Search results for: gradient boosting.
107 Study of the S-Bend Intake Hammershock Based on Improved Delayed Detached Eddy Simulation
Authors: Qun-Feng Zhang, Pan-Pan Yan, Jun Li, Jun-Qing Lei
Abstract:
Numerical investigation of hammershock propagation in the S-bend intake caused by engine surge has been conducted by using Improved Delayed Detach-Eddy Simulation (IDDES). The effects of surge signatures on hammershock characteristics are obtained. It was shown that once the hammershock is produced, it moves upward to the intake entrance quickly with constant speed, however, the strength of hammershock keeps increasing. Meanwhile, being influenced by the centrifugal force, the hammershock strength on the larger radius side is much larger. Hammershock propagation speed and strength are sensitive to the ramp upgradient of surge signature. A larger ramp up gradient results in higher propagation speed and greater strength. Nevertheless, ramp down profile of surge signature have no obvious effect on the propagation speed and strength of hammershock. Increasing the maximum value of surge signature leads to enhance in the intensity of hammershock, they approximately match quadratic function distribution law.
Keywords: Hammershock, IDDES, S-bend, surge signature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905106 Effects of Discharge Fan on the Drying Efficiency in Flat-bed type Dryer
Authors: Jafar Hashemi, Reza Tabatabaekoloor, Toshinori Kimura
Abstract:
The study of interaction among the grain, moisture, and the surrounding space (air) is key to understanding the graindrying process. In Iran, rice (mostly Indica type) is dried by flat bed type dryer until the final MC reaches to 6 to 8%. The experiments were conducted to examine the effect of application of discharge fan with different heights of paddy on the drying efficiency. Experiments were designed based on two different configurations of the drying methods; with and without discharge fan with three different heights of paddy including; 5, 10, and 15 cm. The humid heated air will be going out immediately by the suction of discharge fan. The drying time is established upon the average final MC to achieve about 8%. To save energy and reduce the drying time, the distribution of temperature between layers should be fast and uniform with minimum difference; otherwise the difference of MC gradient between layers will be high and will induce grain breakage. The difference of final MC between layers in the two methods was 48-73%. The steady state of temperature between the two methods has saved time in the range of 10-20%, and the efficiency of temperature distribution increased 17-26% by the use of discharge fan.Keywords: FBT Dryer, Final MC, Discharge Fan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762105 Improving Image Segmentation Performance via Edge Preserving Regularization
Authors: Ying-jie Zhang, Li-ling Ge
Abstract:
This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.Keywords: Energy minimization, image segmentation, level sets, edge regularization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497104 Suspended Matter Model on Alsat-1 Image by MLP Network and Mathematical Morphology: Prototypes by K-Means
Authors: S. Loumi, H. Merrad, F. Alilat, B. Sansal
Abstract:
In this article, we propose a methodology for the characterization of the suspended matter along Algiers-s bay. An approach by multi layers perceptron (MLP) with training by back propagation of the gradient optimized by the algorithm of Levenberg Marquardt (LM) is used. The accent was put on the choice of the components of the base of training where a comparative study made for four methods: Random and three alternatives of classification by K-Means. The samples are taken from suspended matter image, obtained by analytical model based on polynomial regression by taking account of in situ measurements. The mask which selects the zone of interest (water in our case) was carried out by using a multi spectral classification by ISODATA algorithm. To improve the result of classification, a cleaning of this mask was carried out using the tools of mathematical morphology. The results of this study presented in the forms of curves, tables and of images show the founded good of our methodology.Keywords: Classification K-means, mathematical morphology, neural network MLP, remote sensing, suspended particulate matter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522103 Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms
Authors: Ching-Fen Jiang
Abstract:
Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.Keywords: edge detection, ultrasonic images, speckle noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482102 The Feedback Control for Distributed Systems
Authors: Kamil Aida-zade, C. Ardil
Abstract:
We study the problem of synthesis of lumped sources control for the objects with distributed parameters on the basis of continuous observation of phase state at given points of object. In the proposed approach the phase state space (phase space) is beforehand somehow partitioned at observable points into given subsets (zones). The synthesizing control actions therewith are taken from the class of piecewise constant functions. The current values of control actions are determined by the subset of phase space that contains the aggregate of current states of object at the observable points (in these states control actions take constant values). In the paper such synthesized control actions are called zone control actions. A technique to obtain optimal values of zone control actions with the use of smooth optimization methods is given. With this aim, the formulas of objective functional gradient in the space of zone control actions are obtained.Keywords: Feedback control, distributed systems, smooth optimization methods, lumped control synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611101 Design of Gravity Dam by Genetic Algorithms
Authors: Farzin Salmasi
Abstract:
The design of a gravity dam is performed through an interactive process involving a preliminary layout of the structure followed by a stability and stress analysis. This study presents a method to define the optimal top width of gravity dam with genetic algorithm. To solve the optimization task (minimize the cost of the dam), an optimization routine based on genetic algorithms (GAs) was implemented into an Excel spreadsheet. It was found to perform well and GA parameters were optimized in a parametric study. Using the parameters found in the parametric study, the top width of gravity dam optimization was performed and compared to a gradient-based optimization method (classic method). The accuracy of the results was within close proximity. In optimum dam cross section, the ratio of is dam base to dam height is almost equal to 0.85, and ratio of dam top width to dam height is almost equal to 0.13. The computerized methodology may provide the help for computation of the optimal top width for a wide range of height of a gravity dam.Keywords: Chromosomes, dam, genetic algorithm, globaloptimum, preliminary layout, stress analysis, theoretical profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4332100 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288499 Material Parameter Identification of Modified AbdelKarim-Ohno Model
Authors: M. Cermak, T. Karasek, J. Rojicek
Abstract:
The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path.
Keywords: Genetic algorithm, sensitivity analysis, inverse approach, finite element method, cyclic plasticity, ratcheting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 237398 On Asymptotic Laws and Transfer Processes Enhancement in Complex Turbulent Flows
Authors: A. Gorin
Abstract:
The lecture represents significant advances in understanding of the transfer processes mechanism in turbulent separated flows. Based upon experimental data suggesting the governing role of generated local pressure gradient that takes place in the immediate vicinity of the wall in separated flow as a result of intense instantaneous accelerations induced by large-scale vortex flow structures similarity laws for mean velocity and temperature and spectral characteristics and heat and mass transfer law for turbulent separated flows have been developed. These laws are confirmed by available experimental data. The results obtained were employed for analysis of heat and mass transfer in some very complex processes occurring in technological applications such as impinging jets, heat transfer of cylinders in cross flow and in tube banks, packed beds where processes manifest distinct properties which allow them to be classified under turbulent separated flows. Many facts have got an explanation for the first time.Keywords: impinging jets, packed beds, turbulent separatedflows, 'two-thirds power law'
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185197 Effects of Thread Dimensions of Functionally Graded Dental Implants on Stress Distribution
Authors: Kaman M. O., Celik N.
Abstract:
In this study, stress distributions on dental implants made of functionally graded biomaterials (FGBM) are investigated numerically. The implant body is considered to be subjected to axial compression loads. Numerical problem is assumed to be 2D, and ANSYS commercial software is used for the analysis. The cross section of the implant thread varies as varying the height (H) and the width (t) of the thread. According to thread dimensions of implant and material properties of FGBM, equivalent stress distribution on the implant is determined and presented with contour plots along with the maximum equivalent stress values. As a result, with increasing material gradient parameter (n), the equivalent stress decreases, but the minimum stress distribution increases. Maximum stress values decrease with decreasing implant radius (r). Maximum von Mises stresses increases with decreasing H when t is constant. On the other hand, the stress values are not affected by variation of t in the case of H = constant.Keywords: Functionally graded biomaterials, dental implant finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 307596 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6395 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics
Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer
Abstract:
Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.
Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167094 Mobile Robot Path Planning in a 2-Dimentional Mesh
Authors: Doraid Dalalah
Abstract:
A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.Keywords: Mobile robot, Path Planning, Mesh, Potential field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 192593 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64092 Free Vibration Analysis of Smart FGM Plates
Authors: F.Ebrahimi, A.Rastgo
Abstract:
Analytical investigation of the free vibration behavior of circular functionally graded (FG) plates integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material on the top and bottom surfaces of the circular FG plate based on the classical plate theory (CPT) is presented in this paper. The material properties of the functionally graded substrate plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents and the distribution of electric potential field along the thickness direction of piezoelectric layers is simulated by a quadratic function. The differential equations of motion are solved analytically for clamped edge boundary condition of the plate. The detailed mathematical derivations are presented and Numerical investigations are performed for FG plates with two surface-bonded piezoelectric layers. Emphasis is placed on investigating the effect of varying the gradient index of FG plate on the free vibration characteristics of the structure. The results are verified by those obtained from threedimensional finite element analyses.Keywords: Circular plate, CPT, Functionally graded, Piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229891 Segmentation and Recognition of Handwritten Numeric Chains
Authors: Salim Ouchtati, Bedda Mouldi, Abderrazak Lachouri
Abstract:
In this paper we present an off line system for the recognition of the handwritten numeric chains. Our work is divided in two big parts. The first part is the realization of a recognition system of the isolated handwritten digits. In this case the study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the digits by several methods: the distribution sequence, the Barr features and the centred moments of the different projections and profiles. The second part is the extension of our system for the reading of the handwritten numeric chains constituted of a variable number of digits. The vertical projection is used to segment the numeric chain at isolated digits and every digit (or segment) will be presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits). The result of the recognition of the numeric chain will be displayed at the exit of the global system.Keywords: Optical Characters Recognition, Neural networks, Barr features, Image processing, Pattern Recognition, Featuresextraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143290 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
Sequences of words in text data have long-term dependencies and are known to suffer from vanishing gradient problem when developing deep learning models. Although recurrent networks such as long short-term memory networks help overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine advantages of long short-term memory networks and convolutional neural networks, can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting of a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.
Keywords: Convolutional recurrent networks, hyperparameter tuning, long short-term memory networks, Tukey honest significant differences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11589 Studying the Theoretical and Laboratory Design of a Concrete Frame and Optimizing Its Design for Impact and Earthquake Resistance
Authors: Mehrdad Azimzadeh, Seyed Mohammadreza Jabbari, Mohammadreza Hosseinzadeh Alherd
Abstract:
This paper includes experimental results and analytical studies about increasing resistance of single-span reinforced concreted frames against impact factor and their modeling according to optimization methods and optimizing the behavior of these frames under impact loads. During this study, about 30 designs for different frames were modeled and made using specialized software like ANSYS and Sap and their behavior were examined under variable impacts. Then suitable strategies were offered for frames in terms of concrete mixing in order to optimize frame modeling. To reduce the weight of the frames, we had to use fine-grained stones. After designing about eight types of frames for each type of frames, three samples were designed with the aim of controlling the impact strength parameters, and a good shape of the frame was created for the impact resistance, which was a solid frame with muscular legs, and as a bond away from each other as much as possible with a 3 degree gradient in the upper part of the beam.
Keywords: Optimization, reinforced concrete, single-span frames, optimization methods of impact load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60288 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section
Authors: Malcolm R Davidson, Ram P. Bharti, Petar Liovic, Dalton J.E. Harvie
Abstract:
The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced.Keywords: Contraction, Electroviscous, Microfluidic, Numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178087 Graded Orientation of the Linear Polymers
Authors: Levan Nadareishvili, Roland Bakuradze, Barbara Kilosanidze, Nona Topuridze, Liana Sharashidze, Ineza Pavlenishvili
Abstract:
Some regularities of formation of a new structural state of the thermoplastic polymers - gradually oriented (stretched) state (GOS) are discussed. Transition into GOS is realized by the graded oriented stretching - by action of inhomogeneous mechanical field on the isotropic linear polymers or by zone stretching that is implemented on a standard tensile-testing machine with using a specially designed zone stretching device (ZSD). Both technical approaches (especially zone stretching method) allows to manage the such quantitative parameters of gradually oriented polymers as a range of change in relative elongation/orientation degree, length of this change and profile (linear, hyperbolic, parabolic, logarithmic, etc.). The possibility of obtaining functionally graded materials (FGMs) by graded orientation method is briefly discussed. Uniaxial graded stretching method should be considered as an effective technological solution to create polymer materials with a predetermined gradient of physical properties.
Keywords: Controlled graded stretching, gradually oriented state, linear polymers, zone stretching device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214586 Single Image Defogging Method Using Variational Approach for Edge-Preserving Regularization
Authors: Wan-Hyun Cho, In-Seop Na, Seong-ChaeSeo, Sang-Kyoon Kim, Soon-Young Park
Abstract:
In this paper, we propose the variational approach to solve single image defogging problem. In the inference process of the atmospheric veil, we defined new functional for atmospheric veil that satisfy edge-preserving regularization property. By using the fundamental lemma of calculus of variations, we derive the Euler-Lagrange equation foratmospheric veil that can find the maxima of a given functional. This equation can be solved by using a gradient decent method and time parameter. Then, we can have obtained the estimated atmospheric veil, and then have conducted the image restoration by using inferred atmospheric veil. Finally we have improved the contrast of restoration image by various histogram equalization methods. The experimental results show that the proposed method achieves rather good defogging results.
Keywords: Image defogging, Image restoration, Atmospheric veil, Transmission, Variational approach, Euler-Lagrange equation, Image enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294185 Scatterer Density in Nonlinear Diffusion for Speckle Reduction in Ultrasound Imaging: The Isotropic Case
Authors: Ahmed Badawi
Abstract:
This paper proposes a method for speckle reduction in medical ultrasound imaging while preserving the edges with the added advantages of adaptive noise filtering and speed. A nonlinear image diffusion method that incorporates local image parameter, namely, scatterer density in addition to gradient, to weight the nonlinear diffusion process, is proposed. The method was tested for the isotropic case with a contrast detail phantom and varieties of clinical ultrasound images, and then compared to linear and some other diffusion enhancement methods. Different diffusion parameters were tested and tuned to best reduce speckle noise and preserve edges. The method showed superior performance measured both quantitatively and qualitatively when incorporating scatterer density into the diffusivity function. The proposed filter can be used as a preprocessing step for ultrasound image enhancement before applying automatic segmentation, automatic volumetric calculations, or 3D ultrasound volume rendering.Keywords: Ultrasound imaging, Nonlinear isotropic diffusion, Speckle noise, Scattering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194984 Autonomous Vehicle Navigation Using Harmonic Functions via Modified Arithmetic Mean Iterative Method
Authors: Azali Saudi, Jumat Sulaiman
Abstract:
Harmonic functions are solutions to Laplace’s equation that are known to have an advantage as a global approach in providing the potential values for autonomous vehicle navigation. However, the computation for obtaining harmonic functions is often too slow particularly when it involves very large environment. This paper presents a two-stage iterative method namely Modified Arithmetic Mean (MAM) method for solving 2D Laplace’s equation. Once the harmonic functions are obtained, the standard Gradient Descent Search (GDS) is performed for path finding of an autonomous vehicle from arbitrary initial position to the specified goal position. Details of the MAM method are discussed. Several simulations of vehicle navigation with path planning in a static known indoor environment were conducted to verify the efficiency of the MAM method. The generated paths obtained from the simulations are presented. The performance of the MAM method in computing harmonic functions in 2D environment to solve path planning problem for an autonomous vehicle navigation is also provided.Keywords: Modified Arithmetic Mean method, Harmonic functions, Laplace’s equation, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86183 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0
Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang
Abstract:
This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.Keywords: Drift, electrical, and cooling calculation, integrated field, higher order harmonics (multipole errors), magnetic field gradient, quadrupole.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81782 A Comparative Study of Turbulence Models Performance for Turbulent Flow in a Planar Asymmetric Diffuser
Authors: Samy M. El-Behery, Mofreh H. Hamed
Abstract:
This paper presents a computational study of the separated flow in a planer asymmetric diffuser. The steady RANS equations for turbulent incompressible fluid flow and six turbulence closures are used in the present study. The commercial software code, FLUENT 6.3.26, was used for solving the set of governing equations using various turbulence models. Five of the used turbulence models are available directly in the code while the v2-f turbulence model was implemented via User Defined Scalars (UDS) and User Defined Functions (UDF). A series of computational analysis is performed to assess the performance of turbulence models at different grid density. The results show that the standard k-ω, SST k-ω and v2-f models clearly performed better than other models when an adverse pressure gradient was present. The RSM model shows an acceptable agreement with the velocity and turbulent kinetic energy profiles but it failed to predict the location of separation and attachment points. The standard k-ε and the low-Re k- ε delivered very poor results.
Keywords: Turbulence models, turbulent flow, wall functions, separation, reattachment, diffuser.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 376881 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.
Keywords: Automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78180 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province
Authors: Kourosh Nazarian
Abstract:
Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.Keywords: Stress, creep, surface runoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71779 Dynamic Ultrasound Scatterer Simulation Model Using Field-II and FEM for Speckle Tracking
Authors: Aws Al-azawi, John Soraghan
Abstract:
There is a growing interest in the use of ultrasonic speckle tracking for biomedical image formation of tissue deformation. Speckle tracking is angle independent and has an ability to differentiate soft tissue into benign and malignant regions. In this paper a simulation model for dynamic ultrasound scatterer is presented. The model composes Field-II ultrasonic scatterers and FEM (ANSYS-11) nodes as a regional tissue deformation. A performance evaluation is presented on axial displacement and strain fields estimation of a uniformly elastic model, using speckle tracking based 1D cross-correlation of optimally segmented pre and post-deformation frames. Optimum correlation window length is investigated in terms of highest signal-to-noise ratio (SNR) for a selected region of interest of a smoothed displacement field. Finally, gradient based strain field of both smoothed and non-smoothed displacement fields are compared. Simulation results from the model are shown to compare favorably with FEM results.
Keywords: Speckle tracking, tissue deformation, ultrasonic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306078 Vibration of Functionally Graded Cylindrical Shells Under Effect Clamped-Free Boundary Conditions Using Hamilton's Principle
Authors: M.R. Isvandzibaei, M.R. Alinaghizadeh, A.H. Zaman
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clamped-free boundary conditions
Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle, clamped supported.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629