Search results for: support system
9372 CAPWAP Status and Design Considerations for Seamless Roaming Support
Authors: M. Balfaqih, S. Haseeb, M. H. Mazlan, S. N. Hasnan, O. Mahmoud, A. Hashim
Abstract:
Wireless LAN technologies have picked up momentum in the recent years due to their ease of deployment, cost and availability. The era of wireless LAN has also given rise to unique applications like VOIP, IPTV and unified messaging. However, these real-time applications are very sensitive to network and handoff latencies. To successfully support these applications, seamless roaming during the movement of mobile station has become crucial. Nowadays, centralized architecture models support roaming in WLANs. They have the ability to manage, control and troubleshoot large scale WLAN deployments. This model is managed by Control and Provision of Wireless Access Point protocol (CAPWAP). This paper covers the CAPWAP architectural solution along with its proposals that have emerged. Based on the literature survey conducted in this paper, we found that the proposed algorithms to reduce roaming latency in CAPWAP architecture do not support seamless roaming. Additionally, they are not sufficient during the initial period of the network. This paper also suggests important design consideration for mobility support in future centralized IEEE 802.11 networks.Keywords: 802.11, centralized Architecture, CAPWAP, Roaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30389371 Fuzzy Cost Support Vector Regression
Authors: Hadi Sadoghi Yazdi, Tahereh Royani, Mehri Sadoghi Yazdi, Sohrab Effati
Abstract:
In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.
Keywords: Support vector regression, Fuzzy input, Fuzzy cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13719370 Dependability Tools in Multi-Agent Support for Failures Analysis of Computer Networks
Authors: Myriam Noureddine
Abstract:
During their activity, all systems must be operational without failures and in this context, the dependability concept is essential avoiding disruption of their function. As computer networks are systems with the same requirements of dependability, this article deals with an analysis of failures for a computer network. The proposed approach integrates specific tools of the plat-form KB3, usually applied in dependability studies of industrial systems. The methodology is supported by a multi-agent system formed by six agents grouped in three meta agents, dealing with two levels. The first level concerns a modeling step through a conceptual agent and a generating agent. The conceptual agent is dedicated to the building of the knowledge base from the system specifications written in the FIGARO language. The generating agent allows producing automatically both the structural model and a dependability model of the system. The second level, the simulation, shows the effects of the failures of the system through a simulation agent. The approach validation is obtained by its application on a specific computer network, giving an analysis of failures through their effects for the considered network.
Keywords: Computer network, dependability, KB3 plat-form, multi-agent system, failure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6409369 A Study of Computational Organizational Narrative Generation for Decision Support
Authors: Yeung C.L., Cheung C.F., Wang W.M., Tsui E.
Abstract:
Narratives are invaluable assets of human lives. Due to the distinct features of narratives, they are useful for supporting human reasoning processes. However, many useful narratives become residuals in organizations or human minds nowadays. Researchers have contributed effort to investigate and improve narrative generation processes. This paper attempts to contemplate essential components in narratives and explore a computational approach to acquire and extract knowledge to generate narratives. The methodology and significant benefit for decision support are presented.Keywords: Decision Support, Knowledge Management, Knowledge-based Systems, Narrative Generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12999368 The CommonSense Platform for Conducting Multiple Participant Field-Experiments Using Mobile-Phones
Authors: Y. Hoffner, Y. Rusho, S. Rubach, S. Abargil
Abstract:
This paper presents CommonSense, a platform that provides researchers with the infrastructure and tools that enable the efficient and smooth creation, execution and processing of multiple participant experiments taking place outside the laboratory environment. The platform provides the infrastructure and tools to accompany the researchers throughout the life cycle of an experiment – from its inception, through its execution, to its processing and termination. The approach of our platform is based on providing a comprehensive solution, which puts emphasis on the support for the entire life-cycle of an experiment, starting from its definition, the setting up and the configuration of the platform, through the management of the experiment itself and its post processing. Some of the components that support those processes are constructed and configured automatically from the experiment definition.
Keywords: Mobile applications, mobile experiments, web experiments, software system architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4319367 Identifying a Drug Addict Person Using Artificial Neural Networks
Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh
Abstract:
Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.
Keywords: Artificial Neural Network, Decision Support System, drug abuse, drug addiction, Multilayer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16809366 A Relational Case-Based Reasoning Framework for Project Delivery System Selection
Authors: Yang Cui, Yong Qiang Chen
Abstract:
An appropriate project delivery system (PDS) is crucial to the success of a construction projects. Case-based Reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the Relational Case-based Reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.
Keywords: Relational Cased-based Reasoning, Case-based Reasoning, Project delivery system, Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19939365 The Automated Selective Acquisition System
Authors: Atisthan Wuttimanop, Suchada Rianmora
Abstract:
To support design process for launching the product on time, reverse engineering (RE) process has been introduced for quickly generating 3D CAD model from its physical object. The accuracy of the 3D CAD model depends upon the data acquisition technique selected, contact or non-contact methods. In order to reduce times used for acquiring surface and eliminating noises, the automated selective acquisition system has been developed and presented in this research as the alternative channel for non-contact acquisition technique where the data is selectively and locally scanned contour by contour without performing data reduction process. The results present as the organized contour points which are directly used to generate 3D virtual model. The comparison between the proposed technique and another non-contact scanning technique has been presented and discussed.
Keywords: Automated selective acquisition system, Non-contact acquisition, Reverse engineering, 3D scanners.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16099364 Protein Residue Contact Prediction using Support Vector Machine
Authors: Chan Weng Howe, Mohd Saberi Mohamad
Abstract:
Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.Keywords: contact map, protein residue contact, support vector machine, protein structure prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18969363 Facilitating Cooperative Knowledge Support by Role-Based Knowledge-Flow Views
Authors: Chih-Wei Lin, Duen-Ren Liu, Hui-Fang Chen
Abstract:
Effective knowledge support relies on providing operation-relevant knowledge to workers promptly and accurately. A knowledge flow represents an individual-s or a group-s knowledge-needs and referencing behavior of codified knowledge during operation performance. The flow has been utilized to facilitate organizational knowledge support by illustrating workers- knowledge-needs systematically and precisely. However, conventional knowledge-flow models cannot work well in cooperative teams, which team members usually have diverse knowledge-needs in terms of roles. The reason is that those models only provide one single view to all participants and do not reflect individual knowledge-needs in flows. Hence, we propose a role-based knowledge-flow view model in this work. The model builds knowledge-flow views (or virtual knowledge flows) by creating appropriate virtual knowledge nodes and generalizing knowledge concepts to required concept levels. The customized views could represent individual role-s knowledge-needs in teamwork context. The novel model indicates knowledge-needs in condensed representation from a roles perspective and enhances the efficiency of cooperative knowledge support in organizations.Keywords: cooperative knowledge support, knowledge flow, knowledge-flow view, role-based models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13029362 Nutrition Program Planning Based on Local Resources in Urban Fringe Areas of a Developing Country
Authors: Oktia Woro Kasmini Handayani, Bambang Budi Raharjo, Efa Nugroho, Bertakalswa Hermawati
Abstract:
Obesity prevalence and severe malnutrition in Indonesia has increased from 2007 to 2013. The utilization of local resources in nutritional program planning can be used to program efficiency and to reach the goal. The aim of this research is to plan a nutrition program based on local resources for urban fringe areas in a developing country. This research used a qualitative approach, with a focus on local resources including social capital, social system, cultural system. The study was conducted in Mijen, Central Java, as one of the urban fringe areas in Indonesia. Purposive and snowball sampling techniques are used to determine participants. A total of 16 participants took part in the study. Observation, interviews, focus group discussion, SWOT analysis, brainstorming and Miles and Huberman models were used to analyze the data. We have identified several local resources, such as the contributions from nutrition cadres, social organizations, social financial resources, as well as the cultural system and social system. The outstanding contribution of nutrition cadres is the participation and creativity to improve nutritional status. In addition, social organizations, like the role of the integrated health center for children (Pos Pelayanan Terpadu), can be engaged in the nutrition program planning. This center is supported by House of Nutrition to assist in nutrition program planning, and provide social support to families, neighbors and communities as social capitals. The study also reported that cultural systems that show appreciation for well-nourished children are a better way to improve the problem of balanced nutrition. Social systems such as teamwork and mutual cooperation can also be a potential resource to support nutritional programs and overcome associated problems. The impact of development in urban areas such as the introduction of more green areas which improve the perceived status of local people, as well as new health services facilitated by people and companies, can also be resources to support nutrition programs. Local resources in urban fringe areas can be used in the planning of nutrition programs. The expansion of partnership with all stakeholders, empowering the community through optimizing the roles of nutrition care centers for children as our recommendation with regard to nutrition program planning.Keywords: Developing country, local resources, nutrition program, urban fringe.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10369361 Towards Incorporating Context Awareness into Business Process Management
Authors: Xiaohui Zhao, Shahan Mafuz
Abstract:
Context-aware technologies provide system applications with the awareness of environmental conditions, customer behaviours, object movements, etc. Further, with such capability system applications can be smart to intelligently adapt their responses to the changing conditions. In regard to business operations, this promises businesses that their business processes can run more intelligently, adaptively and flexibly, and thereby either improve customer experience, enhance reliability of service delivery, or lower operational cost, to make the business more competitive and sustainable. Aiming at realising such context-aware business process management, this paper firstly explores its potential benefit, and then identifies some gaps between the current business process management support and the expected. In addition, some preliminary solutions are also discussed in regard to context definition, rule-based process execution, run-time process evolution, etc. A framework is also presented to give a conceptual architecture of context-aware business process management system to guide system implementation.Keywords: Business process adaptation, business process evolution, business process modelling, and context awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19729360 Interpolation Issue in PVNPG-14M Application for Technical Control of Artillery Fire
Authors: Martin Blaha, Ladislav Potužák, Daniel Holesz
Abstract:
This paper focused on application support for technical control of artillery units – PVNPG-14M, especially on interpolation issue. Artillery units of the Army of the Czech Republic, reflecting the current global security neighborhood, can be used outside the Czech Republic. The paper presents principles, evolution and calculation in the process of complete preparation. The paper presents expertise using of application of current artillery communication and information system and suggests the perspective future system. The paper also presents problems in process of complete preparing of fire especially problems in permanently information (firing table) and calculated values. The paper presents problems of current artillery communication and information system and suggests requirements of the future system.Keywords: Fire for effect, application, fire control, interpolation method, software development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11549359 Mobile Communications Client Server System for Stock Exchange e-Services Access
Abstract:
Using mobile Internet access technologies and eservices, various economic agents can efficiently offer their products or services to a large number of clients. With the support of mobile communications networks, the clients can have access to e-services, anywhere and anytime. This is a base to establish a convergence of technological and financial interests of mobile operators, software developers, mobile terminals producers and e-content providers. In this paper, a client server system is presented, using 3G, EDGE, mobile terminals, for Stock Exchange e-services access.Keywords: Mobile communications, e-services access, stockexchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20599358 Support Vector Machine for Persian Font Recognition
Abstract:
In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefacesKeywords: Persian font recognition, support vector machine, gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17089357 Study on Scheduling of the Planning Method Using the Web-based Visualization System in a Shipbuilding Block Assembly Shop
Authors: A. Eui Koog Ahn, B. Gi-Nam Wang, C. Sang C. Park
Abstract:
Higher productivity and less cost in the ship manufacturing process are required to maintain the international competitiveness of morden manufacturing industries. In shipbuilding, however, the Engineering To Order (ETO) production method and production process is very difficult. Thus, designs change frequently. In accordance with production, planning should be set up according to scene changes. Therefore, fixed production planning is very difficult. Thus, a scheduler must first make sketchy plans, then change the plans based on the work progress and modifications. Thus, data sharing in a shipbuilding block assembly shop is very important. In this paper, we proposed to scheduling method applicable to the shipbuilding industry and decision making support system through web based visualization system.Keywords: Shipbuilding, Monitoring, Block assembly shop, Visualization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20639356 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14419355 Tongue Diagnosis System Based on PCA and SVM
Authors: Jin-Woong Park, Sun-Kyung Kang, Sung-Tae Jung
Abstract:
In this study, we propose a tongue diagnosis method which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue coating ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas widely used in the Korean traditional medicine and the distribution of tongue coating of the six areas is examined by SVM(Support Vector Machine). For SVM, we use a 3-dimensional vector calculated by PCA(Principal Component Analysis) from a 12-dimentional vector consisting of RGB, HIS, Lab, and Luv. As a result, we detected the tongue area stably using ASM and found that PCA and SVM helped raise the ratio of tongue coating detection.Keywords: Active Shape Model, Principal Component Analysis, Support Vector Machine, Tongue diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18679354 A System Dynamic Based DSS for Ecological Urban Management in Alexandria, Egypt
Authors: Mona M. Salem, Khaled S. Al-Hagla, Hany M. Ayad
Abstract:
The concept of urban metabolism has increasingly been employed in a diverse range of disciplines as a mean to analyze and theorize the city. Urban ecology has a particular focus on the implications of applying the metabolism concept to the urban realm. This approach has been developed by a few researchers, though it has rarely if ever been used in policy development for city planning. The aim of this research is to use ecologically informed urban planning interventions to increase the sustainability of urban metabolism; with special focus on land stock as a most important city resource by developing a system dynamic based DSS. This model identifies two critical management strategy variables for the Strategic Urban Plan Alexandria SUP 2032. As a result, this comprehensive and precise quantitative approach is needed to monitor, measure, evaluate and observe dynamic urban changes working as a decision support system (DSS) for policy making.
Keywords: Alexandria SUP 2032, DSS, ecology, land resource, LULCC, management, metabolism, model, scenarios, System dynamics, urban development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11949353 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22159352 Concurrency without Locking in Parallel Hash Structures used for Data Processing
Authors: Ákos Dudás, Sándor Juhász
Abstract:
Various mechanisms providing mutual exclusion and thread synchronization can be used to support parallel processing within a single computer. Instead of using locks, semaphores, barriers or other traditional approaches in this paper we focus on alternative ways for making better use of modern multithreaded architectures and preparing hash tables for concurrent accesses. Hash structures will be used to demonstrate and compare two entirely different approaches (rule based cooperation and hardware synchronization support) to an efficient parallel implementation using traditional locks. Comparison includes implementation details, performance ranking and scalability issues. We aim at understanding the effects the parallelization schemes have on the execution environment with special focus on the memory system and memory access characteristics.Keywords: Lock-free synchronization, mutual exclusion, parallel hash tables, parallel performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18219351 Motivated Support Vector Regression using Structural Prior Knowledge
Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang
Abstract:
It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in the form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studied with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16229350 Motivated Support Vector Regression with Structural Prior Knowledge
Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang
Abstract:
It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studies with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13999349 Propylene Self-Metathesis to Ethylene and Butene over WOx/SiO2, Effect of Nano-Sized Extra Supports (SiO2 and TiO2)
Authors: A.Guntida, K. Suriye, S. Kunjara Na Ayudhya, J. Panpranot, P. Praserthdam
Abstract:
Propylene self-metathesis to ethylene and butene was studied over WOx/SiO2 catalysts at 450oC and atmospheric pressure. The WOx/SiO2 catalysts were prepared by incipient wetness impregnation of ammonium metatungstate aqueous solution. It was found that, adding nano-sized extra supports (SiO2 and TiO2) by physical mixing with the WOx/SiO2 enhanced propylene conversion. The UV-Vis and FT-Raman results revealed that WOx could migrate from the original silica support to the extra support, leading to a better dispersion of WOx. The ICP-OES results also indicate that WOx existed on the extra support. Coke formation was investigated on the catalysts after 10 h time-on-stream by TPO. However, adding nano-sized extra supports led to higher coke formation which may be related to acidity as characterized by NH3-TPD.
Keywords: Extra support, nanomaterial, propylene self-metathesis, tungsten oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22549348 Application of GAMS and GA in the Location and Penetration of Distributed Generation
Authors: Alireza Dehghani Pilehvarani, Mojtaba Hakimzadeh, Mohammad Jafari Far, Reza Sedaghati
Abstract:
Distributed Generation (DG) can help in reducing the cost of electricity to the costumer, relieve network congestion and provide environmentally friendly energy close to load centers. Its capacity is also scalable and it provides voltage support at distribution level. Hence, DG placement and penetration level is an important problem for both the utility and DG owner. DG allocation and capacity determination is a nonlinear optimization problem. The objective function of this problem is the minimization of the total loss of the distribution system. Also high levels of penetration of DG are a new challenge for traditional electric power systems. This paper presents a new methodology for the optimal placement of DG and penetration level of DG in distribution system based on General Algebraic Modeling System (GAMS) and Genetic Algorithm (GA).
Keywords: Distributed Generation, Location, Loss Reduction, Distribution Network, GA, GAMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26349347 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines
Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz
Abstract:
Steel tubular towers serving as support structures for large wind turbines are subjected to several hundred million stress cycles caused by the turbulent nature of the wind. This causes highcycle fatigue, which could govern the design of the tower. Maintaining the support structure after the wind turbines reach its typical 20-year design life has become a common practice; however, quantifying the changes in the reliability on the tower is not usual. In this paper the effect of fatigue damage in the wind turbine structure is studied whit the use of fracture mechanics, and a method to estimate the reliability over time of the structure is proposed. A representative wind turbine located in Oaxaca, Mexico is then studied. It is found that the system reliability is significantly affected by the accumulation of fatigue damage.
Keywords: Crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23269346 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18709345 Internal and External Factors Affecting Teachers’ Adoption of Formative Assessment to Support Learning
Authors: Kemal Izci
Abstract:
Assessment forms an important part of instruction. Assessment that aims to support learning is known as formative assessment and it contributes student’s learning gain and motivation. However, teachers rarely use assessment formatively to aid their students’ learning. Thus, reviewing the factors that limit or support teachers’ practices of formative assessment will be crucial for guiding educators to support prospective teachers in using formative assessment and also eliminate limiting factors to let practicing teachers to engage in formative assessment practices during their instruction. The study, by using teacher’s change environment framework, reviews literature on formative assessment and presents a tentative model that illustrates the factors impacting teachers’ adoption of formative assessment in their teaching. The results showed that there are four main factors consisting personal, contextual, resource-related and external factors that influence teachers’ practices of formative assessment.Keywords: Assessment practices, formative assessment, teachers, factors for use of formative assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35459344 Forecasting of Grape Juice Flavor by Using Support Vector Regression
Authors: Ren-Jieh Kuo, Chun-Shou Huang
Abstract:
The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractive. Thus, this study intends to introducing the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN, and LR to forecast the flavor of grapes juice in real data shows that SVR is more suitable and effective at predicting performance.
Keywords: Flavor forecasting, artificial neural networks, support vector regression, grape juice flavor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22169343 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System
Authors: G. Zazzaro, F.M. Pisano, G. Romano
Abstract:
During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3598