
 

 

Abstract—We propose a multi-agent based utilitarian approach 
to model and understand information flows in social networks that 
lead to Pareto optimal informational exchanges.  We model the 
individual expected utility function of the agents to reflect the net 
value of information received.  We show how this model, adapted 
from a theorem by Karl Borch dealing with an actuarial Risk 
Exchange concept in the Insurance industry, can be used for social 
network analysis.  We develop a utilitarian framework that allows us 
to interpret Pareto optimal exchanges of value as potential 
information flows, while achieving a maximization of a sum of 
expected utilities of information of the group of agents. We examine 
some interesting conditions on the utility function under which the 
flows are optimal. We illustrate the promise of this new approach to 
attach economic value to information in networks with a synthetic 
example. 
 

Keywords—Borch’s Theorem , Economic value of information, 
Information Exchange, Pareto Optimal Solution, Social Networks,  
Utility Functions 

I. INTRODUCTION 

HE study of social and economic behavior of groups of 
individuals interconnected through social networks has 

emerged as an important area of interdisciplinary research in 
the recent years. 

This has often been attributed to the dramatic growth of 
social networking platforms, which have brought millions on 
to the internet, sharing their experiences, beliefs, social and 
personal preferences, choices, and economic decisions; and 
perhaps in turn shaping the beliefs and choices of millions of 
others through social influences.  

Central to many of the diverse research approaches is the 
issue of how individuals perceive, evaluate, and learn from the 
information that reaches them from the different sources that 
they communicate with, particularly neighbors who are close 
to them on the network, such as family, friends and co-
workers. This class of social learning is thought to occur 
through the aggregation of information dispersed in the 
network.  

In much of the recent research on learning in social 
networks, information that is received, processed and shared 
by connected individuals through network communication has 
been associated with measures of beliefs and opinions, or the 
probability of occurrences of events which are observed by 
agents. Such information measures play a central role in 
building models to understand the dynamics and evolution of 
opinions and decisions of agents in a social network. 
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A utilitarian framework that endows the agents with the 
ability to consider decision making options on the basis of 
how much utility they can extract by valuing the information 
that reaches them in some economic sense has been 
extensively researched. It has been shown, for instance, that 
the microeconomic decision theoretic framework 
accommodates incorporation of information structures and the 
association of values to them under the rubric of individual 
expected utility maximization criteria. It is also established 
that incorporation of information and its values cannot leave a 
utility maximizer worse off. [Lawrence, D.L. (1999), Chade 
and Schlee(2002)]  

Even though there is no fundamental hurdle in 
conceptualizing utility functions built on the idea of valuation 
of information, there are difficulties in extending the notion to 
a simultaneous maximization of the individual expected 
utilities of the interconnected group of agents – an action that 
would be naturally expected of them as economic agents. The 
difficulty is largely due to three issues: i) Solutions to the 
simultaneous expected utility maximization problem in a 
traditional optimization framework may require explicit forms 
of the underlying probability distributions of information 
flows, and this assumption of knowledge of such distributions 
may be unrealistic;  ii)  Detailed modeling of network effects 
within such optimization frameworks can add very 
significantly to overall complexity; and iii) Implementations 
may fail to handle the large scale of practical networks. 

In this paper, we take a fresh approach to modeling 
information driven utilitarian agents which value incident (i.e. 
received) information using private valuation measures in an 
exponential utility function. We show that the group expected 
utility maximization problem can be elegantly and Pareto 
optimally solved, even allowing for balancing information 
exchanges among agents using Borch’s theorem on Risk 
Exchanges, a result adopted from the actuarial world of 
Reinsurance.  We describe a new kind of framework that 
accommodates utilitarian agents in a network, where they can 
simultaneously maximize their expected utilities, with the 
theory not only yielding an idealized ‘distribution’ of 
information among the agents to achieve that maximum, but 
also the means to understand alternative flows that mimic 
other information exchange scenarios, for instance, for the 
achievement of a consensus. 

The scope of this paper covers the essential theoretical 
structure for obtaining Pareto optimal information flows under 
the assumptions of full connectivity, even though the 
framework can accommodate other kinds of connectivity 
conditions.  

The paper is organized as follows:  in the next section we 
discuss how individual’s perceive information, and a 
mechanism to arrive at a Pareto exchange of information that 
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individually and simultaneously maximizes agents’ utility 
functions using Borch’s theorem.  We then go on to validate 
the theory with an empirical example on a small social 
network.  We conclude in the last section. 

II. UTILITARIAN FRAMEWORK AND MODEL 

A. Information and its Utility  
We consider a somewhat stylized setting in which a group 

of N individuals are inter-connected as a social network. By 
this, we mean that each agent has the means to communicate 
with all the other agents. The central theme of activity we 
consider is essentially the same as that in nearly all analytical 
approaches to studying social networks – that agents observe 
some aspect of the state of the world, form an opinion about it, 
and communicate information about it to all other agents on 
the network – setting in motion a dynamical process of 
assimilating and updating a notional ‘value’ associated with 
the received information through more flows of information. 

Generally the information that is assimilated and shared by 
agents is associated with some metric of belief and opinion, or 
a measure of probability of occurrence of one or more events.  
For instance Bayesian social learning models [1],[2[, [11] 
consider ‘signals’ received by agents conveying a probability 
that the state of the world is 휃 ∈ Θ, a set of possible states. 
This class of models would then view aggregation of 
information by an agent within the network as a process of 
updating prior probabilities on agent’s belief measures through 
exchange of new information among agents – essentially a 
process of recalculating likelihoods on the beliefs given new 
signals – as agents interact among themselves. In non-
Bayesian settings where researches have studied information 
diffusion and aggregation [7], [8], [12], beliefs and opinions 
are often thought of in terms of a measure of conviction or 
agreement of agents on some issue, and represented by a real 
number in some suitable range. It is thus possible for an agent 
to aggregate information on beliefs communicated by different 
agents by adding or averaging numbers in the positive real 
space.    

In empirical social network analysis [3], the dynamics of 
beliefs and opinions in networks are often associated with 
ordinal or interval-scaled measures of approval, or agreement. 
Ratings on products or services (such movies on Netflicks), 
and brand positioning statements derived as ‘sentiments’ from 
text strings (such as “tweets” on Twitter) have been 
considered the classical carriers of opinions.   

In this paper, we approach the issue of characterizing 
information as measure of content of belief and opinions, 
which can be communicated without noise over the network, 
received without loss by agents, and most importantly, valued 
by agents as an economic entity, and hence associate with it a 
utility.  In order to achieve this Utilitarian view, we shall 
assume that there exists a universal mapping - from beliefs 
and opinion measures in any suitable space, or from some 
event probability space that captures their occurrence 
probabilities as information shared among agents – to the real 
space. In other words information, to our agent, is a number 
that tells her the quantity of a transferable economic good, 
represented by a variable 푣 ∈  ℛ . 

The assignment of economic value to information has been 
an important area of research attention in economics, and has 
been long debated in the literature [14]. Many authors have 
established that under conditions where the marginal utility of 
a small amount of information is small, and the continuity of 
the function with the value of information is guaranteed, the 
utility can be considered concave [9],[13],[15]. Equivalently, 
the decision maker is assumed to have a normal prior and that 
she observes a signal that is normally distributed with mean s 
and variance 1/휃, i.e. N(s, 1/휃), where  휃 > 0 [6]. Varian [16] 
shows how the utility of information value approximates a 
concave function in the context of document search 
application. 

At an axiomatic level, we shall consider that i) a value of 
푣 = 0 implies no information; ii) a higher of value of 푣 
implies more information; and iii) two amounts of information 
may be added to yield the equivalent numerical sum of 
information. We see that these assumptions are, in principle, 
not at odds with any of the theoretical or empirical social 
learning approaches.  

Let 푣 ; 푗 = 1, . . , 푁  represent the sum of all the information 
sent by others in the network and is thus incident to agent j. 
We use the phrase ‘incident on agent’ in the sense ‘reaching 
the agent’. We shall let 푣  ∈  ℛ in the range [0, 푉], where 푉 is 
some notional upper bound. As mentioned above, higher 
values of 푣 , indicate higher information content. They are 
considered as random variables as they are the result of 
subjective observations of the state of the world by the agents. 
Though their distributional properties are not required in our 
calculations we shall assume that we have an estimate of their 
sum: 

∑ 푣 = 푊                                          (1) 
 
In concept, W is the total amount of information over all 

agents. We shall later see that W turns out to be a simple scale 
factor that may be set aside. Let 휌 ; 푗 = 1, . . 푁 denote the 
value that agent j associates with the incident information. We 
shall let 휌 ∈  ℛ and place the bound [0,1] on its value. Higher 
values of 휌, indicates that  an agent gives higher value to that 
information. 

We now model the utility of information to agent j as : 
 

  푢 푣 = (1 − 푒 )                                               (2) 

 
which represents a standard, robust, utility function that 
captures utility as a concave, non-decreasing function of 
information1. The utilities are normalized such that zero 
information will offer zero utility, while the maximum utility 
for any large information is unity.  

The valuation of information by agents via 휌  characterizes 
the economic behaviour of agents. Clearly, the higher the 
valuation measure, the sharper the utility, implying that the 
same level of incident information can lead to different utility 
achievements. Figure 1 illustrates this feature, where agent 2 

 
1 When an agent in a social network receives the same information from 

multiple sources, it need not be ‘worthless’. In fact, such multiple affirmations 
have value (albeit diminishing, perhaps) in enhancing the agent’s convictions 
in the beliefs she might hold.    
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with a higher 휌 = 0.7 has utility (A) than agent 1 with a 
휌 = 0.2.  Equally, more information is required by agent 1 
(푣 = 4) than agent 2 (푣 ≅ 1.2) to achieve the same level of 
utility (D=C=B). 
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Fig. 1 Utility of Information 
 

B. Maximization of Group Expected Utilities 
We now posit that the agents, assumed rational decision 

makers, attempt to maximize their expected utilities – and in 
particular, a linear sum of their expected utilities: 
 

S = max ∑ k E[u v ]                                              (3) 
 
subject to (1). 
 
We therefore seek a Pareto optimal solution 푣∗; 푗 = 1, . . , 푁 to 
(1) – (3) such that S maximized in such a manner that  
 
푘 퐸 푢 푣 ≤ 푘 퐸 푢 푣∗      ∀ 푗 = 1, . . , N                            (4) 
 
implying that it would not be possible to improve the utility of 
any one agent without lowering the utility of some other agent. 
The solution to (3)-(4) in a general manner via optimization 
may require explicit definitions of underlying probability 
distribution of the information values.  

However, a Theorem by Borch (Borch [4], Buhlmann [5], 
Gerber [10]), often used in the context of evaluating Risk 
Exchanges in the actuarial Re-insurance calculations offers an 
elegant method to obtain a solution utilizing the concavity 
properties of the utility functions and the notional sum W in 
the constraint 

The theorem established that, for 푘 > 0; 푗 = 1, . . , 푁 , there 
exists a Pareto optimal solution 푣∗; 푗 = 1, . . 푁 that maximizes 
the weighted sum of N expected utilities in (3) under the 
constraint ∑ 푣 = 푊, which yields (4), exactly as required. 

The classical Risk Exchange problem was posed as a 
method to exchange risk among a group of N entities at the 
end of a time interval. The N entities are thought to be risk-
averse entities having concave utilities on ‘wealth’. Given that 

N random variables represented the ‘wealth’ of the entities at 
the start of the period and their sum, W, the problem was to 
determine another allocation of W at the end of the interval 
such that the allocation Pareto optimally maximized a sum of 
the form (3).   
Borch’s Theorem: Borch’s Theorem established that the linear 
sum of expected values in (3) is maximized at values 푣∗; 푗 =
1, . . 푁, such that 
 

푘 푢 푣∗ = Λ ∀ 푗 = 1, . . , 푁                                              (5) 
 

The theorem implies that the slopes of the utility function 
evaluated at the optimal solution, taken in product with the 
positive multipliers, 푘 ; 푗 = 1, . . , 푁, are the same, Λ, for all the 
agents. The standard proof is sketched in the Appendix for the 
sake of completeness.  

Following up on the logic of risk exchanges, where we seek 
a new optimal combination of N random variables whose sum 
remains the same, yet maximizes (3), we find that we can 
draw an analog in the world of information utilities. Equation 
(5), for the specific case of the exponential utility function of 
(2) yields the basic framework the mechanism we seek: 
 

푣∗ =   푊 +  − ∑   ∀ 푗 = 1, . . , 푁    (6) 

 

where = ∑ . Equation (6) says that the Pareto optimal 

solution we sought is a sum of three items: the first is an 
‘distribution’ of total information W in (inverse) proportion to 
the value perceived by the agents, the second and third terms 
express what are termed as side-payments in the Risk 
Exchange world. We shall have vital use for these last two 
terms, which exhibit an information exchange property. If  we 
denote: 
 

   푑 =  푙푛 푘푗
휌푗

− 휌
휌푗

∑ 푙푛 푘푖
휌푖

푁
푖=1  ∀ 푗 = 1, . . , 푁                                  (7) 

 
we find that ∑ 푑 = 0. The first term on the rhs of (6) 
represents a Pareto optimal ‘distribution’ of total information, 
W, which would maximize the weighted sum of expected 
utilities of individual agents, implying that if each agent 
received information equal to 푣∗, 푗 = 1, . . , 푁, then any other 
level of available information would be sub-optimal in the 
sense that one would have to trade-off the achievement of a 
lower expected utility for some agent, in order to achieve a 
higher utility for another agent. 

The potential power that this formulation offers to 
understand information exchange in a network of agents 
comes from (6), which says that for any choice of 푘 >
0 ∀ 푗 = 1, … , 푁, the ‘distribution’ of W continues to be Pareto 
optimal. We actually have a (n-1) family of Pareto optimal 
solutions, all of which share the same optimal distribution 
ratio 푊 . Note that in order to arrive at the Pareto optimal 

solution (6) of the maximization problem (4), it wasn’t 
necessary to make any assumptions on the information 
probability distributions at all. We only made the assumption 
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of exponential utility functions in order to reuse a convenient 
form of the result of Borch’s Theorem.  

III. PARETO OPTIMAL INFORMATION EXCHANGES 

What the application of Borch’s Theorem delivered to our 
basic utility maximization problem with incident information 
values is precisely the following: In order for all agents to 
extract maximum utility from available information 푣 ′푠 under 
given private valuations 휌 ′푠, a total available information 
value of W would best (in a Pareto optimal sense) be 
‘distributed’ among the agents in the ratio 푊, ∀ 푗 = 1, . . , 푁.  

Should the ‘distribution’ deviate from this optimal ratio, then 
there needs to be information exchanges between agents in 
such a manner that 푑 ’s in (7) define the exchanges on a per 
agent basis, but ensure that the sum total of all exchanges in 
the network is zero. 
 

If we multiply out 휌  on both sides of (6), and taking the 

optimal ratio 푊 along with 푣∗ to the left yields the vector 

풃∗ = [휌 (푣∗ − 푊) 휌 (푣∗ − 푊). . 휌 (푣∗ − 푊)]      (8) 
 

Equation (8) in matrix form is thus simply 
 

풃∗ = 푹. 풙                                                       (9) 
 
where  풙 = [ln 푘 ln 푘 . . ln 푘 ]   and R is the matrix 
of coefficients, which represent a set valuation multipliers that 
describe how much information exchange between agents  
(Pareto) optimally will render the utilities maximized: 
 

푅 =

⎣
⎢
⎢
⎢
⎢
⎡1 − − … −

− 1 − … −
… … … …
⋮ ⋮ ⋱ ⋮

− − … 1 − ⎦
⎥
⎥
⎥
⎥
⎤

                       (10) 

 

For example, the element R(1,2) says that − ln 푘  is the 

amount of information that needs to flow from agent 1 to 2. 
By its very construction, R is a rank deficient matrix ( rank(R) 
= n-1) and its rows sum to 0. However, we can calculate its 
pseudo-inverse 푹 , and obtain Pareto optimal exchanges. 
With this framework we therefore can study the following 
interesting propositions: 
 

Proposition 1: Under the assumption of the framework, the 
Pareto optimal incident information values which maximize 
the linear sum of expected utilities of all the N connected 
agents is 푣∗ = 휌

휌푗
푊; 푗 = 1, . . , 푁 

We see that since the exchange matrix R has a non-zero 
vector in its null space, the corresponding eigenvector, which 
has all its elements identical will drive Rx to zero, implying 

that 푣∗ − 휌
휌푗

푊 = 0 ∀ 푗 = 1, . . , 푁.  Hence the elements of 

matrix R themselves represent a Pareto optimal information 
exchange to achieve the maximization of the sum of expected 
utilities. 

 
Proposition 2: Under the assumptions of the framework, it 

is possible to obtain a Pareto optimal information exchange 
solution that requires the optimal information value incident 
on each agent to be identical, i.e., ∀푗 ∶  푣∗ = 푧. 
 

Since we have  푊 = ∑ 푣∗ = 푁푧 , the elements of the 

vector 풃 are 푏 = − 휌 푊.   We can then find  풙 = 푹 풃 , 

where 푹  is a pseudo-inverse of R.   The optimal exchange 
levels are then obtained as the matrix E:  
 

퐸 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 −

휌
휌 ln 푘 −

휌
휌 ln 푘 … −

휌
휌 ln 푘

−
휌
휌 ln 푘 1 −

휌
휌 ln 푘 … −

휌
휌 ln 푘

… … … …
⋮ ⋮ ⋱ ⋮

−
휌
휌

ln 푘 −
휌
휌

ln 푘 … 1 −
휌

휌
ln 푘

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 

IV. ILLUSTRATIVE EXAMPLE 

Consider a group of N=5 utilitarian agents with their 
exponential utility functions as defined in (2), and private 
valuation measures 휌 ; 푗 = 1,2. . , 푁 as in the vector 

[0.2 0.4 0.5 0.6 0.7] . We obtain from = ∑ , the 

value of 휌 = 0.0794.  Forming the matrix R as in (10) we 
obtain 
 
        0.6030   -0.1985   -0.1588   -0.1323   -0.1134 
                -0.3970    0.8015   -0.1588   -0.1323   -0.1134 
   R     =     -0.3970   -0.1985    0.8412   -0.1323   -0.1134 
                 -0.3970   -0.1985   -0.1588    0.8677   -0.1134 
                 -0.3970   -0.1985   -0.1588   -0.1323    0.8866 
 

 
and the Pareto optimal ‘distribution’ solution vector of 
elements 푊, 푗 = 1, . . , 푁  is as in the vector 푝표푠 =

 푊[0.3970 0.1985 0.1588 0.1323 0.1134] . Note 
that since we have set the valuation measure in an increasing 
order, the optimal ‘distributions’ reduce in that order, agreeing 
with the notion that the higher the 휌  value for an agent, the 
sharper the utility – implying also that a higher utility may 
then be achievable for a lower level for incident information.  
R has a rank of 4, and its rows sum to zero. In order to 
maximize the linear sum of expected utilities as in (3)-(4), and 
the Pareto optimal vector pos above, the value of 풙 =
[1 1 1 1 1]  will satisfy 푹풙 = 풃 as in (9). Hence R directly 
represents the scaled ‘information exchanges’ that are Pareto 
optimal.  
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The numbers in the first row of the R matrix in this case tell 
us that if agents 2,3,4 and 5, transfer information amounts -
0.1985,   -0.1588,   -0.1323,   -0.1134, respectively, (with 
negative sign showing direction of transfer), and agent 1 itself 
assimilates a value of 0.603, then these transfers will optimally 
balance out the information flows to deliver the an optimal 
amount of information as in the vector, pos. This in turn 
guarantees the best balance between availability of 
information and the value the agents associate with the 
information, as expressed by their respective utility functions. 
Let us now examine the scenario where we seek an optimal 
information transfer among the agents in such a manner that 
the amount of information reaching each agent is identical. 

We set 푏 = − 휌 푊 for W=1 (W is merely a scale factor 

here since all elements of the exchange matrix are scaled by 
W). We solve 푹풙 = 풃 by computing the pseudo-inverse  푹  
using the SVD of R, and obtain the solution 풙 =  푹 풃 to 
obtain 풙 = [−0.0560  − 0.0160   0.0040   0.0240   0.0440] . 
Using these values we obtain the information exchange matrix 
E as: 
 

-0.0338    0.0032   -0.0006   -0.0032   -0.0050 
        0.0222   -0.0128  -0.0006   -0.0032   -0.0050 
    E =   0.0222    0.0032    0.0034   -0.0032   -0.0050 
        0.0222    0.0032   -0.0006    0.0208   -0.0050 
       0.0222    0.0032   -0.0006   -0.0032    0.0390 

 
The rows of E naturally sum to the values of b. We interpret 

the required information exchanges in the following manner: 
should the net information incident on each agent be the same, 
then the Pareto optimal amounts of information that have to be 
exchanged among the agents are captured in E, so as ensure 
that the agents maximize the linear sum of their utilities.   Of 
course, these amounts are all for W=1, and all amounts will 
scale linearly with W.   

We note at this stage that our model assumed a fully 
connected network interconnecting the agents, as result of 
which we broke down information exchanges between all 
agents. We observe that the assumption of full connectivity 
can be clearly relaxed so long as those agents who are 
connected are able to exchange the sum required in any other 
optimal combination to balance out the total. For instance, if 
agents 2 and 3 only were connected to 1, they could 
compensate for the lack of connectivity between 1 and 4 and 
5, so long as the total incidence requirement for 1 is met. 

V.  CONCLUDING REMARKS 

The exchanges of information among agents in social 
networks are thought to have a critical bearing on the way 
agents shape their beliefs and make choices. In this paper we 
have proposed a Utilitarian approach to model the economic 
value of these information exchanges. We posed the overall 
information use problem as a group expected utility 
maximization problem and proposed the use of Borch’s result 
on Risk Exchange as a means to obtain Pareto optimal 
distributions of information that achieves simultaneous 
maximization of a linear sum of their expected utilities.  
Further work is underway in several directions. Key among 
them is the exploration of means to fully incorporate an 

information theoretic interpretation to exchanges, and 
placement of these ideas on a firm decision theoretic 
foundation that also accommodates notions of social 
influence.  

APPENDIX 

Borch’s Theorem and the Risk Exchange (Gerber and 
Pafumi(2007)) 

Let us suppose that there are n agents, each with a wealth 
 푊  at the end of a predefined time period.  푊 ,푊 , … 푊 , are 
considered as random variables with a some joint distribution 
only so that total wealth at the end of year is 

 푊 = ∑ 푊 . 

A risk exchange facilitates a redistribution of wealth and 
each agent gets,   푋 ,푋 , … 푋 , which are also considered as 
random variables such that 

 푊 = 푋 + 푋 + ⋯ + 푋 .                                                      

Assume the utility of the agents are non-decreasing and 
concave. Let utility functions be denoted as  푈 (푋 )  and the 
expected utility as 퐸[ 푈 (푋 )].  

A risk exchange 푋 , 푋 , … , 푋  is said to be Pareto 
optimal, if it is not possible to improve the situation of one 
agent without worsening the situation of at least one other 
agent. In other words, there is no other exchange 
(푋 ,푋 , … 푋  ) with 

 
 퐸[푈 (푋 )]  ≥  퐸[푈 푋 ] ∀ 푖 = 1, . . , 푛.   

 
 To obtain a family of Pareto optimal risk exchanges with n-1 
parameters we obtain for 푘 > 0, 푖 = 1, . . , 푛 the maximum of 
the linear sum of the expected utilities 

Max ∑ 푘 퐸( 푈 (푋 ))                                           (1) 

where the maximum is taken over all risk possible exchanges 
(푋 ,푋 , … 푋  ) . Borch’s Theorem below offers an explicit 
solution to this maximization problem. 
Borch’s Theorem:A risk exchange 푋 , … 푋  maximizes (1) 
if and if only the random variables  푘 푢′  푋   are the same for 
i = 1,...n. 
 
Proof 
a) Suppose that 푋 , … 푋   maximizes (A1). Let  j ≠ h and 
let V be an arbitrary random variable.  
 
We define 

 X i =푋   , for i ≠ j, h; 
  푋 = 푋 + 푡푉  

and 
  푋 = 푋 − 푡푉,   

where t is a parameter. Let 
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푓(푡) = ∑ 푘 퐸[푢 (푋 )].  
 
  According to initial assumption, the function 푓(푡)has a 
maximum at t=0. Hence 푓 = 0, or 
 

푘 퐸 푉푢 (푋 ) − 푘 퐸[푉푢 (푋 )] = 0                     (2) 
 
Utilizing the associativity of the expectation operator, (2) can 
be rewritten as 

  퐸[푉(푘 푢 (푋 ) − 푘 푢 (푋 )] = 0.  

Since this holds for an arbitrary V, we must have 

 푘 푢 푋 − 푘 푢 푋 = 0  

showing that 푘 푢′  푋     is independent of i. 

(b) Conversely, if we let 푋 , … 푋   be a risk exchange such 
that 

   푘 푢′  푋  =  Λ                                             (3) 
where Λ  is the same random variable for all i.  

Let (X1, . . . , Xn) be any other risk exchange. If we use the 
concavity condition for the utility function, we have 

 
 푢 (푋 ) ≤ 푢 (푋 ) + 푢 (푋 )(푋 − 푋 ).  

 
Multiplying this inequality by ki, summing over i and using 

(A3), we get 
 

∑ 푘 푢 (푋 )  ≤  ∑ 푘 푢 (푋 ) + Λ (푋 − 푋 )  
 

= 푘 푢 (푋 ) 

Hence 
∑ 푘 퐸[ 푢 (푋 )]  ≤  ∑ 푘 퐸[ 푢 (푋 )] 

 
showing that expression (3) is indeed maximal for 푋 ,
… 푋 ). 
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