Search results for: Work Integrated Learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6742

Search results for: Work Integrated Learning.

6502 Adopting Artificial Intelligence and Deep Learning Techniques in Cloud Computing for Operational Efficiency

Authors: Sandesh Achar

Abstract:

Artificial intelligence (AI) is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remains a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: Artificial intelligence, AI, cloud computing, deep learning, machine learning, ML, internet of things, IoT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635
6501 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features

Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi

Abstract:

Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.

Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
6500 Sustainable Solutions for Municipal Solid Waste Management in Thailand

Authors: Thaniya Kaosol

Abstract:

General as well as the MSW management in Thailand is reviewed in this paper. Topics include the MSW generation, sources, composition, and trends. The review, then, moves to sustainable solutions for MSW management, sustainable alternative approaches with an emphasis on an integrated MSW management. Information of waste in Thailand is also given at the beginning of this paper for better understanding of later contents. It is clear that no one single method of MSW disposal can deal with all materials in an environmentally sustainable way. As such, a suitable approach in MSW management should be an integrated approach that could deliver both environmental and economic sustainability. With increasing environmental concerns, the integrated MSW management system has a potential to maximize the useable waste materials as well as produce energy as a by-product. In Thailand, the compositions of waste (86%) are mainly organic waste, paper, plastic, glass, and metal. As a result, the waste in Thailand is suitable for an integrated MSW management. Currently, the Thai national waste management policy starts to encourage the local administrations to gather into clusters to establish central MSW disposal facilities with suitable technologies and reducing the disposal cost based on the amount of MSW generated.

Keywords: MSW, management, sustainable, Thailand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5828
6499 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: [email protected]

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
6498 Networked Implementation of Milling Stability Optimization with Bayesian Learning

Authors: C. Ramsauer, J. Karandikar, D. Leitner, T. Schmitz, F. Bleicher

Abstract:

Machining instability, or chatter, can impose an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the TU Wien, Vienna, Austria. The recorded data from a milling test cut were used to classify the cut as stable or unstable based on a frequency analysis. The test cut result was used in a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculated the probability of stability as a function of axial depth of cut and spindle speed based on the test result and recommended parameters for the next test cut. The iterative process between two transatlantic locations was repeated until convergence to a stable optimal process parameter set was achieved.

Keywords: Bayesian learning, instrumented tool holder, machining stability, optimization strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 543
6497 Open Source Implementation of M-Learning for Primary School in Malaysia

Authors: Saipunidzam Mahamad, Mohammad Noor Ibrahim, Mohamad Izzriq Ab Malek Foad, ShakirahMohd Taib

Abstract:

With the proliferation of the mobile device technologies, mobile learning can be used to complement and improve traditional learning problems. Both students and teachers need a proper and handy system to monitor and keep track the performance of the students. This paper presents an implementation of M-learning for primary school in Malaysia by using an open source technology. It focuses on learning mathematics using handheld devices for primary schools- students aged 11 and 12 years old. Main users for this system include students, teachers and the administrator. This application suggests a new mobile learning environment with mobile graph for tracking the students- progress and performance. The purpose of this system is not to replace traditional classroom but to complement the learning process. In a testing conducted, students who used this system performed better in their examination.

Keywords: M-Learning, Automated Mobile Graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458
6496 Evaluating the Effectiveness of the Use of Scharmer’s Theory-U Model in Action-Learning-Based Leadership Development Program

Authors: Donald C. Lantu, Henndy Ginting, M. Yorga Permana, Dany M. A. Ramdlany

Abstract:

We constructed a training program for top-talents of a Bank with Scharmer Theory-U as the model. In this training program, we implemented the action learning perspective, as it is claimed to be the most effective one currently available. In the process, participants were encouraged to be more involved, especially compared to traditional lecturing. The goal of this study is to assess the effectiveness of this particular training. The program consists of six days non-residential workshop within two months. Between each workshop, the participants were involved in the works of action learning group. They were challenged by dealing with the real problem related to their tasks at work. The participants of the program were 30 best talents who were chosen according to their yearly performance. Using paired difference statistical test in the behavioral assessment, we found that the training was not effective to increase participants’ leadership competencies. For the future development program, we suggested to modify the goals of the program toward the next stage of development.

Keywords: Action learning, behaviour, leadership development, Theory-U.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
6495 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.

Keywords: Data science, fraud detection, machine learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
6494 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
6493 Secured Session Based Profile Caching for E-Learning Systems Using WiMAX Networks

Authors: R. Chithra, B. Kalaavathi

Abstract:

E-Learning enables the users to learn at anywhere at any time. In E-Learning systems, authenticating the E-Learning user has security issues. The usage of appropriate communication networks for providing the internet connectivity for E-learning is another challenge. WiMAX networks provide Broadband Wireless Access through the Multicast Broadcast Service so these networks can be most suitable for E-Learning applications. The authentication of E-Learning user is vulnerable to session hijacking problems. The repeated authentication of users can be done to overcome these issues. In this paper, session based Profile Caching Authentication is proposed. In this scheme, the credentials of E-Learning users can be cached at authentication server during the initial authentication through the appropriate subscriber station. The proposed cache based authentication scheme performs fast authentication by using cached user profile. Thus, the proposed authentication protocol reduces the delay in repeated authentication to enhance the security in ELearning.

Keywords: Authentication, E-Learning, WiMAX, Security, Profile caching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
6492 Roles of Early Warning in Sea and Coast Guard Activity in Indonesia: Bakorkamla Integrated Information System

Authors: Tuti Ida Halida

Abstract:

This paper will define the system that minimize the risk of the ship accidents because of high or dangerous waves namely early warning system. Since Indonesia is located in a strategic position, many internasional vessels pass by the Indonesian Sea Lanes. Therefore many issues often occur in Indonesian waters, one of the issues is the shipwreck because of dangerous waves. In order to do the preventive action for the vessels that indicated exposed the dangerous waves, Indonesian Maritime Security Coordinating Board or Bakorkamla, has built up and implemented an early warning system through integrated system, called Bakorkamla Integrated Information System (BIIS). By implementing BIIS means that Bakorkamla has already done one of the Five Principles of Sea and Coast Guard Agency, which is safety and security, and Bakorkamla also has already saved the lives of many people on the ship that will have an accident due to high waves. 

Keywords: Early Warning System, Integrated Information System, Sea and Coast Guard, Principles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
6491 Interactive Chinese Character Learning System though Pictograph Evolution

Authors: J.H. Low, C.O. Wong, E.J. Han, K.R Kim K.C. Jung, H.K. Yang

Abstract:

This paper proposes an Interactive Chinese Character Learning System (ICCLS) based on pictorial evolution as an edutainment concept in computer-based learning of language. The advantage of the language origination itself is taken as a learning platform due to the complexity in Chinese language as compared to other types of languages. Users especially children enjoy more by utilize this learning system because they are able to memories the Chinese Character easily and understand more of the origin of the Chinese character under pleasurable learning environment, compares to traditional approach which children need to rote learning Chinese Character under un-pleasurable environment. Skeletonization is used as the representation of Chinese character and object with an animated pictograph evolution to facilitate the learning of the language. Shortest skeleton path matching technique is employed for fast and accurate matching in our implementation. User is required to either write a word or draw a simple 2D object in the input panel and the matched word and object will be displayed as well as the pictograph evolution to instill learning. The target of computer-based learning system is for pre-school children between 4 to 6 years old to learn Chinese characters in a flexible and entertaining manner besides utilizing visual and mind mapping strategy as learning methodology.

Keywords: Computer-based learning, Chinese character, pictograph evolution, skeletonization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
6490 Implementing Education 4.0 Trends in Language Learning

Authors: Luz Janeth Ospina M.

Abstract:

The fourth industrial revolution is changing the role of education substantially and, therefore, the role of instructors and learners at all levels. Education 4.0 is an imminent response to the needs of a globalized world where humans and technology are being aligned to enable endless possibilities, among them the need for students, as digital natives, to communicate effectively in at least one language besides their mother tongue, and also the requirement of developing theirs. This is an exploratory study in which a control group (N = 21), all of the students of Spanish as a foreign language at the university level, after taking a Spanish class, responded to an online questionnaire about the engagement, atmosphere, and environment in which their course was delivered. These aspects considered in the survey were relative to the instructor’s teaching style, including: (a) active, hands-on learning; (b) flexibility for in-class activities, easily switching between small group work, individual work, and whole-class discussion; and (c) integrating technology into the classroom. Strongly believing in these principles, the instructor deliberately taught the course in a SCALE-UP room, as it could facilitate such a positive and encouraging learning environment. These aspects are trends related to Education 4.0 and have become integral to the instructor’s pedagogical stance that calls for a constructive-affective role, instead of a transmissive one. As expected, with a learning environment that (a) fosters student engagement and (b) improves student outcomes, the subjects were highly engaged, which was partially due to the learning environment. An overwhelming majority (all but one) of students agreed or strongly agreed that the atmosphere and the environment were ideal. Outcomes of this study are relevant and indicate that it is about time for teachers to build up a meaningful correlation between humans and technology. We should see the trends of Education 4.0 not as a threat but as practices that should be in the hands of critical and creative instructors whose pedagogical stance responds to the needs of the learners in the 21st century.

Keywords: Active learning, education 4.0, higher education, pedagogical stance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
6489 Cooperative Learning: A Case Study on Teamwork through Community Service Project

Authors: Priyadharshini Ahrumugam

Abstract:

Cooperative groups through much research have been recognized to churn remarkable achievements instead of solitary or individualistic efforts. Based on Johnson and Johnson’s model of cooperative learning, the five key components of cooperation are positive interdependence, face-to-face promotive interaction, individual accountability, social skills, and group processing. In 2011, the Malaysian Ministry of Higher Education (MOHE) introduced the Holistic Student Development policy with the aim to develop morally sound individuals equipped with lifelong learning skills. The Community Service project was included in the improvement initiative. The purpose of this study is to assess the relationship of team-based learning in facilitating particularly students’ positive interdependence and face-to-face promotive interaction. The research methods involve in-depth interviews with the team leaders and selected team members, and a content analysis of the undergraduate students’ reflective journals. A significant positive relationship was found between students’ progressive outlook towards teamwork and the highlighted two components. The key findings show that students have gained in their individual learning and work results through teamwork and interaction with other students. The inclusion of Community Service as a MOHE subject resonates with cooperative learning methods that enhances supportive relationships and develops students’ social skills together with their professional skills.

Keywords: Community service, cooperative learning, positive interdependence, teamwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
6488 Problem Based Learning in B. P. Koirala Institute of Health Sciences

Authors: Gurung S., Yadav B. N., Budhathoki SS.

Abstract:

Problem based learning is one of the highly acclaimed learning methods in medical education since its first introduction at Mc-Master University in Canada in the 1960s. It has now been adopted as a teaching learning method in many medical colleges of Nepal. B.P. Koirala Institute of Health Sciences (BPKIHS), a health science deemed university is the second institute in Nepal to establish problem-based learning academic program and need-based teaching approach hence minimizing teaching through lectures since its inception. During the first two years of MBBS course, the curriculum is divided into various organ-systems incorporated with problem-based learning exercise each of one week duration.

Keywords: PBL, medical education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
6487 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of acquiring new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used in this work is to analyze the dynamics of different brain areas during a cognitive activity to find the relationships between the other areas analyzed to understand the functioning of neural networks better. Also, the latest advances in neuroscience have revealed the exis-tence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neurodevelopmental difficulties for their subsequent assessment and therapy. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process, specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho-pedagogical plans that allow obtaining an optimal integral development of the affected people.

Keywords: dyscalculia, neurodevelopment, evoked potentials, learning disabilities, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 605
6486 Factors of English Language Learning and Acquisition at Bisha College of Technology

Authors: Khalid Albishi

Abstract:

This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.

Keywords: Acquisition, age, factors, language, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
6485 Design of Cloud Service Brokerage System Intermediating Integrated Services in Multiple Cloud Environment

Authors: Dongjae Kang, Sokho Son, Jinmee Kim

Abstract:

Cloud service brokering is a new service paradigm that provides interoperability and portability of application across multiple Cloud providers. In this paper, we designed Cloud service brokerage system, anyBroker, supporting integrated service provisioning and SLA based service lifecycle management. For the system design, we introduce the system concept and whole architecture, details of main components and use cases of primary operations in the system. These features ease the Cloud service provider and customer’s concern and support new Cloud service open market to increase Cloud service profit and prompt Cloud service echo system in Cloud computing related area.

Keywords: Cloud service brokerage, multiple Clouds, Integrated service provisioning, SLA, network service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650
6484 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004
6483 Applying Augmented Reality Technology for an E-Learning System

Authors: Fetoon K. Algarawi, Wejdan A. Alslamah, Ahlam A. Alhabib, Afnan S. Alfehaid, Dina M. Ibrahim

Abstract:

Over the past 20 years, technology was rapidly developed and no one expected what will come next. Advancements in technology open new opportunities for immersive learning environments. There is a need to transmit education to a level that makes it more effective for the student. Augmented reality is one of the most popular technologies these days. This paper is an experience of applying Augmented Reality (AR) technology using a marker-based approach in E-learning system to transmitting virtual objects into the real-world scenes. We present a marker-based approach for transmitting virtual objects into real-world scenes to explain information in a better way after we developed a mobile phone application. The mobile phone application was then tested on students to determine the extent to which it encouraged them to learn and understand the subjects. In this paper, we talk about how the beginnings of AR, the fields using AR, how AR is effective in education, the spread of AR these days and the architecture of our work. Therefore, the aim of this paper is to prove how creating an interactive e-learning system using AR technology will encourage students to learn more.

Keywords: Augmented reality, e-learning, marker-based, monitor-based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
6482 The Interaction between Accounting Students- Preference, Teaching Methodology and Performance

Authors: Dorine M. Mattar, Rim M. El Khoury

Abstract:

This paper examined the influence of matching students- learning preferences with the teaching methodology adopted, on their academic performance in an accounting course in two types of learning environment in one university in Lebanon: classes with PowerPoint (PPT) vs. conventional classes. Learning preferences were either for PPT or for Conventional methodology. A statistically significant increase in academic achievement is found in the conventionally instructed group as compared to the group taught with PPT. This low effectiveness of PPT might be attributed to the learning preferences of Lebanese students. In the PPT group, better academic performance was found among students with learning/teaching match as compared with students with learning/teaching mismatch. Since the majority of students display a preference for the conventional methodology, the result might suggest that Lebanese students- performance is not optimized by PPT in the accounting classrooms, not because of PPT itself, but because it is not matching the Lebanese students- learning preferences in such a quantitative course.

Keywords: Accounting education, learning preferences, learning/teaching match, Lebanon, Student performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
6481 Building a Personalized Multidimensional Intelligent Learning System

Authors: Lun-Ping Hung, Nan-Chen Hsieh, Chia-Ling Ho, Chien-Liang Chen

Abstract:

Currently, most of distance learning courses can only deliver standard material to students. Students receive course content passively which leads to the neglect of the goal of education – “to suit the teaching to the ability of students". Providing appropriate course content according to students- ability is the main goal of this paper. Except offering a series of conventional learning services, abundant information available, and instant message delivery, a complete online learning environment should be able to distinguish between students- ability and provide learning courses that best suit their ability. However, if a distance learning site contains well-designed course content and design but fails to provide adaptive courses, students will gradually loss their interests and confidence in learning and result in ineffective learning or discontinued learning. In this paper, an intelligent tutoring system is proposed and it consists of several modules working cooperatively in order to build an adaptive learning environment for distance education. The operation of the system is based on the result of Self-Organizing Map (SOM) to divide students into different groups according to their learning ability and learning interests and then provide them with suitable course content. Accordingly, the problem of information overload and internet traffic problem can be solved because the amount of traffic accessing the same content is reduced.

Keywords: Distance Learning, Intelligent Tutoring System(ITS), Self-Organizing Map (SOM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
6480 A Framework on the Critical Success Factors of E-Learning Implementation in Higher Education: A Review of the Literature

Authors: Sujit K. Basak, Marguerite Wotto, Paul Bélanger

Abstract:

This paper presents a conceptual framework on the critical success factors of e-learning implementation in higher education, derived from an in-depth survey of literature review. The aim of this study was achieved by identifying critical success factors that affect for the successful implementation of e-learning. The findings help to articulate issues that are related to e-learning implementation in both formal and non-formal higher education and in this way contribute to the development of programs designed to address the relevant issues.

Keywords: Critical success factors, e-learning, higher education, life-long learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3894
6479 The Engineering Eportfolio: Enhancing Communication, Critical Thinking and Problem Solving and Teamwork Skills?

Authors: Linda Mei Sui Khoo, Dorit Maor, Renato Schibeci

Abstract:

Graduate attributes have received increasing attention over recent years as universities incorporate these attributes into the curriculum. Graduates who have adequate technical knowledge only are not sufficiently equipped to compete effectively in the work place; they also need non disciplinary skills ie, graduate attributes. The purpose of this paper is to investigate the impact of an eportfolio in a technical communication course to enhance engineering students- graduate attributes: namely, learning of communication, critical thinking and problem solving and teamwork skills. Two questionnaires were used to elicit information from the students: one on their preferred and the other on the actual learning process. In addition, student perceptions of the use of eportfolio as a learning tool were investigated. Preliminary findings showed that most of the students- expectations have been met with their actual learning. This indicated that eportfolio has the potential as a tool to enhance students- graduate attributes.

Keywords: Eportfolio, Communication Skills, Critical Thinking and Problem Solving Skills and Teamwork Skills

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
6478 Learning through Shared Procedures -A Case of Using Technology to Bridge the Gap between Theory and Practice in Officer Education

Authors: O. Boe, S-T. Kristiansen, R. Wold

Abstract:

In this article we explore how computer assisted exercises may allow for bridging the traditional gap between theory and practice in professional education. To educate officers able to master the complexity of the battlefield the Norwegian Military Academy needs to develop a learning environment that allows for creating viable connections between the educational environment and the field of practice. In response to this challenge we explore the conditions necessary to make computer assisted training systems (CATS) a useful tool to create structural similarities between an educational context and the field of military practice. Although, CATS may facilitate work procedures close to real life situations, this case do demonstrate how professional competence also must build on viable learning theories and environments. This paper explores the conditions that allow for using simulators to facilitate professional competence from within an educational setting. We develop a generic didactic model that ascribes learning to participation in iterative cycles of action and reflection. The development of this model is motivated by the need to develop an interdisciplinary professional education rooted in the pattern of military practice.

Keywords: Development in higher education, experiential learning, professional education, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
6477 Continual Improvement with Integrated Management System

Authors: Sharareh Mirsaeidi Farahani , Gholamreza Chitsaz

Abstract:

Management Systems are powerful tools for businesses to manage quality , environmental and occupational health and safety requirements . where once these systems were considered as stand alone control mechanisms , industry is now opting to increase the efficiency of these documented systems through a more integrated approach . System integration offers a significant step forward, where there are similarities between system components , reducing duplication and adminstration costs and increasing efficiency . At first , this paper reviews integrated management system structure and its benefits. The second part of this paper focuses on the one example implementation of such a system at Imam Khomeini Hospital and in final part of the paper will be discuss outcomes of that proccess .

Keywords: environmental management , Integratedmanagement systems, occupational healt and safetymanagement , quality management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3246
6476 Digital Learning Environments for Joint Master in Science Programmes in Building and Construction in Europe: Experimenting with Tools and Technologies

Authors: E. Dado, R. Beheshti

Abstract:

Recent developments in information and communication technologies (ICT) have created excellent conditions for profoundly enhancing the traditional learning and teaching practices. New modes of teaching in higher education subjects can profoundly enhance ones ability to proactively constructing his or her personal learning universe. These developments have contributed to digital learning environments becoming widely available and accessible. In addition, there is a trend towards enlargement and specialization in higher education in Europe. With as a result that existing Master of Science (MSc) programmes are merged or new programmes have been established that are offered as joint MSc programmes to students. In these joint MSc programmes, the need for (common) digital learning environments capable of surmounting the barriers of time and location has become evident. This paper discusses the past and ongoing efforts to establish such common digital learning environments in two joint MSc programmes in Europe and discusses the way technology-based learning environments affect the traditional way of learning.

Keywords: education, engineering, learning environments, ICT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
6475 Integrated Cultivation Technique for Microbial Lipid Production by Photosynthetic Microalgae and Locally Oleaginous Yeast

Authors: Mutiyaporn Puangbut, Ratanaporn Leesing

Abstract:

The objective of this research is to study of microbial lipid production by locally photosynthetic microalgae and oleaginous yeast via integrated cultivation technique using CO2 emissions from yeast fermentation. A maximum specific growth rate of Chlorella sp. KKU-S2 of 0.284 (1/d) was obtained under an integrated cultivation and a maximum lipid yield of 1.339g/L was found after cultivation for 5 days, while 0.969g/L of lipid yield was obtained after day 6 of cultivation time by using CO2 from air. A high value of volumetric lipid production rate (QP, 0.223 g/L/d), specific product yield (YP/X, 0.194), volumetric cell mass production rate (QX, 1.153 g/L/d) were found by using ambient air CO2 coupled with CO2 emissions from yeast fermentation. Overall lipid yield of 8.33 g/L was obtained (1.339 g/L of Chlorella sp. KKU-S2 and 7.06g/L of T. maleeae Y30) while low lipid yield of 0.969g/L was found using non-integrated cultivation technique. To our knowledge this is the unique report about the lipid production from locally microalgae Chlorella sp. KKU-S2 and yeast T. maleeae Y30 in an integrated technique to improve the biomass and lipid yield by using CO2 emissions from yeast fermentation.

Keywords: Microbial lipid, Chlorella sp. KKU-S2, Torulaspora maleeae Y30, oleaginous yeast, biodiesel, CO2 emissions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
6474 Distances over Incomplete Diabetes and Breast Cancer Data Based on Bhattacharyya Distance

Authors: Loai AbdAllah, Mahmoud Kaiyal

Abstract:

Missing values in real-world datasets are a common problem. Many algorithms were developed to deal with this problem, most of them replace the missing values with a fixed value that was computed based on the observed values. In our work, we used a distance function based on Bhattacharyya distance to measure the distance between objects with missing values. Bhattacharyya distance, which measures the similarity of two probability distributions. The proposed distance distinguishes between known and unknown values. Where the distance between two known values is the Mahalanobis distance. When, on the other hand, one of them is missing the distance is computed based on the distribution of the known values, for the coordinate that contains the missing value. This method was integrated with Wikaya, a digital health company developing a platform that helps to improve prevention of chronic diseases such as diabetes and cancer. In order for Wikaya’s recommendation system to work distance between users need to be measured. Since there are missing values in the collected data, there is a need to develop a distance function distances between incomplete users profiles. To evaluate the accuracy of the proposed distance function in reflecting the actual similarity between different objects, when some of them contain missing values, we integrated it within the framework of k nearest neighbors (kNN) classifier, since its computation is based only on the similarity between objects. To validate this, we ran the algorithm over diabetes and breast cancer datasets, standard benchmark datasets from the UCI repository. Our experiments show that kNN classifier using our proposed distance function outperforms the kNN using other existing methods.

Keywords: Missing values, distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
6473 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an  enormous number of applications, cyber-threats have significantly  increased accordingly. Thus, accurate detection of malicious traffic in  a timely manner is a critical concern in today’s Internet for security.  One approach for intrusion detection is to use Machine Learning (ML)  techniques. Several methods based on ML algorithms have been  introduced over the past years, but they are largely limited in terms of  detection accuracy and/or time and space complexity to run. In this  work, we present a novel method for intrusion detection that  incorporates a set of supervised learning algorithms. The proposed  technique provides high accuracy and outperforms existing techniques  that simply utilizes a single learning method. In addition, our  technique relies on partial flow information (rather than full  information) for detection, and thus, it is light-weight and desirable for  online operations with the property of early identification. With the  mid-Atlantic CCDC intrusion dataset publicly available, we show that  our proposed technique yields a high degree of detection rate over 99%  with a very low false alarm rate (0.4%). 

 

Keywords: Intrusion Detection, Supervised Learning, Traffic Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036