equilibrium average ground surface temperature increase of 4.6 oC to 4.8 oC by the end of this century. After 2018, the temperature will continue to rise without any additional increases in the concentration of the GHGs, primarily of carbon dioxide and methane. These findings of the radiative force of GHGs in 2018 were applied to estimates of effects on major Earth ecosystems. This additional force of nearly 20 W/m2 causes an increase in ice melting by an additional rate of over 90 cm/year, green leaves temperature increase by nearly 5 oC, and a work energy increase of air by approximately 40 Joules/mole. This explains the observed high rates of ice melting at all altitudes and latitudes, the spread of deserts and increases in forest fires, as well as increased energy of tornadoes, typhoons, hurricanes, and extreme weather, much more plausibly than the 1.5 oC increase in average global surface temperature in the same time interval. Planned mitigation and adaptation measures might prove to be much more effective when directed toward the reduction of existing GHGs in the atmosphere.
Keywords: GHG radiative forces, GHG air temperature, GHG thermodynamics, GHG historical, GHG experimental, GHG radiative force on ice, GHG radiative force on plants, GHG radiative force in air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56650 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend
Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes
Abstract:
This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.Keywords: Diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131549 Demographic and Socio-Economic Study of the Elderly Population in Kolkata, India
Authors: Ambika Roy Bardhan
Abstract:
Kolkata, the City of Joy, is a greying metropolis not only in respect of its concrete jungle but also because of the largest population of 60-plus residents that it shelters among all other cities in India. Declining birth and death rates and a negative growth of population indicate that the city has reached the last stage of demographic transition. Thus, the obvious consequence has been the ageing of its population. With this background, the present paper attempts to study the demographic and socio-economic status of the elderly population in Kolkata. Analysis and findings have been based on secondary data obtained from Census of India of various years, Sample Registration System Reports and reports by HelpAge India. Findings show that the elderly population is increasing continuously. With respect to gender, the male elderly outnumbers the female elderly population. The percentage of households having one elderly member is more in the city due to the emergence of the nuclear families and erosion of joint family system. With respect to socio-economic status, those elderly who are the heads of the family are lower in percentages than those in the other age groups. Also, male elderly as head of the family are greater in percentage than female elderly. Elderly in the category of currently married records the highest percentage followed by widowed, never married and lastly, separated or divorced. Male elderly outnumber the female elderly as currently married, while female elderly outnumbers the male elderly in the category of widowed. In terms of living status, the percentage of elderly who are living alone is highest in Kolkata and the reason for staying alone as no support from children also happens to be highest in this city. The literacy rate and higher level of education is higher among the male than female elderly. Higher percentages of female elderly have been found to be with disability. Disability in movement and multiple disabilities have been found to be more common among the elderly population in Kolkata. Percentages of male literate pensioners are highest than other categories. Also, in terms of levels of education male elderly who are graduate and above other than technical degree are the highest receivers of pension. Also, in terms of working status, elderly as non-workers are higher in percentages with the population of elderly females outnumbering the males. The old age dependency ratio in the city is increasing continuously and the ratio is higher among females than male. Thus, it can be stated that Kolkata is witnessing continuous and rapid ageing of its population. Increasing dependency ratio is likely to create pressure on the working population, available civic, social and health amenities. This requires intervention in the form of planning, formulation and implementation of laws, policies, programs and measures to safeguard and improve the conditions of the elderly in Kolkata.
Keywords: Demographic, Elderly, Population, Socio-economic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85348 Impact of Liquidity Crunch on Interbank Network
Authors: I. Lucas, N. Schomberg, F-A. Couturier
Abstract:
Most empirical studies have analyzed how liquidity risks faced by individual institutions turn into systemic risk. Recent banking crisis has highlighted the importance of grasping and controlling the systemic risk, and the acceptance by Central Banks to ease their monetary policies for saving default or illiquid banks. This last point shows that banks would pay less attention to liquidity risk which, in turn, can become a new important channel of loss. The financial regulation focuses on the most important and “systemic” banks in the global network. However, to quantify the expected loss associated with liquidity risk, it is worth to analyze sensitivity to this channel for the various elements of the global bank network. A small bank is not considered as potentially systemic; however the interaction of small banks all together can become a systemic element. This paper analyzes the impact of medium and small banks interaction on a set of banks which is considered as the core of the network. The proposed method uses the structure of agent-based model in a two-class environment. In first class, the data from actual balance sheets of 22 large and systemic banks (such as BNP Paribas or Barclays) are collected. In second one, to model a network as closely as possible to actual interbank market, 578 fictitious banks smaller than the ones belonging to first class have been split into two groups of small and medium ones. All banks are active on the European interbank network and have deposit and market activity. A simulation of 12 three month periods representing a midterm time interval three years is projected. In each period, there is a set of behavioral descriptions: repayment of matured loans, liquidation of deposits, income from securities, collection of new deposits, new demands of credit, and securities sale. The last two actions are part of refunding process developed in this paper. To strengthen reliability of proposed model, random parameters dynamics are managed with stochastic equations as rates the variations of which are generated by Vasicek model. The Central Bank is considered as the lender of last resort which allows banks to borrow at REPO rate and some ejection conditions of banks from the system are introduced.
Liquidity crunch due to exogenous crisis is simulated in the first class and the loss impact on other bank classes is analyzed though aggregate values representing the aggregate of loans and/or the aggregate of borrowing between classes. It is mainly shown that the three groups of European interbank network do not have the same response, and that intermediate banks are the most sensitive to liquidity risk.
Keywords: Systemic Risk, Financial Contagion, Liquidity Risk, Interbank Market, Network Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202647 Separate Collection System of Recyclables and Biowaste Treatment and Utilization in Metropolitan Area Finland
Authors: Petri Kouvo, Aino Kainulainen, Kimmo Koivunen
Abstract:
Separate collection system for recyclable wastes in the Helsinki region was ranked second best of European capitals. The collection system includes paper, cardboard, glass, metals and biowaste. Residual waste is collected and used in energy production. The collection system excluding paper is managed by the Helsinki Region Environmental Services HSY, a public organization owned by four municipalities (Helsinki, Espoo, Kauniainen and Vantaa). Paper collection is handled by the producer responsibility scheme. The efficiency of the collection system in the Helsinki region relies on a good coverage of door-to-door-collection. All properties with 10 or more dwelling units are required to source separate biowaste and cardboard. This covers about 75% of the population of the area. The obligation is extended to glass and metal in properties with 20 or more dwelling units. Other success factors include public awareness campaigns and a fee system that encourages recycling. As a result of waste management regulations for source separation of recyclables and biowaste, nearly 50 percent of recycling rate of household waste has been reached. For households and small and medium size enterprises, there is a sorting station fleet of five stations available. More than 50 percent of wastes received at sorting stations is utilized as material. The separate collection of plastic packaging in Finland will begin in 2016 within the producer responsibility scheme. HSY started supplementing the national bring point system with door-to-door-collection and pilot operations will begin in spring 2016. The result of plastic packages pilot project has been encouraging. Until the end of 2016, over 3500 apartment buildings have been joined the piloting, and more than 1800 tons of plastic packages have been collected separately. In the summer 2015 a novel partial flow digestion process combining digestion and tunnel composting was adopted for source separated household and commercial biowaste management. The product gas form digestion process is converted in to heat and electricity in piston engine and organic Rankine cycle process with very high overall efficiency. This paper describes the efficient collection system and discusses key success factors as well as main obstacles and lessons learned as well as the partial flow process for biowaste management.
Keywords: Biowaste, HSY, MSW, plastic packages, recycling, separate collection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95146 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates
Authors: Ceren Ince, Berkay Z. Erdem, Shahram Derogar, Nabi Yuzer
Abstract:
Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper, first of all, investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. Volume proportions of 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total rate of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower water absorption capacities compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.Keywords: Diatomite, fibre, strength, supplementary cementing materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223445 Innovative Fabric Integrated Thermal Storage Systems and Applications
Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison
Abstract:
In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.
Keywords: Fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168844 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.
Keywords: Hardness, powder metallurgy, Spark plasma sintering, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157743 Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5
Abstract:
Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contain four obvious stages and the main decomposition reaction occurred in the range of 200-600 °C. Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2 and 3 were in the range of 6.67-20.37 kJ/mol for SS; 1.51-6.87 kJ/mol for HZSM5; and 2.29-9.17 kJ/mol for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1 and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with HZSM5 and AC were in the total range of C4-C17 with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds while the presence of HZSM5 and AC dropped to 7.3% and 13.02%, respectively. Meanwhile, generation of value-added chemicals such as light aromatic compounds were significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR and TGA techniques. Overall, this research demonstrated that AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.
Keywords: Activated char, bio-oil, catalytic pyrolysis, HZSM5, sewage sludge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71342 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater
Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu
Abstract:
The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.Keywords: Algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, nutrients removal, saline wastewater, sequencing batch reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117641 Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling
Authors: Mohammed El Raey, Moustafa Osman Mohammed
Abstract:
The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s system. Naturally exchanged patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s system. The Probabilistic Risk Assessment (PRA) technique is utilized to assess the safety of an industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA-safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and rural areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is predicted for multiple factors distribution schemes of multi-criteria analysis. The input–output analysis is explored from the spillover effect, and we conducted Monte Carlo simulations for sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the composite index for biosphere with collective structure of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in an artistic/architectural perspective. The hypothesis is deployed to unify analytic and analogical spatial structure in development urban environments using optimization loads as an example of integrated industrial structure where the process is based on engineering topology of systems ecology.
Keywords: Spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25340 Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya
Authors: Abduladim Maitieg, Kevin Lynch, Mark Johnson
Abstract:
The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety & Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills’ potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill.
Keywords: Coastal and marine spatial planning advancement training, GIS mapping, human uses, ecosystem components, Misratah coast, Libyan, oil spill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95939 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator
Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur
Abstract:
Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.
Keywords: Air distribution, CFD, DOE, energy consumption, larder cabinet, refrigeration, uniform temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58938 Ribeirinhos: A Sustainability Assessment of Housing Typologies in the Amazon Region
Authors: A. K. M. De Paula, R. Tenorio
Abstract:
The 20th century has brought much development to the practice of Architecture worldwide, and technology has bridged inhabitation limits in many regions of the world with high levels of comfort and conveniences, most times at high costs to the environment. Throughout the globe, the tropical countries are being urbanized at an unprecedented rate and housing has become a major issue worldwide, in light of increased demand and lack of appropriate infra-structure and planning. Buildings and urban spaces designed in tropical cities have mainly adopted external concepts that in most cases do not fit the needs of the inhabitants living in such harsh climatic environment, and when they do, do so at high financial, environmental and cultural costs. Traditional architectural practices can provide valuable understanding on how self-reliance and autonomy of construction can be reinforced in rural-urban tropical environments. From traditional housing knowledge, it is possible to derive lessons for the development of new construction materials that are affordable, environmentally friendly, culturally acceptable and accesible to all.Specifically to the urban context, such solutions are of outmost importance, given the needs to a more democratic society, where access to housing is considered high in the agenda for development. Traditional or rural constructions are also ongoing through extensive changes eventhough they have mostly adopted climate-responsive building practices relying on local resources (with minimum embodied energy) and energy (for comfort and quality of life). It is important to note that many of these buildings can actually be called zero-energy, and hold potential answers to enable transition from high energy, high cost, low comfort urban habitations to zero/low energy habitations with high quality urban livelihood. Increasing access to modern urban lifestyels have also an effect on the aspirations from people in terms of performance, comfort and convenience in terms of their housing and the way it is produced and used. These aspirations are resulting in transitions from localresource dependent habitations- to non-local resource based highenergy urban style habitations. And such transitions are resulting in the habitations becoming increasingly unsuited to the local climatic conditions with increasing discomfort, ill-health, and increased CO2 emissions and local environmental disruption. This research studies one specific transition group in the context of 'water communities' in tropical-equatorial regions: Ribeirinhos housing typology (Amazonas, Brazil). The paper presents the results of a qualitative sustainability assessment of the housing typologies under transition, found at the Ribeirinhos communities.
Keywords: Vernacuilar and Tropical Architecture, SustainableHousing Design, Urban-rural Housing, Living Transitions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 213837 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell
Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman
Abstract:
Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The asprepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.
Keywords: Microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 350636 Cardiac Biosignal and Adaptation in Confined Nuclear Submarine Patrol
Authors: B. Lefranc, C. Aufauvre-Poupon, C. Martin-Krumm, M. Trousselard
Abstract:
Isolated and confined environments (ICE) present several challenges which may adversely affect human’s psychology and physiology. Submariners in Sub-Surface Ballistic Nuclear (SSBN) mission exposed to these environmental constraints must be able to perform complex tasks as part of their normal duties, as well as during crisis periods when emergency actions are required or imminent. The operational and environmental constraints they face contribute to challenge human adaptability. The impact of such a constrained environment has yet to be explored. Establishing a knowledge framework is a determining factor, particularly in view of the next long space travels. Ensuring that the crews are maintained in optimal operational conditions is a real challenge because the success of the mission depends on them. This study focused on the evaluation of the impact of stress on mental health and sensory degradation of submariners during a mission on SSBN using cardiac biosignal (heart rate variability, HRV) clustering. This is a pragmatic exploratory study of a prospective cohort included 19 submariner volunteers. HRV was recorded at baseline to classify by clustering the submariners according to their stress level based on parasympathetic (Pa) activity. Impacts of high Pa (HPa) versus low Pa (LPa) level at baseline were assessed on emotional state and sensory perception (interoception and exteroception) as a cardiac biosignal during the patrol and at a recovery time one month after. Whatever the time, no significant difference was found in mental health between groups. There are significant differences in the interoceptive, exteroceptive and physiological functioning during the patrol and at recovery time. To sum up, compared to the LPa group, the HPa maintains a higher level in psychosensory functioning during the patrol and at recovery but exhibits a decrease in Pa level. The HPa group has less adaptable HRV characteristics, less unpredictability and flexibility of cardiac biosignals while the LPa group increases them during the patrol and at recovery time. This dissociation between psychosensory and physiological adaptation suggests two treatment modalities for ICE environments. To our best knowledge, our results are the first to highlight the impact of physiological differences in the HRV profile on the adaptability of submariners. Further studies are needed to evaluate the negative emotional and cognitive effects of ICEs based on the cardiac profile. Artificial intelligence offers a promising future for maintaining high level of operational conditions. These future perspectives will not only allow submariners to be better prepared, but also to design feasible countermeasures that will help support analog environments that bring us closer to a trip to Mars.Keywords: Adaptation, exteroception, HRV, ICE, interoception, SSBN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49435 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves
Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada
Abstract:
Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.Keywords: Renewable energy, oscillating water column, multi-criteria selection, wells turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124234 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations
Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal
Abstract:
Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them.
Keywords: Process map, drilling loss matrix, availability, utilization, productivity, percussion rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089