Search results for: Modular neural control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4856

Search results for: Modular neural control

4616 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element

Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
4615 Testing the Accuracy of ML-ANN for Harmonic Estimation in Balanced Industrial Distribution Power System

Authors: Wael M. El-Mamlouk, Metwally A. El-Sharkawy, Hossam. E. Mostafa

Abstract:

In this paper, we analyze and test a scheme for the estimation of electrical fundamental frequency signals from the harmonic load current and voltage signals. The scheme was based on using two different Multi Layer Artificial Neural Networks (ML-ANN) one for the current and the other for the voltage. This study also analyzes and tests the effect of choosing the optimum artificial neural networks- sizes which determine the quality and accuracy of the estimation of electrical fundamental frequency signals. The simulink tool box of the Matlab program for the simulation of the test system and the test of the neural networks has been used.

Keywords: Harmonics, Neural Networks, Modeling, Simulation, Active filters, electric Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
4614 Face Recognition with PCA and KPCA using Elman Neural Network and SVM

Authors: Hossein Esbati, Jalil Shirazi

Abstract:

In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained.

Keywords: Face recognition, Principal Component Analysis, Kernel Principal Component Analysis, Neural network, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
4613 Classifier Based Text Mining for Neural Network

Authors: M. Govindarajan, R. M. Chandrasekaran

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

Keywords: Back propagation, classification accuracy, textmining, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
4612 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks

Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei

Abstract:

An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.

Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
4611 Speech Recognition Using Scaly Neural Networks

Authors: Akram M. Othman, May H. Riadh

Abstract:

This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.

Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
4610 Pseudo-almost Periodic Solutions of a Class Delayed Chaotic Neural Networks

Authors: Farouk Cherif

Abstract:

This paper is concerned with the existence and unique¬ness of pseudo-almost periodic solutions to the chaotic delayed neural networks (t)= —Dx(t) ± A f (x (t)) B f (x (t — r)) C f (x(p))dp J (t) . t-o Under some suitable assumptions on A, B, C, D, J and f, the existence and uniqueness of a pseudo-almost periodic solution to equation above is obtained. The results of this paper are new and they complement previously known results.

Keywords: Chaotic neural network, Hamiltonian systems, Pseudo almost periodic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
4609 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing

Authors: Fengxia Zheng, Shouming Zhong

Abstract:

ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.

Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3687
4608 A Study on Barreling Behavior during Upsetting Process using Artificial Neural Networks with Levenberg Algorithm

Authors: H.Mohammadi Majd, M.Jalali Azizpour

Abstract:

In this paper back-propagation artificial neural network (BPANN )with Levenberg–Marquardt algorithm is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

Keywords: Back-propagation artificial neural network(BPANN), prediction, upsetting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
4607 Exponential Passivity Criteria for BAM Neural Networks with Time-Varying Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper,the exponential passivity criteria for BAM neural networks with time-varying delays is studied.By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments,a novel sufficient condition is established to guarantee the exponential stability of the considered system.Finally,a numerical example is provided to illustrate the usefulness of the proposed main results

Keywords: BAM neural networks, Exponential passivity, LMI approach, Time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
4606 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods

Authors: M. Sinecen, M. Makinacı

Abstract:

The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.

Keywords: Artificial neural networks, texture classification, cancer diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
4605 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.

Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
4604 Modular Data and Calculation Framework for a Technology-Based Mapping of the Manufacturing Process According to the Value Stream Management Approach

Authors: Tim Wollert, Fabian Behrendt

Abstract:

Value Stream Management (VSM) is a widely used methodology in the context of Lean Management for improving end-to-end material and information flows from a supplier to a customer from a company’s perspective. Whereas the design principles, e.g. Pull, value-adding, customer-orientation and further ones are still valid against the background of an increasing digitalized and dynamic environment, the methodology itself for mapping a value stream is characterized as time- and resource-intensive due to the high degree of manual activities. The digitalization of processes in the context of Industry 4.0 enables new opportunities to reduce these manual efforts and make the VSM approach more agile. The paper at hand aims at providing a modular data and calculation framework, utilizing the available business data, provided by information and communication technologies for automizing the value stream mapping process with focus on the manufacturing process.

Keywords: Industry 4.0, lean management 4.0, value stream management 4.0, value stream mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 369
4603 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform

Authors: Jie Zhao, Meng Su

Abstract:

Image recognition enables machine-like robotics to understand a scene and plays an important role in computer vision applications. Computer vision platforms as physical infrastructure, supporting Neural Networks for image recognition, are deterministic to leverage the performance of different Neural Networks. In this paper, three different computer vision platforms – edge AI (Jetson Nano, with 4GB), a standalone laptop (with RTX 3000s, using CUDA), and a web-based device (Google Colab, using GPU) are investigated. In the case study, four prominent neural network architectures (including AlexNet, VGG16, GoogleNet, and ResNet (34/50)), are deployed. By using public ImageNets (Cifar-10), our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.

Keywords: AlexNet, VGG, GoogleNet, ResNet, ImageNet, Cifar-10, Edge AI, Jetson Nano, CUDA, GPU.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222
4602 Decision Support System for Flood Crisis Management using Artificial Neural Network

Authors: Muhammad Aqil, Ichiro Kita, Akira Yano, Nishiyama Soichi

Abstract:

This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.

Keywords: Decision Support System, Neural Network, Flood Level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
4601 Globally Exponential Stability for Hopfield Neural Networks with Delays and Impulsive Perturbations

Authors: Adnene Arbi, Chaouki Aouiti, Abderrahmane Touati

Abstract:

In this paper, we consider the global exponential stability of the equilibrium point of Hopfield neural networks with delays and impulsive perturbation. Some new exponential stability criteria of the system are derived by using the Lyapunov functional method and the linear matrix inequality approach for estimating the upper bound of the derivative of Lyapunov functional. Finally, we illustrate two numerical examples showing the effectiveness of our theoretical results.

Keywords: Hopfield Neural Networks, Exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
4600 Representing Collective Unconsciousness Using Neural Networks

Authors: Pierre Abou-Haila, Richard Hall, Mark Dawes

Abstract:

Instead of representing individual cognition only, population cognition is represented using artificial neural networks whilst maintaining individuality. This population network trains continuously, simulating adaptation. An implementation of two coexisting populations is compared to the Lotka-Volterra model of predator-prey interaction. Applications include multi-agent systems such as artificial life or computer games.

Keywords: Collective unconsciousness, neural networks, adaptation, predator-prey simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
4599 Neural Network based Texture Analysis of Liver Tumor from Computed Tomography Images

Authors: K.Mala, V.Sadasivam, S.Alagappan

Abstract:

Advances in clinical medical imaging have brought about the routine production of vast numbers of medical images that need to be analyzed. As a result an enormous amount of computer vision research effort has been targeted at achieving automated medical image analysis. Computed Tomography (CT) is highly accurate for diagnosing liver tumors. This study aimed to evaluate the potential role of the wavelet and the neural network in the differential diagnosis of liver tumors in CT images. The tumors considered in this study are hepatocellular carcinoma, cholangio carcinoma, hemangeoma and hepatoadenoma. Each suspicious tumor region was automatically extracted from the CT abdominal images and the textural information obtained was used to train the Probabilistic Neural Network (PNN) to classify the tumors. Results obtained were evaluated with the help of radiologists. The system differentiates the tumor with relatively high accuracy and is therefore clinically useful.

Keywords: Fuzzy c means clustering, texture analysis, probabilistic neural network, LVQ neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2988
4598 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden

Abstract:

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
4597 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High-Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of the solar wind using mathematical models, MHD models and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulated the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar Cycles (SC) 21, 22, 23, and most of 24.

Keywords: Artificial Neural Network, ANN, Coronal Hole Area Feed-Forward neural network models, solar High-Speed Streams, HSSs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133
4596 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator

Authors: Thiang, Handry Khoswanto, Rendy Pangaldus

Abstract:

Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.

Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
4595 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
4594 Modeling of Co-Cu Elution From Clinoptilolite using Neural Network

Authors: John Kabuba, Antoine Mulaba-Bafubiandi

Abstract:

The elution process for the removal of Co and Cu from clinoptilolite as an ion-exchanger was investigated using three parameters: bed volume, pH and contact time. The present paper study has shown quantitatively that acid concentration has a significant effect on the elution process. The favorable eluant concentration was found to be 2 M HCl and 2 M H2SO4, respectively. The multi-component equilibrium relationship in the process can be very complex, and perhaps ill-defined. In such circumstances, it is preferable to use a non-parametric technique such as Neural Network to represent such an equilibrium relationship.

Keywords: Clinoptilolite, elution, modeling, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
4593 Structural Analysis of Aircraft Wing Using Finite Element Analysis

Authors: Manish Kumar, Pradeep Rout Aditya Kumar Jha, Pankaj Gupta

Abstract:

Wings are structural components of an aeroplane that are used to produce lift while the aircraft is in flight. The initial assault angle of the wing is definite. Due to the pressure difference at the top and bottom surfaces of the wing, lift force is produced when the flow passes over it. This paper explains the fundamental concept of the structural behaviour of a wing threatened by flowing loads during the voyage. The study comprises the use of concepts and analysis with the help of finite element analysis. Wing assembly is the first stage of wing model and design, which are determined by fascinating factual features. The basic gathering wing consists of a thin membrane, two poles, and several ribs. It has two spars, the major spar and the secondary spar. Here, NACA 23015 is selected as the standard model for all types of aerofoil structures since it is more akin to the custom aerofoil utilized in large aircraft, specifically the Airbus A320. Two rods mostly endure the twisting moment and trim strength, which is finished with titanium contamination to ensure enough inflexibility. The covering and wing spars are made of aluminium amalgam to lessen the structural heaviness. Following that, a static underlying examination is performed, and the general contortion, equivalent flexible strain, and comparing Von-Mises pressure are obtained to aid in investigations of the mechanical behaviour of the wing. Moreover, the modular examination is being upheld to decide the normal pace of repetition as well as the modular state of the three orders, which are obtained through the pre-stress modular investigation. The findings of the modular investigation assist engineers in reducing their excitement about regular events and turning away the wing from the whirlwind. Based on the findings of the study, planners can prioritise union and examination of the pressure mindfulness range and tremendous twisting region. All in all, the entertainment outcomes demonstrate that the game plan is feasible and further develop the data grade of the lifting surface.

Keywords: FEM, Airbus, NACA, modulus of elasticity, aircraft wing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 563
4592 Approximate Bounded Knowledge Extraction Using Type-I Fuzzy Logic

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Using neural network we try to model the unknown function f for given input-output data pairs. The connection strength of each neuron is updated through learning. Repeated simulations of crisp neural network produce different values of weight factors that are directly affected by the change of different parameters. We propose the idea that for each neuron in the network, we can obtain quasi-fuzzy weight sets (QFWS) using repeated simulation of the crisp neural network. Such type of fuzzy weight functions may be applied where we have multivariate crisp input that needs to be adjusted after iterative learning, like claim amount distribution analysis. As real data is subjected to noise and uncertainty, therefore, QFWS may be helpful in the simplification of such complex problems. Secondly, these QFWS provide good initial solution for training of fuzzy neural networks with reduced computational complexity.

Keywords: Crisp neural networks, fuzzy systems, extraction of logical rules, quasi-fuzzy numbers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
4591 Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card

Authors: Petar Halachev

Abstract:

Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.

Keywords: artificial neural network, balanced scorecard, e-learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
4590 Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks

Authors: Seyed Fazel Ziaei Asl, Ali Karami, Gholamreza Ashari, Azam Behrang, Arezoo Assareh, N.Hedayat

Abstract:

Predict daily global solar radiation (GSR) based on meteorological variables, using Multi-layer perceptron (MLP) neural networks is the main objective of this study. Daily mean air temperature, relative humidity, sunshine hours, evaporation, wind speed, and soil temperature values between 2002 and 2006 for Dezful city in Iran (32° 16' N, 48° 25' E), are used in this study. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.

Keywords: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR), Meteorological Parameters, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
4589 An AR/VR Based Approach Towards the Intuitive Control of Mobile Rescue Robots

Authors: Jürgen Roßmann, André Kupetz, Roland Wischnewski

Abstract:

An intuitive user interface for the teleoperation of mobile rescue robots is one key feature for a successful exploration of inaccessible and no-go areas. Therefore, we have developed a novel framework to embed a flexible and modular user interface into a complete 3-D virtual reality simulation system. Our approach is based on a client-server architecture to allow for a collaborative control of the rescue robot together with multiple clients on demand. Further, it is important that the user interface is not restricted to any specific type of mobile robot. Therefore, our flexible approach allows for the operation of different robot types with a consistent concept and user interface. In laboratory tests, we have evaluated the validity and effectiveness of our approach with the help of two different robot platforms and several input devices. As a result, an untrained person can intuitively teleoperate both robots without needing a familiarization time when changing the operating robot.

Keywords: Teleoperation of mobile robots, augmented reality, user interface, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
4588 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885
4587 Application of Fuzzy Neural Network for Image Tumor Description

Authors: Nahla Ibraheem Jabbar, Monica Mehrotra

Abstract:

This paper used a fuzzy kohonen neural network for medical image segmentation. Image segmentation plays a important role in the many of medical imaging applications by automating or facilitating the diagnostic. The paper analyses the tumor by extraction of the features of (area, entropy, means and standard deviation).These measurements gives a description for a tumor.

Keywords: FCM, features extraction, medical image processing, neural network, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109