Search results for: intelligent robot.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 883

Search results for: intelligent robot.

643 A Universal Approach for the Intuitive Control of Mobile Robots using an AR/VR-based Interface

Authors: Juergen Rossmann, Andre Kupetz, Roland Wischnewski

Abstract:

Mobile robots are used in a large field of scenarios, like exploring contaminated areas, repairing oil rigs under water, finding survivors in collapsed buildings, etc. Currently, there is no unified intuitive user interface (UI) to control such complex mobile robots. As a consequence, some scenarios are done without the exploitation of experience and intuition of human teleoperators. A novel framework has been developed to embed a flexible and modular UI into a complete 3-D virtual reality simulation system. This new approach wants to access maximum benefits of human operators. Sensor information received from the robot is prepared for an intuitive visualization. Virtual reality metaphors support the operator in his decisions. These metaphors are integrated into a real time stereo video stream. This approach is not restricted to any specific type of mobile robot and allows for the operation of different robot types with a consistent concept and user interface.

Keywords: 3-D simulation system, augmented reality, teleoperation of mobile robots, user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
642 An Intelligent System for Knee and Ankle Rehabilitation

Authors: Dimitar Karastoyanov, Vladimir Monov

Abstract:

The paper is concerned with the state examination as well as the problems during the post surgical (orthopedic) rehabilitation of the knee and ankle joint. An observation of the current appliances for a passive rehabilitation devices is presented. The major necessary and basic features of the intelligent rehabilitation devices are considered. An approach for a new intelligent appliance is suggested. The main advantages of the device are: both active as well as passive rehabilitation of the patient based on the human - patient reactions and a real time feedback. The basic components: controller; electrical motor; encoder, force – torque sensor are discussed in details. The main modes of operation of the device are considered.

Keywords: Ankle, knee, rehabilitation, computer control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
641 Autonomic Sonar Sensor Fault Manager for Mobile Robots

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.

Keywords: Autonomic, self-adaption, self-healing, self-optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
640 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy

Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan

Abstract:

Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.

Keywords: Biomechanical energy management, gait rehabilitation, knee exosuit, wearable robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
639 Context Modeling and Reasoning Approach in Context-Aware Middleware for URC System

Authors: Chung-Seong Hong, Hyung-Sun Kim, Joonmyun Cho, Hyun Kyu Cho, Hyun-Chan Lee

Abstract:

To realize the vision of ubiquitous computing, it is important to develop a context-aware infrastructure which can help ubiquitous agents, services, and devices become aware of their contexts because such computational entities need to adapt themselves to changing situations. A context-aware infrastructure manages the context model representing contextual information and provides appropriate information. In this paper, we introduce Context-Aware Middleware for URC System (hereafter CAMUS) as a context-aware infrastructure for a network-based intelligent robot system and discuss the ontology-based context modeling and reasoning approach which is used in that infrastructure.

Keywords: CAMUS, Context-Aware, Context Model, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
638 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. Brain-computer interface is a promising option to overcome the limitations of tedious manual control and operation of robots in the urgent search-and-rescue tasks. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: Consensus assessment, electroencephalogram, EEG, emergency response, human-robot collaboration, intention recognition, search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294
637 A Middleware Management System with Supporting Holonic Modules for Reconfigurable Management System

Authors: Roscoe McLean, Jared Padayachee, Glen Bright

Abstract:

There is currently a gap in the technology covering the rapid establishment of control after a reconfiguration in a Reconfigurable Manufacturing System. This gap involves the detection of the factory floor state and the communication link between the factory floor and the high-level software. In this paper, a thin, hardware-supported Middleware Management System (MMS) is proposed and its design and implementation are discussed. The research found that a cost-effective localization technique can be combined with intelligent software to speed up the ramp-up of a reconfigured system. The MMS makes the process more intelligent, more efficient and less time-consuming, thus supporting the industrial implementation of the RMS paradigm.

Keywords: Intelligent systems, middleware, reconfigurable manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
636 Auto-Parking System via Intelligent Computation Intelligence

Authors: Y. J. Huang, C. H. Chang

Abstract:

In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.

Keywords: Auto-parking system, Fuzzy control, Neural network, Robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
635 Lightweight Robotic Material Handling in Photovoltaic Module Manufacturing-Silicon Wafer and Thin Film Technologies

Authors: N. Asadi, M. Jackson

Abstract:

Today, the central role of industrial robots in automation in general and in material handling in particular is crystal clear. Based on the current status of Photovoltaics and by focusing on lightweight material handling, PV industry has turned into a potential candidate for introducing a fresh “pick and place" robot technology. Thus, to examine the industry needs in this regard, firstly the best suited applications for such robotic automation,and then the essential prerequisites in PV industry should be identified. The objective of this paper is to present holistic views on the industry trends, general automation status and existing challenges facing lightweight robotic material handling in PV Silicon Wafer and Thin Film technologies. The results of this study show that currently no uniform pick and place solution prevails among PV Silicon Wafer manufacturers and the industry calls for a new robot solution to satisfy its needs in new directions.

Keywords: Automation, Material handling, Photovoltaic, Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
634 Business Intelligence for N=1 Analytics using Hybrid Intelligent System Approach

Authors: Rajendra M Sonar

Abstract:

The future of business intelligence (BI) is to integrate intelligence into operational systems that works in real-time analyzing small chunks of data based on requirements on continuous basis. This is moving away from traditional approach of doing analysis on ad-hoc basis or sporadically in passive and off-line mode analyzing huge amount data. Various AI techniques such as expert systems, case-based reasoning, neural-networks play important role in building business intelligent systems. Since BI involves various tasks and models various types of problems, hybrid intelligent techniques can be better choice. Intelligent systems accessible through web services make it easier to integrate them into existing operational systems to add intelligence in every business processes. These can be built to be invoked in modular and distributed way to work in real time. Functionality of such systems can be extended to get external inputs compatible with formats like RSS. In this paper, we describe a framework that use effective combinations of these techniques, accessible through web services and work in real-time. We have successfully developed various prototype systems and done few commercial deployments in the area of personalization and recommendation on mobile and websites.

Keywords: Business Intelligence, Customer Relationship Management, Hybrid Intelligent Systems, Personalization and Recommendation (P&R), Recommender Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
633 ZMP Based Reference Generation for Biped Walking Robots

Authors: Kemalettin Erbatur, Özer Koca, Evrim Taşkıran, Metin Yılmaz, Utku Seven

Abstract:

Recent fifteen years witnessed fast improvements in the field of humanoid robotics. The human-like robot structure is more suitable to human environment with its supreme obstacle avoidance properties when compared with wheeled service robots. However, the walking control for bipedal robots is a challenging task due to their complex dynamics. Stable reference generation plays a very important role in control. Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped walking robots. This paper follows this main approach too. We propose a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass trajectory is obtained from predefined ZMP reference trajectories by a Fourier series approximation method. The Gibbs phenomenon problem common with Fourier approximations of discontinuous functions is avoided by employing continuous ZMP references. Also, these ZMP reference trajectories possess pre-assigned single and double support phases, which are very useful in experimental tuning work. The ZMP based reference generation strategy is tested via threedimensional full-dynamics simulations of a 12-degrees-of-freedom biped robot model. Simulation results indicate that the proposed reference trajectory generation technique is successful.

Keywords: Biped robot, Linear Inverted Pendulum Model, Zero Moment Point, Fourier series approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
632 Intelligent Solutions for Umbrella Systems in Telecommunication Supervision Systems

Authors: K. P. Csányi, L. T. Kóczy, D. Tikk

Abstract:

This paper indicate the importance of telecommunications supervision systems (TSS), integrating heterogeneous TSS into single system thru umbrella systems, introduces the structure, features, requirements of TSS and TSS related intelligent solutions.

Keywords: Telecommunication, telecommunication supervisionsystems, umbrella systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
631 A Cognitive Robot Collaborative Reinforcement Learning Algorithm

Authors: Amit Gil, Helman Stern, Yael Edan

Abstract:

A cognitive collaborative reinforcement learning algorithm (CCRL) that incorporates an advisor into the learning process is developed to improve supervised learning. An autonomous learner is enabled with a self awareness cognitive skill to decide when to solicit instructions from the advisor. The learner can also assess the value of advice, and accept or reject it. The method is evaluated for robotic motion planning using simulation. Tests are conducted for advisors with skill levels from expert to novice. The CCRL algorithm and a combined method integrating its logic with Clouse-s Introspection Approach, outperformed a base-line fully autonomous learner, and demonstrated robust performance when dealing with various advisor skill levels, learning to accept advice received from an expert, while rejecting that of less skilled collaborators. Although the CCRL algorithm is based on RL, it fits other machine learning methods, since advisor-s actions are only added to the outer layer.

Keywords: Robot learning, human-robot collaboration, motion planning, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
630 Intelligent Multi-Agent Middleware for Ubiquitous Home Networking Environments

Authors: Minwoo Son, Seung-Hun Lee, Dongkyoo Shin, Dongil Shin

Abstract:

The next stage of the home networking environment is supposed to be ubiquitous, where each piece of material is equipped with an RFID (Radio Frequency Identification) tag. To fully support the ubiquitous environment, home networking middleware should be able to recommend home services based on a user-s interests and efficiently manage information on service usage profiles for the users. Therefore, USN (Ubiquitous Sensor Network) technology, which recognizes and manages a appliance-s state-information (location, capabilities, and so on) by connecting RFID tags is considered. The Intelligent Multi-Agent Middleware (IMAM) architecture was proposed to intelligently manage the mobile RFID-based home networking and to automatically supply information about home services that match a user-s interests. Evaluation results for personalization services for IMAM using Bayesian-Net and Decision Trees are presented.

Keywords: Intelligent Agents, Home Network, Mobile RFID, Intelligent Middleware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
629 Implementing a Visual Servoing System for Robot Controlling

Authors: Maryam Vafadar, Alireza Behrad, Saeed Akbari

Abstract:

Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necessary pre-processing on video frames, a spatio-temporal volume is constructed for each gesture and feature vector is extracted. These volumes are then analyzed for matching in two consecutive stages. For hand gesture recognition and classification we tested different classifiers including k-Nearest neighbor, learning vector quantization and back propagation neural networks. We tested the proposed algorithm with the collected data set and results showed the correct gesture recognition rate of 99.58 percent. We also tested the algorithm with noisy images and algorithm showed the correct recognition rate of 97.92 percent in noisy images.

Keywords: Back propagation neural network, Feature vector, Hand gesture recognition, k-Nearest Neighbor, Learning vector quantization neural network, Robot control, Spatio-temporal volume, Visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
628 Fuzzy Logic Speed Control of Three Phase Induction Motor Drive

Authors: P.Tripura, Y.Srinivasa Kishore Babu

Abstract:

This paper presents an intelligent speed control system based on fuzzy logic for a voltage source PWM inverter-fed indirect vector controlled induction motor drive. Traditional indirect vector control system of induction motor introduces conventional PI regulator in outer speed loop; it is proved that the low precision of the speed regulator debases the performance of the whole system. To overcome this problem, replacement of PI controller by an intelligent controller based on fuzzy set theory is proposed. The performance of the intelligent controller has been investigated through digital simulation using MATLAB-SIMULINK package for different operating conditions such as sudden change in reference speed and load torque. The simulation results demonstrate that the performance of the proposed controller is better than that of the conventional PI controller.

Keywords: Fuzzy Logic, Intelligent controllers, Conventional PI controller, Induction motor drives, indirect vector control, Speed control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6454
627 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots

Authors: Baoshan Wei, Shuai Han, Xing Zhang

Abstract:

Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.

Keywords: Adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
626 Algorithm for Path Recognition in-between Tree Rows for Agricultural Wheeled-Mobile Robots

Authors: Anderson Rocha, Pedro Miguel de Figueiredo Dinis Oliveira Gaspar

Abstract:

Machine vision has been widely used in recent years in agriculture, as a tool to promote the automation of processes and increase the levels of productivity. The aim of this work is the development of a path recognition algorithm based on image processing to guide a terrestrial robot in-between tree rows. The proposed algorithm was developed using the software MATLAB, and it uses several image processing operations, such as threshold detection, morphological erosion, histogram equalization and the Hough transform, to find edge lines along tree rows on an image and to create a path to be followed by a mobile robot. To develop the algorithm, a set of images of different types of orchards was used, which made possible the construction of a method capable of identifying paths between trees of different heights and aspects. The algorithm was evaluated using several images with different characteristics of quality and the results showed that the proposed method can successfully detect a path in different types of environments.

Keywords: Agricultural mobile robot, image processing, path recognition, Hough transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
625 Resource Matching and a Matchmaking Service for an Intelligent Grid

Authors: Xin Bai, Han Yu, Yongchang Ji, Dan C. Marinescu

Abstract:

We discuss the application of matching in the area of resource discovery and resource allocation in grid computing. We present a formal definition of matchmaking, overview algorithms to evaluate different matchmaking expressions, and develop a matchmaking service for an intelligent grid environment.

Keywords: Grid, Matchmaking, Ontology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
624 Trajectory Tracking Using Artificial Potential Fields

Authors: Krishna S. Raghuwaiya, Shonal Singh, Jito Vanualailai

Abstract:

In this paper, the trajectory tracking problem for carlike mobile robots have been studied. The system comprises of a leader and a follower robot. The purpose is to control the follower so that the leader-s trajectory is tracked with arbitrary desired clearance to avoid inter-robot collision while navigating in a terrain with obstacles. A set of artificial potential field functions is proposed using the Direct Method of Lyapunov for the avoidance of obstacles and attraction to their designated targets. Simulation results prove the efficiency of our control technique.

Keywords: Control, Trajectory Tracking, Lyapunov.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231
623 Importance of E-Participation by U-Society in the Development of the U-City

Authors: Jalaluddin Abdul Malek, Mohd Asruladlyi Ibrahim, Zurinah Tahir

Abstract:

This paper is to reveal developments in the areas of urban technology in Malaysia. Developments occur intend to add value intelligent city development to the ubiquitous city (U-city) or smart city. The phenomenon of change is called the development of post intelligent cities. U-City development discourse is seen from the perspective of the philosophy of the virtuous city organized by al-Farabi. The prosperity and perfection of a city is mainly caused by human personality factors, as well as its relationship with material and technological aspects of the city. The question is, to what extent to which human factors are taken into account in the concept of U-City as an added value to the intelligent city concept to realize the prosperity and perfection of the city? Previously, the intelligent city concept was developed based on global change and ICT movement, while the U-city added value to the development of intelligent cities and focused more on the development of information and communications technology (ICT). Value added is defined as the use of fiber optic technology that is wired to the use of wireless technology, such as wireless broadband. In this discourse, the debate on the concept of U-City is to the symbiosis between the U-City and the importance of local human e-participation (U-Society) for prosperity. In the context of virtuous city philosophy, it supports the thought of symbiosis so the concept of U-City can achieve sustainability, prosperity and perfection of the city.

Keywords: Smart city, ubiquitous city, U-Society, e-participation, prosperity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
622 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee

Abstract:

Methods for measuring or estimating ground shape by a laser range finder and a vision sensor (Exteroceptive sensors) have critical weaknesses in terms that these methods need a prior database built to distinguish acquired data as unique surface conditions for driving. Also, ground information by Exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using an Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes the attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Keywords: Inertial Measurement Unit, Laser Range Finder, Real-time recognition of the ground shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
621 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis

Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra

Abstract:

This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.

Keywords: Driver support systems, intelligent transportation systems, fuzzy logic, real time data processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
620 Measuring Perceived Service Quality for Intelligent Living Space Showroom – Living 3.0 in Taiwan

Authors: Ming-Wen Hsu, Yaw-Kuang Chen, Che-Ming Chiang, Shin-Ku Lee

Abstract:

This research explores visitor-s expectations of service quality in intelligent living space showroom – Living 3.0 in Taiwan. Based on the five dimensions of PZB service quality, a specialist questionnaire is utilized to establish a complete service quality evaluation framework for Living 3.0. In this research, analysis hierarchy process (AHP) is applied to find the relative weights among the criteria. Finally, the service quality evaluation framework and evaluation results can be used as a guide for Living 3.0 proprietors to review, improve, and enhance service planning and service qualities in the future.

Keywords: Analysis Hierarchy Process (AHP), Service quality, Intelligent living space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
619 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: Human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
618 Creation of a Care Robot Impact Assessment

Authors: E. Fosch-Villaronga

Abstract:

This paper pioneers Care Robot Impact Assessment (CRIA), a methodology used to identify, analyze, mitigate and eliminate the risks posed by the insertion of non-medical personal care robots (PCR) in medical care facilities. Its precedent instruments [Privacy and Surveillance Impact Assessment (PIA and SIA)] fall behind in coping with robots. Indeed, personal care robots change dramatically how care is delivered. The paper presents a specific risk-sector methodology, identifies which robots are under its scope and presents some of the challenges introduced by these robots.

Keywords: Ethics, Impact Assessment, Law, Personal Care Robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
617 Modeling and Implementation of an Oceanic- Robot Glider

Authors: C. Clements, M. Hasenohr, A. Anvar

Abstract:

A glider is in essence an unpowered vehicle and in this project we designed and built an oceanic glider, designed to operate underwater. This Glider was designed to collect ocean data such as temperature, pressure and (in future measures physical dimensions of the operating environment) and output this data to an external source. Development of the Oceanic Glider required research into various actuation systems that control buoyancy, pitch and yaw and the dynamics of these systems. It also involved the design and manufacture of the Glider and the design and implementation of a controller that enabled the Glider to navigate and move in an appropriate manner.

Keywords: Ocean Glider, Robot, Automation, Command, Control, Navigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
616 Intelligent ABS Fuzzy Controller for Diverse RoadSurfaces

Authors: Roozbeh Keshmiri, Alireza Mohamad Shahri

Abstract:

Fuzzy controllers are potential candidates for the control of nonlinear, time variant and also complicated systems. Anti lock brake system (ABS) which is a nonlinear system, may not be easily controlled by classical control methods. An intelligent Fuzzy control method is very useful for this kind of nonlinear system. A typical antilock brake system (ABS) by sensing the wheel lockup, releases the brakes for a short period of time, and then reapplies again the brakes when the wheel spins up. In this paper, an intelligent fuzzy ABS controller is designed to adjust slipping performance for variety of roads. There are tow major sections in the proposing control system. First section consists of tow Fuzzy-Logic Controllers (FLC) providing optimal brake torque for both front and rear wheels. Second section which is also a FLC provides required amount of slip and torque references properties for different kind of roads. Simulation results of our proposed intelligent ABS for three different kinds of road show more reliable and better performance in compare with two other break systems.

Keywords: Fuzzy Logic Control, ABS, Anti lock BrakingSystem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3716
615 Representation of Coloured Petri Net in Abductive Logic Programming (CPN-LP) and Its Application in Modeling an Intelligent Agent

Authors: T. H. Fung

Abstract:

Coloured Petri net (CPN) has been widely adopted in various areas in Computer Science, including protocol specification, performance evaluation, distributed systems and coordination in multi-agent systems. It provides a graphical representation of a system and has a strong mathematical foundation for proving various properties. This paper proposes a novel representation of a coloured Petri net using an extension of logic programming called abductive logic programming (ALP), which is purely based on classical logic. Under such a representation, an implementation of a CPN could be directly obtained, in which every inference step could be treated as a kind of equivalence preserved transformation. We would describe how to implement a CPN under such a representation using common meta-programming techniques in Prolog. We call our framework CPN-LP and illustrate its applications in modeling an intelligent agent.

Keywords: Abduction, coloured petri net, intelligent agent, logic programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
614 Discrete Tracking Control of Nonholonomic Mobile Robots: Backstepping Design Approach

Authors: Alexander S. Andreev, Olga A. Peregudova

Abstract:

In this paper we propose a discrete tracking control of nonholonomic mobile robots with two degrees of freedom. The electromechanical model of a mobile robot moving on a horizontal surface without slipping, with two rear wheels controlled by two independent DC electric, and one front roal wheel is considered. We present backstepping design based on the Euler approximate discretetime model of a continuous-time plant. Theoretical considerations are verified by numerical simulation.

Keywords: Actuator Dynamics, Backstepping, Discrete-Time Controller, Lyapunov Function, Wheeled Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026