Search results for: statistical learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3136

Search results for: statistical learning.

436 Online Topic Model for Broadcasting Contents Using Semantic Correlation Information

Authors: Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park, Sang-Jo Lee

Abstract:

This paper proposes a method of learning topics for broadcasting contents. There are two kinds of texts related to broadcasting contents. One is a broadcasting script, which is a series of texts including directions and dialogues. The other is blogposts, which possesses relatively abstracted contents, stories, and diverse information of broadcasting contents. Although two texts range over similar broadcasting contents, words in blogposts and broadcasting script are different. When unseen words appear, it needs a method to reflect to existing topic. In this paper, we introduce a semantic vocabulary expansion method to reflect unseen words. We expand topics of the broadcasting script by incorporating the words in blogposts. Each word in blogposts is added to the most semantically correlated topics. We use word2vec to get the semantic correlation between words in blogposts and topics of scripts. The vocabularies of topics are updated and then posterior inference is performed to rearrange the topics. In experiments, we verified that the proposed method can discover more salient topics for broadcasting contents.

Keywords: Broadcasting script analysis, topic expansion, semantic correlation analysis, word2vec.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
435 Effect of Flour Concentration and Retrogradation Treatment on Physical Properties of Instant Sinlek Brown Rice

Authors: Supat Chaiyakul, Direk Sukkasem, Patnachapa Natthapanpaisith

Abstract:

Sinlek rice flour beverage or instant product is a dietary supplement for dysphagia, or difficulty swallowing. It is also consumed by individuals who need to consume supplements to maintain their calorific needs. This product provides protein, fat, iron, and a high concentration of carbohydrate from rice flour. However, the application of native flour is limited due to its high viscosity. Starch modification by controlling starch retrogradation was used in this study. The research studies the effects of rice flour concentration and retrogradation treatment on the physical properties of instant Sinlek brown rice. The native rice flour, gelatinized rice flour, and flour gels retrograded under 4 °C for 3 and 7 days were investigated. From the statistical results, significant differences between native and retrograded flour were observed. The concentration of rice flour was the main factor influencing the swelling power, solubility, and pasting properties. With the increase in rice flour content from 10 to 15%, swelling power, peak viscosity, trough, and final viscosity decreased; but, solubility, pasting temperature, peak time, breakdown, and setback increased. The peak time, pasting temperature, peak viscosity, trough, and final viscosity decreased as the storage period increased from 3 to 7 days. The retrograded rice flour powders had lower pasting temperature, peak viscosity, breakdown, and final viscosity than the gelatinized and native flour powders. Reduction of starch viscosity by gelatinization and controlling starch retrogradation could allow for increased quantities of rice flour in instant rice beverages. Also, the treatment could increase the energy and nutrient densities of rice beverages without affecting the viscosity of this product.

Keywords: Instant rice, pasting properties, pregelatinization, retrogradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
434 Augmenting People's Creative Idea Generation Using an Artificial Intelligent Sketching Collaborator

Authors: Joseph Maloba Makokha

Abstract:

Idea generation is an important part of the design process, and many strategies to support this stage have been developed. As artificial intelligence (AI) gains adoption in many domains, we need to understand its role, if any, in the design process. This paper introduces the concept of a “Disruptive Interjector”, an AI system that frequently interjects with suggestions based on observing what a user does. The concept emanates from a study that was conducted with pairs of humans on one hand, and human-AI pairs on the other collaborating on idea generation by sketching. Results from a study show that participants who collaborated with, and took cues from the AI sketch suggestions generated more ideas; and also had more ideas ranked by experts as “creative” compared to two humans working together on the same tasks. It is notable that while researchers from diverse fields of engineering, psychology, art and others have explored conditions and environments that enhance people's creativity - and have provided insights on creativity in general - there still exists a gap on the role that AI can play on creativity. We attempt to narrow this gap.

Keywords: Artificial intelligence, design collaboration, creativity, human-machine collaboration, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
433 Reducing SAGE Data Using Genetic Algorithms

Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang

Abstract:

Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.

Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
432 Usability Testing with Children: BatiKids Case Study

Authors: Hestiasari Rante, Leonardo De Araújo, Heidi Schelhowe

Abstract:

Usability testing with children is similar in many aspects to usability testing with adults. However, there are a few differences that one needs to be aware of in order to get the most out of the sessions, and to ensure that children are comfortable and enjoying the process. This paper presents the need to acquire methodological knowledge for involving children as test users in usability testing, with consideration on Piaget’s theory of cognitive growth. As a case study, we use BatiKids, an application developed to evoke children’s enthusiasm to be involved in culture heritage preservation. The usability test was applied to 24 children from 9 to 10 years old. The children were divided into two groups; one interacted with the application through a graphic tablet with pen, and the other through touch screen. Both of the groups had to accomplish the same amount of tasks. In the end, children were asked to give feedback. The results suggested that children who interacted using the graphic tablet with pen had more difficulties rather than children who interacted through touch screen. However, the difficulty brought by the graphic tablet with pen is an important learning objective in order to understand the difficulties of using canting, which is an important part of batik.

Keywords: BatiKids, children, child-computer interaction, usability test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
431 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook

Authors: Chien-Jen Liu, Shu Ching Yang

Abstract:

Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.

Keywords: Technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3195
430 A Robust Deterministic Energy Smart-Grid Decisional Algorithm for Agent-Based Management

Authors: C. Adam, G. Henri, T. Levent, J.-B. Mauro, A. -L. Mayet

Abstract:

This paper is concerning the application of a deterministic decisional pattern to a multi-agent system which would provide intelligence to a distributed energy smart grid at local consumer level. Development of multi-agent application involves agent specifications, analysis, design and realization. It can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach to control the smart grid system in a decentralized competitive approach. The proposed algorithmic solution results from a deterministic dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems. Through memory of collected past tries, the algorithm monotonically converges to very steep system operation point in attraction basin resulting from weak system nonlinearity. In this sense, system is given by (local) constitutive elementary rules the intelligence of its global existence so that it can self-organize toward optimal operating sequence.

Keywords: Decentralized Competitive System, Distributed Smart Grid, Multi-Agent System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
429 High Securing Cover-File of Hidden Data Using Statistical Technique and AES Encryption Algorithm

Authors: A. A. Zaidan, Anas Majeed, B. B. Zaidan

Abstract:

Nowadays, the rapid development of multimedia and internet allows for wide distribution of digital media data. It becomes much easier to edit, modify and duplicate digital information Besides that, digital documents are also easy to copy and distribute, therefore it will be faced by many threatens. It-s a big security and privacy issue with the large flood of information and the development of the digital format, it become necessary to find appropriate protection because of the significance, accuracy and sensitivity of the information. Nowadays protection system classified with more specific as hiding information, encryption information, and combination between hiding and encryption to increase information security, the strength of the information hiding science is due to the non-existence of standard algorithms to be used in hiding secret messages. Also there is randomness in hiding methods such as combining several media (covers) with different methods to pass a secret message. In addition, there are no formal methods to be followed to discover the hidden data. For this reason, the task of this research becomes difficult. In this paper, a new system of information hiding is presented. The proposed system aim to hidden information (data file) in any execution file (EXE) and to detect the hidden file and we will see implementation of steganography system which embeds information in an execution file. (EXE) files have been investigated. The system tries to find a solution to the size of the cover file and making it undetectable by anti-virus software. The system includes two main functions; first is the hiding of the information in a Portable Executable File (EXE), through the execution of four process (specify the cover file, specify the information file, encryption of the information, and hiding the information) and the second function is the extraction of the hiding information through three process (specify the steno file, extract the information, and decryption of the information). The system has achieved the main goals, such as make the relation of the size of the cover file and the size of information independent and the result file does not make any conflict with anti-virus software.

Keywords: Cryptography, Steganography, Portable ExecutableFile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
428 A Prediction of Attractive Evaluation Objects Based On Complex Sequential Data

Authors: Shigeaki Sakurai, Makino Kyoko, Shigeru Matsumoto

Abstract:

This paper proposes a method that predicts attractive evaluation objects. In the learning phase, the method inductively acquires trend rules from complex sequential data. The data is composed of two types of data. One is numerical sequential data. Each evaluation object has respective numerical sequential data. The other is text sequential data. Each evaluation object is described in texts. The trend rules represent changes of numerical values related to evaluation objects. In the prediction phase, the method applies new text sequential data to the trend rules and evaluates which evaluation objects are attractive. This paper verifies the effect of the proposed method by using stock price sequences and news headline sequences. In these sequences, each stock brand corresponds to an evaluation object. This paper discusses validity of predicted attractive evaluation objects, the process time of each phase, and the possibility of application tasks.

Keywords: Trend rule, frequent pattern, numerical sequential data, text sequential data, evaluation object.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
427 The Role of Gender and Age on Students- Perceptions towards Online Education Case Study: Sakarya University, Vocational High School

Authors: Fahme Dabaj, Havva Başak

Abstract:

The aim of this study is to find out and analyze the role of gender and age on the perceptions of students to the distant online program offered by Vocational High School in Sakarya University. The research is based on a questionnaire as a mean of data collection method to find out the role of age and gender on the student-s perceptions toward online education, and the study progressed through finding relationships between the variables used in the data collection instrument. The findings of the analysis revealed that although the students registered to the online program by will, they preferred the traditional face-to-face education due to the difficulty of the nonverbal communication, their incompetence of using the technology required, and their belief in traditional face-toface learning more than online education. Regarding gender, the results showed that the female students have a better perception of the online education as opposed to the male students. Regarding age, the results showed that the older the students are the more is their preference towards attending face-toface classes.

Keywords: Distance education, online education, interneteducation, student perceptions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
426 Toward a Use of Ontology to Reinforcing Semantic Classification of Message Based On LSA

Authors: S. Lgarch, M. Khalidi Idrissi, S. Bennani

Abstract:

For best collaboration, Asynchronous tools and particularly the discussion forums are the most used thanks to their flexibility in terms of time. To convey only the messages that belong to a theme of interest of the tutor in order to help him during his tutoring work, use of a tool for classification of these messages is indispensable. For this we have proposed a semantics classification tool of messages of a discussion forum that is based on LSA (Latent Semantic Analysis), which includes a thesaurus to organize the vocabulary. Benefits offered by formal ontology can overcome the insufficiencies that a thesaurus generates during its use and encourage us then to use it in our semantic classifier. In this work we propose the use of some functionalities that a OWL ontology proposes. We then explain how functionalities like “ObjectProperty", "SubClassOf" and “Datatype" property make our classification more intelligent by way of integrating new terms. New terms found are generated based on the first terms introduced by tutor and semantic relations described by OWL formalism.

Keywords: Classification of messages, collaborative communication tools, discussion forum, e-learning, formal description, latente semantic analysis, ontology, owl, semantic relations, semantic web, thesaurus, tutoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
425 Introductory Design Optimisation of a Machine Tool using a Virtual Machine Concept

Authors: Johan Wall, Johan Fredin, Anders Jönsson, Göran Broman

Abstract:

Designing modern machine tools is a complex task. A simulation tool to aid the design work, a virtual machine, has therefore been developed in earlier work. The virtual machine considers the interaction between the mechanics of the machine (including structural flexibility) and the control system. This paper exemplifies the usefulness of the virtual machine as a tool for product development. An optimisation study is conducted aiming at improving the existing design of a machine tool regarding weight and manufacturing accuracy at maintained manufacturing speed. The problem can be categorised as constrained multidisciplinary multiobjective multivariable optimisation. Parameters of the control and geometric quantities of the machine are used as design variables. This results in a mix of continuous and discrete variables and an optimisation approach using a genetic algorithm is therefore deployed. The accuracy objective is evaluated according to international standards. The complete systems model shows nondeterministic behaviour. A strategy to handle this based on statistical analysis is suggested. The weight of the main moving parts is reduced by more than 30 per cent and the manufacturing accuracy is improvement by more than 60 per cent compared to the original design, with no reduction in manufacturing speed. It is also shown that interaction effects exist between the mechanics and the control, i.e. this improvement would most likely not been possible with a conventional sequential design approach within the same time, cost and general resource frame. This indicates the potential of the virtual machine concept for contributing to improved efficiency of both complex products and the development process for such products. Companies incorporating such advanced simulation tools in their product development could thus improve its own competitiveness as well as contribute to improved resource efficiency of society at large.

Keywords: Machine tools, Mechatronics, Non-deterministic, Optimisation, Product development, Virtual machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
424 The Role of Leadership and Innovation in Ecotourism Services Activity in Candirejo Village, Borobudur, Central Java, Indonesia

Authors: Iwan Nugroho, Purnawan D. Negara

Abstract:

This paper is aimed to study the roles of leadership and innovation in the development of local people based ecotourism services. The survey is conducted in Candirejo village, Borobudur District, Magelang Regency. The study of a descriptive approach is employed to identify people's behavior in ecotourism services. The results showed that ecotourism services have developed and provided benefits to the people. The roles of leadership and innovation interact positively with a cooperative to organize an ecotourism services management. The leadership is able to identify substances, to do the vision and missions of environmental and cultural conservation. The innovation provides alternative development efforts and increases the added value of ecotourism. The cooperative management was able to support a process to realize the goals of ecotourism, to build participation and communication, and to perform organizational learning. The phenomenon of the leadership in the Candirejo ecotourism enriches the studies of the ecotourism management. During this time, the ecotourism management is always associated with the standard management of national park. The ecotourism management of Candirejo is considered successful even outside the national park management.

Keywords: Borobudur, Candirejo, ecotourism, inovation, Leadership.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2978
423 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modeling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: Sentiment Analysis, Social Media, Twitter, Amazon, Data Mining, Machine Learning, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518
422 Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures

Authors: Manash Pratim Sarma, Kandarpa Kumar Sarma

Abstract:

A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.

Keywords: Assamese, Recognition, LPC, Spectral, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
421 The Knowledge Representation of the Genetic Regulatory Networks Based on Ontology

Authors: Ines Hamdi, Mohamed Ben Ahmed

Abstract:

The understanding of the system level of biological behavior and phenomenon variously needs some elements such as gene sequence, protein structure, gene functions and metabolic pathways. Challenging problems are representing, learning and reasoning about these biochemical reactions, gene and protein structure, genotype and relation between the phenotype, and expression system on those interactions. The goal of our work is to understand the behaviors of the interactions networks and to model their evolution in time and in space. We propose in this study an ontological meta-model for the knowledge representation of the genetic regulatory networks. Ontology in artificial intelligence means the fundamental categories and relations that provide a framework for knowledge models. Domain ontology's are now commonly used to enable heterogeneous information resources, such as knowledge-based systems, to communicate with each other. The interest of our model is to represent the spatial, temporal and spatio-temporal knowledge. We validated our propositions in the genetic regulatory network of the Aarbidosis thaliana flower

Keywords: Ontological model, spatio-temporal modeling, Genetic Regulatory Networks (GRNs), knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
420 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: Automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
419 Preparing Entrepreneurial Women: A Challenge for Indian Education System

Authors: Dinesh Khandujaa, Pardeep Kumar Sharma

Abstract:

Education, as the most important resource in any country, has multiplying effects on all facets of development in a society. The new social realities, particularly the interplay between democratization of education; unprecedented developments in IT sector; emergence of knowledge society, liberalization of economy and globalization have greatly influenced the educational process of all nations. This turbulence entails upon education to undergo dramatic changes to keep up with the new expectations. Growth of entrepreneurship among Indian women is highly important for empowering them and this is highly essential for socio-economic development of a society. Unfortunately in India there is poor acceptance of entrepreneurship among women as unfounded myths and fears restrain them to be enterprising. To remove these inhibitions, education system needs to be re-engineered to make entrepreneurship more acceptable. This paper empirically analyses the results of a survey done on around 500 female graduates in North India to measure and evaluate various entrepreneurial traits present in them. A formative model has been devised in this context, which should improve the teaching-learning process in our education system, which can lead to sustainable growth of women entrepreneurship in India.

Keywords: Women Empowerment, Entrepreneurship, Education System, Women Entrepreneurship, Sustainable Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
418 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production

Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy

Abstract:

Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.

Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
417 To Know the Way to the Unknown: A Semi-Experimental Study on the Implication of Skills and Knowledge for Creative Processes in Higher Education

Authors: Mikkel Snorre Wilms Boysen

Abstract:

From a theoretical perspective, expertise is generally considered a precondition for creativity. The assumption is that an individual needs to master the common and accepted rules and techniques within a certain knowledge-domain in order to create something new and valuable. However, real life cases, and a limited amount of empirical studies, demonstrate that this assumption may be overly simple. In this article, this question is explored through a number of semi-experimental case studies conducted within the fields of music, technology, and youth culture. The studies indicate that, in various ways, expertise plays an important part in creative processes. However, the case studies also indicate that expertise sometimes leads to an entrenched perspective, in the sense that knowledge and experience may work as a path into the well-known rather than into the unknown. In this article, these issues are explored with reference to different theoretical approaches to creativity and learning, including actor-network theory, the theory of blind variation and selective retention, and Csikszentmihalyi’s system model. Finally, some educational aspects and implications of this are discussed.

Keywords: Creativity, education, expertise, technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
416 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
415 A Local Decisional Algorithm Using Agent- Based Management in Constrained Energy Environment

Authors: C. Adam, G. Henri, T. Levent, J-B Mauro, A-L Mayet

Abstract:

Energy Efficiency Management is the heart of a worldwide problem. The capability of a multi-agent system as a technology to manage the micro-grid operation has already been proved. This paper deals with the implementation of a decisional pattern applied to a multi-agent system which provides intelligence to a distributed local energy network considered at local consumer level. Development of multi-agent application involves agent specifications, analysis, design, and realization. Furthermore, it can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach for a decisional pattern involving a multi-agent system to control a distributed local energy network in a decentralized competitive system. The proposed solution is the result of a dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems and converges monotonically very fast to system attracting operation point.

Keywords: Energy Efficiency Management, Distributed Smart- Grid, Multi-Agent System, Decisional Decentralized Competitive System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
414 Bronchospasm Analysis Following the Implementation of a Program of Maximum Aerobic Exercise in Active Men

Authors: Sajjad Shojaeidoust, Mohsen Ghanbarzadeh, Abdolhamid Habibi

Abstract:

Exercise-induced bronchospasm (EIB) is a transitory condition of airflow obstruction that is associated with physical activities. It is noted that high ventilation can lead to an increase in the heat and reduce in the moisture in airways resistance of trachea. Also causes of pathophysiological mechanism are EIB. Accordingly, studying some parameters of pulmonary function (FVC, FEV1) among active people seems quintessential. The aim of this study was to analyze bronchospasm following the implementation of a program of maximum aerobic exercise in active men at Chamran University of Ahwaz. Method: In this quasi-experimental study, the population consisted of all students at Chamran University. Among from 55 participants, of which, 15 were randomly selected as the experimental group. In this study, the size of the maximum oxygen consumption was initially measured, and then, based on the maximum oxygen consumed, the active individuals were identified. After five minutes’ warm-up, Strand treadmill exercise test was taken (one session) and pulmonary parameters were measured at both pre- and post-tests (spirometer). After data normalization using KS and non-normality of the data, the Wilcoxon test was used to analyze the data. The significance level for all statistical surveys was considered p≤0/05. Results: The results showed that the ventilation factors and bronchospasm (FVC, FEV1) in the pre-test and post-test resulted in no significant difference among the active people (p≥0/05). Discussion and conclusion: Based on the results observed in this study, it appears that pulmonary indices in active individuals increased after aerobic test. The increase in this indicator in active people is due to increased volume and elasticity of the lungs as well. In other words, pulmonary index is affected by rib muscles. It is considered that progress over respiratory muscle strength and endurance has raised FEV1 in the active cases.

Keywords: Bronchospasm, aerobic active maximum, pulmonary function, spirometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
413 The Role of Planning and Memory in the Navigational Ability

Authors: Greeshma Sharma, Sushil Chandra, Vijander Singh, Alok Prakash Mittal

Abstract:

Navigational ability requires spatial representation, planning, and memory. It covers three interdependent domains, i.e. cognitive and perceptual factors, neural information processing, and variability in brain microstructure. Many attempts have been made to see the role of spatial representation in the navigational ability, and the individual differences have been identified in the neural substrate. But, there is also a need to address the influence of planning, memory on navigational ability. The present study aims to evaluate relations of aforementioned factors in the navigational ability. Total 30 participants volunteered in the study of a virtual shopping complex and subsequently were classified into good and bad navigators based on their performances. The result showed that planning ability was the most correlated factor for the navigational ability and also the discriminating factor between the good and bad navigators. There was also found the correlations between spatial memory recall and navigational ability. However, non-verbal episodic memory and spatial memory recall were also found to be correlated with the learning variable. This study attempts to identify differences between people with more and less navigational ability on the basis of planning and memory.

Keywords: Memory, planning navigational ability, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
412 Inter-Organizational Knowledge Transfer Through Malaysia E-government IT Outsourcing: A Theoretical Review

Authors: Nor Aziati Abdul Hamid, Juhana Salim

Abstract:

The main objective of this paper is to contribute the existing knowledge transfer and IT Outsourcing literature specifically in the context of Malaysia by reviewing the current practices of e-government IT outsourcing in Malaysia including the issues and challenges faced by the public agencies in transferring the knowledge during the engagement. This paper discusses various factors and different theoretical model of knowledge transfer starting from the traditional model to the recent model suggested by the scholars. The present paper attempts to align organizational knowledge from the knowledge-based view (KBV) and organizational learning (OL) lens. This review could help shape the direction of both future theoretical and empirical studies on inter-firm knowledge transfer specifically on how KBV and OL perspectives could play significant role in explaining the complex relationships between the client and vendor in inter-firm knowledge transfer and the role of organizational management information system and Transactive Memory System (TMS) to facilitate the organizational knowledge transferring process. Conclusion is drawn and further research is suggested.

Keywords: E-government, IT Outsourcing, Knowledge Management, Knowledge Transfer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
411 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: Autonomous surveillance, Bayesian reasoning, decision-support, interventions, patterns-of-life, predictive analytics, predictive insights.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540
410 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
409 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances

Authors: Proud Arunrangsiwed, Sarinya Kongtieng

Abstract:

Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.

Keywords: Meta-regression analysis, social networking site use, academic performance, multitasking, motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
408 Operating System Based Virtualization Models in Cloud Computing

Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi

Abstract:

Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.

Keywords: Virtualization, OS based virtualization, container and hypervisor based virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
407 A Web-Based Self-Learning Grammar for Spoken Language Understanding

Authors: S. M. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno

Abstract:

One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.

Keywords: Spoken Dialog System, Spoken Language Understanding, Web Semantic, Name Entity Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776