Search results for: Sensor Network
553 Mindfulness-Based Stress Reduction for Optimizing Self-Esteem and Well-Being: The Key Role of Contingent Self-Esteem in Predicting Well-Being Compared to Explicit Self-Esteem
Authors: Sergio Luna, Raquel Rodríguez-Carvajal
Abstract:
This research examines the effectiveness of a mindfulness-based intervention in optimizing psychological well-being, with a particular focus on self-esteem, due to the rapid growth and consolidation of social network use and the increased frequency and intensity of upward comparisons of the self. The study aims to assess the potential of a mindfulness-based intervention to improve self-esteem and, in particular, to contribute to its greater stability by reducing levels of contingent self-esteem. Results show that an 8-week mindfulness-based stress reduction program was effective in increasing participants' (n = 206) trait mindfulness, explicit self-esteem, and well-being, while decreasing contingent self-esteem. Furthermore, the study found that improvements in both explicit and contingent self-esteem were significantly correlated with increases in psychological well-being, but that contingent self-esteem had a stronger effect on well-being than explicit self-esteem. These findings highlight the importance of considering additional dimensions of self-esteem beyond levels and suggest that mindfulness-based interventions may be a valuable tool for promoting a healthier form of self-esteem that contributes to personal well-being.
Keywords: Mindfulness-based stress reduction, contingent self-esteem, explicit self-esteem, well-being.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 320552 Investigation on Novel Based Naturally-Inspired Swarm Intelligence Algorithms for Optimization Problems in Mobile Ad Hoc Networks
Authors: C. Rajan, K. Geetha, C. Rasi Priya, S. Geetha
Abstract:
Nature is the immense gifted source for solving complex problems. It always helps to find the optimal solution to solve the problem. Mobile Ad Hoc NETwork (MANET) is a wide research area of networks which has set of independent nodes. The characteristics involved in MANET’s are Dynamic, does not depend on any fixed infrastructure or centralized networks, High mobility. The Bio-Inspired algorithms are mimics the nature for solving optimization problems opening a new era in MANET. The typical Swarm Intelligence (SI) algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Modified Termite Algorithm, Bat Algorithm (BA), Wolf Search Algorithm (WSA) and so on. This work mainly concentrated on nature of MANET and behavior of nodes. Also it analyses various performance metrics such as throughput, QoS and End-to-End delay etc.
Keywords: Ant Colony Algorithm, Artificial Bee Colony algorithm, Bio-Inspired algorithm, Modified Termite Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471551 Differential Protection for Power Transformer Using Wavelet Transform and PNN
Authors: S. Sendilkumar, B. L. Mathur, Joseph Henry
Abstract:
A new approach for protection of power transformer is presented using a time-frequency transform known as Wavelet transform. Different operating conditions such as inrush, Normal, load, External fault and internal fault current are sampled and processed to obtain wavelet coefficients. Different Operating conditions provide variation in wavelet coefficients. Features like energy and Standard deviation are calculated using Parsevals theorem. These features are used as inputs to PNN (Probabilistic neural network) for fault classification. The proposed algorithm provides more accurate results even in the presence of noise inputs and accurately identifies inrush and fault currents. Overall classification accuracy of the proposed method is found to be 96.45%. Simulation of the fault (with and without noise) was done using MATLAB AND SIMULINK software taking 2 cycles of data window (40 m sec) containing 800 samples. The algorithm was evaluated by using 10 % Gaussian white noise.Keywords: Power Transformer, differential Protection, internalfault, inrush current, Wavelet Energy, Db9.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132550 Future Logistics - Challenges, Requirements and Solutions for Logistics Networks
Authors: Martin Roth, Axel Klarmann, Bogdan Franczyk
Abstract:
The importance of logistics has changed enormously in the last few decades. While logistics was formerly one of the core functions of most companies, logistics or at least parts of their functions are nowadays outsourced to external logistic service providers in terms of contracts. As a result of this shift new business models like the fourth party logistics provider emerged, which designs, plans and monitors the resulting logistics networks. This new business model and topics such as Synchromodality or Big Data impose new requirements on the underlying IT, which cannot be met with conventional concepts and approaches. In this paper, the challenges of logistics network monitoring are outlined by using a scenario. The most common layers in a logical multilayered architecture for an information system are used to point out the arising challenges for IT. In addition, first appropriate solution approaches are introduced.
Keywords: Complex Event Processing, Fourth Party Logistics Service Provider, Logistics monitoring, Synchromodality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3376549 The Design of the Multi-Agent Classification System (MACS)
Authors: Mohamed R. Mhereeg
Abstract:
The paper discusses the design of a .NET Windows Service based agent system called MACS (Multi-Agent Classification System). MACS is a system aims to accurately classify spreadsheet developers competency over a network. It is designed to automatically and autonomously monitor spreadsheet users and gather their development activities based on the utilization of the software multi-agent technology (MAS). This is accomplished in such a way that makes management capable to efficiently allow for precise tailor training activities for future spreadsheet development. The monitoring agents of MACS are intended to be distributed over the WWW in order to satisfy the monitoring and classification of the multiple developer aspect. The Prometheus methodology is used for the design of the agents of MACS. Prometheus has been used to undertake this phase of the system design because it is developed specifically for specifying and designing agent-oriented systems. Additionally, Prometheus specifies also the communication needed between the agents in order to coordinate to achieve their delegated tasks.
Keywords: Classification, Design, MACS, MAS, Prometheus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690548 Artificial Neural Network Prediction for Coke Strength after Reaction and Data Analysis
Authors: Sulata Maharana, B Biswas, Adity Ganguly, Ashok Kumar
Abstract:
In this paper, the requirement for Coke quality prediction, its role in Blast furnaces, and the model output is explained. By applying method of Artificial Neural Networking (ANN) using back propagation (BP) algorithm, prediction model has been developed to predict CSR. Important blast furnace functions such as permeability, heat exchanging, melting, and reducing capacity are mostly connected to coke quality. Coke quality is further dependent upon coal characterization and coke making process parameters. The ANN model developed is a useful tool for process experts to adjust the control parameters in case of coke quality deviations. The model also makes it possible to predict CSR for new coal blends which are yet to be used in Coke Plant. Input data to the model was structured into 3 modules, for tenure of past 2 years and the incremental models thus developed assists in identifying the group causing the deviation of CSR.Keywords: Artificial Neural Networks, backpropagation, CokeStrength after Reaction, Multilayer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614547 Genetic Programming Approach for Multi-Category Pattern Classification Appliedto Network Intrusions Detection
Authors: K.M. Faraoun, A. Boukelif
Abstract:
This paper describes a new approach of classification using genetic programming. The proposed technique consists of genetically coevolving a population of non-linear transformations on the input data to be classified, and map them to a new space with a reduced dimension, in order to get a maximum inter-classes discrimination. The classification of new samples is then performed on the transformed data, and so become much easier. Contrary to the existing GP-classification techniques, the proposed one use a dynamic repartition of the transformed data in separated intervals, the efficacy of a given intervals repartition is handled by the fitness criterion, with a maximum classes discrimination. Experiments were first performed using the Fisher-s Iris dataset, and then, the KDD-99 Cup dataset was used to study the intrusion detection and classification problem. Obtained results demonstrate that the proposed genetic approach outperform the existing GP-classification methods [1],[2] and [3], and give a very accepted results compared to other existing techniques proposed in [4],[5],[6],[7] and [8].Keywords: Genetic programming, patterns classification, intrusion detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711546 An Artificial Intelligent Technique for Robust Digital Watermarking in Multiwavelet Domain
Authors: P. Kumsawat, K. Pasitwilitham, K. Attakitmongcol, A. Srikaew
Abstract:
In this paper, an artificial intelligent technique for robust digital image watermarking in multiwavelet domain is proposed. The embedding technique is based on the quantization index modulation technique and the watermark extraction process does not require the original image. We have developed an optimization technique using the genetic algorithms to search for optimal quantization steps to improve the quality of watermarked image and robustness of the watermark. In addition, we construct a prediction model based on image moments and back propagation neural network to correct an attacked image geometrically before the watermark extraction process begins. The experimental results show that the proposed watermarking algorithm yields watermarked image with good imperceptibility and very robust watermark against various image processing attacks.Keywords: Watermarking, Multiwavelet, Quantization index modulation, Genetic algorithms, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091545 Multicast Optimization Techniques using Best Effort Genetic Algorithms
Authors: Dinesh Kumar, Y. S. Brar, V. K. Banga
Abstract:
Multicast Network Technology has pervaded our lives-a few examples of the Networking Techniques and also for the improvement of various routing devices we use. As we know the Multicast Data is a technology offers many applications to the user such as high speed voice, high speed data services, which is presently dominated by the Normal networking and the cable system and digital subscriber line (DSL) technologies. Advantages of Multi cast Broadcast such as over other routing techniques. Usually QoS (Quality of Service) Guarantees are required in most of Multicast applications. The bandwidth-delay constrained optimization and we use a multi objective model and routing approach based on genetic algorithm that optimizes multiple QoS parameters simultaneously. The proposed approach is non-dominated routes and the performance with high efficiency of GA. Its betterment and high optimization has been verified. We have also introduced and correlate the result of multicast GA with the Broadband wireless to minimize the delay in the path.Keywords: GA (genetic Algorithms), Quality of Service, MOGA, Steiner Tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556544 Structural Characteristics of Batch Processed Agro-Waste Fibres
Authors: E. I. Akpan, S. O. Adeosun, G. I. Lawal, S. A. Balogun, X. D. Chen
Abstract:
The characterisation of agro-wastes fibres for composite applications from Nigeria using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) has been done. Fibres extracted from groundnut shell, coconut husk, rice husk, palm fruit bunch and palm fruit stalk are processed using two novel cellulose fibre production methods developed by the authors. Cellulose apparent crystallinity calculated using the deconvolution of the diffractometer trace shows that the amorphous portion of cellulose was permeable to hydrolysis yielding high crystallinity after treatment. All diffratograms show typical cellulose structure with well-defined 110, 200 and 040 peaks. Palm fruit fibres had the highest 200 crystalline cellulose peaks compared to others and it is an indication of rich cellulose content. Surface examination of the resulting fibres using SEM indicates the presence of regular cellulose network structure with some agglomerated laminated layer of thin leaves of cellulose microfibrils. The surfaces were relatively smooth indicating the removal of hemicellulose, lignin and pectin.
Keywords: X-ray diffraction, SEM, cellulose, deconvolution, crystallinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732543 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.
Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146542 Implementing an Adaptive Behavior for Spread Spectrum Watermarking Procedures
Authors: Franco Frattolillo
Abstract:
The advances in multimedia and networking technologies have created opportunities for Internet pirates, who can easily copy multimedia contents and illegally distribute them on the Internet, thus violating the legal rights of content owners. This paper describes how a simple and well-known watermarking procedure based on a spread spectrum method and a watermark recovery by correlation can be improved to effectively and adaptively protect MPEG-2 videos distributed on the Internet. In fact, the procedure, in its simplest form, is vulnerable to a variety of attacks. However, its security and robustness have been increased, and its behavior has been made adaptive with respect to the video terminals used to open the videos and the network transactions carried out to deliver them to buyers. In fact, such an adaptive behavior enables the proposed procedure to efficiently embed watermarks, and this characteristic makes the procedure well suited to be exploited in web contexts, where watermarks usually generated from fingerprinting codes have to be inserted into the distributed videos “on the fly", i.e. during the purchase web transactions.Keywords: Copyright protection, digital watermarking, intellectualproperty protection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383541 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement
Authors: Ferinar Moaidi, Mahdi Moaidi
Abstract:
Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.Keywords: Distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058540 A Novel Approach for Tracking of a Mobile Node Based on Particle Filter and Trilateration
Authors: Muhammad Haroon Siddiqui, Muhammad Rehan Khalid
Abstract:
This paper evaluates the performance of a novel algorithm for tracking of a mobile node, interms of execution time and root mean square error (RMSE). Particle Filter algorithm is used to track the mobile node, however a new technique in particle filter algorithm is also proposed to reduce the execution time. The stationary points were calculated through trilateration and finally by averaging the number of points collected for a specific time, whereas tracking is done through trilateration as well as particle filter algorithm. Wi-Fi signal is used to get initial guess of the position of mobile node in x-y coordinates system. Commercially available software “Wireless Mon" was used to read the WiFi signal strength from the WiFi card. Visual Cµ version 6 was used to interact with this software to read only the required data from the log-file generated by “Wireless Mon" software. Results are evaluated through mathematical modeling and MATLAB simulation.Keywords: Particle Filter, Tracking, Wireless Local Area Network, WiFi, Trilateration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068539 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.
Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189538 Energy Loss at Drops using Neuro Solutions
Authors: Farzin Salmasi
Abstract:
Energy dissipation in drops has been investigated by physical models. After determination of effective parameters on the phenomenon, three drops with different heights have been constructed from Plexiglas. They have been installed in two existing flumes in the hydraulic laboratory. Several runs of physical models have been undertaken to measured required parameters for determination of the energy dissipation. Results showed that the energy dissipation in drops depend on the drop height and discharge. Predicted relative energy dissipations varied from 10.0% to 94.3%. This work has also indicated that the energy loss at drop is mainly due to the mixing of the jet with the pool behind the jet that causes air bubble entrainment in the flow. Statistical model has been developed to predict the energy dissipation in vertical drops denotes nonlinear correlation between effective parameters. Further an artificial neural networks (ANNs) approach was used in this paper to develop an explicit procedure for calculating energy loss at drops using NeuroSolutions. Trained network was able to predict the response with R2 and RMSE 0.977 and 0.0085 respectively. The performance of ANN was found effective when compared to regression equations in predicting the energy loss.Keywords: Air bubble, drop, energy loss, hydraulic jump, NeuroSolutions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644537 A Utilitarian Approach to Modeling Information Flows in Social Networks
Authors: Usha Sridhar, Sridhar Mandyam
Abstract:
We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the Insurance industry, can be used for social network analysis. We develop a utilitarian framework that allows us to interpret Pareto optimal exchanges of value as potential information flows, while achieving a maximization of a sum of expected utilities of information of the group of agents. We examine some interesting conditions on the utility function under which the flows are optimal. We illustrate the promise of this new approach to attach economic value to information in networks with a synthetic example.Keywords: Borch's Theorem , Economic value of information, Information Exchange, Pareto Optimal Solution, Social Networks, Utility Functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505536 Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion
Authors: Yusuf Bulale, Mark Prince, Geoff Tansley, Peter Brett
Abstract:
Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit have provided tactile information from the digitphantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures.Keywords: Cochlear electrode insertion, distributive tactile sensory feedback information, flexible digit, minimally invasive surgery, tool/tissue interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2179535 Application of Lattice Boltzmann Methods in Heat and Moisture Transfer in Frozen Soil
Authors: Wenyu Song, Bingxi Li, Zhongbin Fu, Bo Zhang
Abstract:
Although water only takes a little percentage in the total mass of soil, it indeed plays an important role to the strength of structure. Moisture transfer can be carried out by many different mechanisms which may involve heat and mass transfer, thermodynamic phase change, and the interplay of various forces such as viscous, buoyancy, and capillary forces. The continuum models are not well suited for describing those phenomena in which the connectivity of the pore space or the fracture network, or that of a fluid phase, plays a major role. However, Lattice Boltzmann methods (LBMs) are especially well suited to simulate flows around complex geometries. Lattice Boltzmann methods were initially invented for solving fluid flows. Recently, fluid with multicomponent and phase change is also included in the equations. By comparing the numerical result with experimental result, the Lattice Boltzmann methods with phase change will be optimized.
Keywords: Frozen soil, Lattice Boltzmann method, Phase change, Test rig.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745534 Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty
Authors: Pawalai Kraipeerapun, Chun Che Fung, Kok Wai Wong
Abstract:
This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.
Keywords: Multiclass classification, feed-forward backpropagation neural network, interval neutrosophic sets, uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634533 Simulation of Acoustic Properties of Borate and Tellurite Glasses
Authors: M. S. Gaafar, S. Y. Marzouk, I. S. Mahmoud, S. Al-Zobaidi
Abstract:
Makishima and Mackenzie model was used to simulation of acoustic properties (longitudinal and shear ultrasonic wave velocities, elastic moduli theoretically for many tellurite and borate glasses. The model was proposed mainly depending on the values of the experimentally measured density, which are obtained before. In this search work, we are trying to obtain the values of densities of amorphous glasses (as the density depends on the geometry of the network structure of these glasses). In addition, the problem of simulating the slope of linear regression between the experimentally determined bulk modulus and the product of packing density and experimental Young's modulus, were solved in this search work. The results showed good agreement between the experimentally measured values of densities and both ultrasonic wave velocities, and those theoretically determined.Keywords: Glasses, ultrasonic wave velocities, elastic moduli, Makishima and Mackenzie model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523532 A Predictive Rehabilitation Software for Cerebral Palsy Patients
Authors: J. Bouchard, B. Prosperi, G. Bavre, M. Daudé, E. Jeandupeux
Abstract:
Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.
Keywords: Cerebral Palsy, Clustering, Crouch Gait, 3-D Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007531 Analysis on the Feasibility of Landsat 8 Imagery for Water Quality Parameters Assessment in an Oligotrophic Mediterranean Lake
Authors: V. Markogianni, D. Kalivas, G. Petropoulos, E. Dimitriou
Abstract:
Lake water quality monitoring in combination with the use of earth observation products constitutes a major component in many water quality monitoring programs. Landsat 8 images of Trichonis Lake (Greece) acquired on 30/10/2013 and 30/08/2014 were used in order to explore the possibility of Landsat 8 to estimate water quality parameters and particularly CDOM absorption at specific wavelengths, chlorophyll-a and nutrient concentrations in this oligotrophic freshwater body, characterized by inexistent quantitative, temporal and spatial variability. Water samples have been collected at 22 different stations, on late August of 2014 and the satellite image of the same date was used to statistically correlate the in-situ measurements with various combinations of Landsat 8 bands in order to develop algorithms that best describe those relationships and calculate accurately the aforementioned water quality components. Optimal models were applied to the image of late October of 2013 and the validation of the results was conducted through their comparison with the respective available in-situ data of 2013. Initial results indicated the limited ability of the Landsat 8 sensor to accurately estimate water quality components in an oligotrophic waterbody. As resulted by the validation process, ammonium concentrations were proved to be the most accurately estimated component (R = 0.7), followed by chl-a concentration (R = 0.5) and the CDOM absorption at 420 nm (R = 0.3). In-situ nitrate, nitrite, phosphate and total nitrogen concentrations of 2014 were measured as lower than the detection limit of the instrument used, hence no statistical elaboration was conducted. On the other hand, multiple linear regression among reflectance measures and total phosphorus concentrations resulted in low and statistical insignificant correlations. Our results were concurrent with other studies in international literature, indicating that estimations for eutrophic and mesotrophic lakes are more accurate than oligotrophic, owing to the lack of suspended particles that are detectable by satellite sensors. Nevertheless, although those predictive models, developed and applied to Trichonis oligotrophic lake are less accurate, may still be useful indicators of its water quality deterioration.Keywords: Landsat 8, oligotrophic lake, remote sensing, water quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556530 Composite Distributed Generation and Transmission Expansion Planning Considering Security
Authors: Amir Lotfi, Seyed Hamid Hosseini
Abstract:
During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network.Keywords: Planning, transmission, distributed generation, power security, power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132529 A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach
Authors: B. Vahdani, R. Tavakkoli-Moghaddam, A. Baboli, S. M. Mousavi
Abstract:
Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.
Keywords: Location-allocation model, recycling collection networks, fuzzy mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099528 Using Interpretive Structural Modeling to Determine the Relationships among Knowledge Management Criteria inside Malaysian Organizations
Authors: Reza Sigari Tabrizi, Yeap Peik Foong, Nazli Ebrahimi
Abstract:
This paper is concerned with the establishment of relationships among knowledge management (KM) criteria that will ensure an essential foundation to evaluate KM outcomes. The major issue under investigation is to assess the popularity of criteria within organizations and to establish a structure of criteria for measuring KM results. An empirical survey was conducted among Malaysian organizations to investigate KM criteria for measuring success of KM initiatives. Therefore, knowledge workers as the respondents were targeted to establish a structure of criteria for evaluating KM outcomes. An established structure of criteria based on the Interpretive Structural Modeling (ISM) is used to map criteria relationships inside organizations. This structure is portrayed to identify that how these set of criteria are related. This network schema should be investigated and implemented to promote innovation and improve enterprise performance. To the researchers, this survey has significant insights into relationship between KM programs and business success.
Keywords: Knowledge Management, Knowledge ManagementOutcomes, KM Criteria, Innovation, Interpretive Structural Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3637527 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.
Keywords: Generalized autoregressive score model, stock returns, time-varying.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035526 Use of Integrated Knowledge Networks to Increase Innovation in Nanotechnology Research and Development
Authors: R. Byler
Abstract:
Innovation, particularly in technology development, is a crucial aspect of nanotechnology R&D and, although several approaches to effective innovation management exist, organizational structures that promote knowledge exchange have been found to be most effect in supporting new and emerging technologies. This paper discusses Integrated Knowledge Networks (IKNs) and evaluates its use within nanotechnology R&D to increase technology innovation. Specifically, this paper reviews the role of IKNs in bolstering national and international nanotechnology development and in enhancing nanotechnology innovation. Both physical and virtual IKNs, particularly IT-based network platforms for community-based innovation, offer strategies for enhanced technology innovation, interdisciplinary cooperation, and enterprise development. Effectively creating and managing technology R&D networks can facilitate successful knowledge exchange, enhanced innovation, commercialization, and technology transfer. As such, IKNs are crucial to technology development processes and, thus, in increasing the quality and access to new, innovative nanoscience and technologies worldwide.Keywords: Community-based innovation, integrated knowledge networks, nanotechnology, technology innovation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 899525 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data
Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed
Abstract:
The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.
Keywords: Disturbance automation, electric power grid, smart grid, smart switch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 993524 An Improved Conjugate Gradient Based Learning Algorithm for Back Propagation Neural Networks
Authors: N. M. Nawi, R. S. Ransing, M. R. Ransing
Abstract:
The conjugate gradient optimization algorithm is combined with the modified back propagation algorithm to yield a computationally efficient algorithm for training multilayer perceptron (MLP) networks (CGFR/AG). The computational efficiency is enhanced by adaptively modifying initial search direction as described in the following steps: (1) Modification on standard back propagation algorithm by introducing a gain variation term in the activation function, (2) Calculation of the gradient descent of error with respect to the weights and gains values and (3) the determination of a new search direction by using information calculated in step (2). The performance of the proposed method is demonstrated by comparing accuracy and computation time with the conjugate gradient algorithm used in MATLAB neural network toolbox. The results show that the computational efficiency of the proposed method was better than the standard conjugate gradient algorithm.
Keywords: Adaptive gain variation, back-propagation, activation function, conjugate gradient, search direction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521