Search results for: Heterogeneous Earliest Finish Time (HEFT) algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9215

Search results for: Heterogeneous Earliest Finish Time (HEFT) algorithm

8975 Approximation Algorithm for the Shortest Approximate Common Superstring Problem

Authors: A.S. Rebaï, M. Elloumi

Abstract:

The Shortest Approximate Common Superstring (SACS) problem is : Given a set of strings f={w1, w2, ... , wn}, where no wi is an approximate substring of wj, i ≠ j, find a shortest string Sa, such that, every string of f is an approximate substring of Sa. When the number of the strings n>2, the SACS problem becomes NP-complete. In this paper, we present a greedy approximation SACS algorithm. Our algorithm is a 1/2-approximation for the SACS problem. It is of complexity O(n2*(l2+log(n))) in computing time, where n is the number of the strings and l is the length of a string. Our SACS algorithm is based on computation of the Length of the Approximate Longest Overlap (LALO).

Keywords: Shortest approximate common superstring, approximation algorithms, strings overlaps, complexities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
8974 A General Variable Neighborhood Search Algorithm to Minimize Makespan of the Distributed Permutation Flowshop Scheduling Problem

Authors: G. M. Komaki, S. Mobin, E. Teymourian, S. Sheikh

Abstract:

This paper addresses minimizing the makespan of the distributed permutation flow shop scheduling problem. In this problem, there are several parallel identical factories or flowshops each with series of similar machines. Each job should be allocated to one of the factories and all of the operations of the jobs should be performed in the allocated factory. This problem has recently gained attention and due to NP-Hard nature of the problem, metaheuristic algorithms have been proposed to tackle it. Majority of the proposed algorithms require large computational time which is the main drawback. In this study, a general variable neighborhood search algorithm (GVNS) is proposed where several time-saving schemes have been incorporated into it. Also, the GVNS uses the sophisticated method to change the shaking procedure or perturbation depending on the progress of the incumbent solution to prevent stagnation of the search. The performance of the proposed algorithm is compared to the state-of-the-art algorithms based on standard benchmark instances.

Keywords: Distributed permutation flow shop, scheduling, makespan, general variable neighborhood search algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
8973 An efficient Activity Network Reduction Algorithm based on the Label Correcting Tracing Algorithm

Authors: Weng Ming Chu

Abstract:

When faced with stochastic networks with an uncertain duration for their activities, the securing of network completion time becomes problematical, not only because of the non-identical pdf of duration for each node, but also because of the interdependence of network paths. As evidenced by Adlakha & Kulkarni [1], many methods and algorithms have been put forward in attempt to resolve this issue, but most have encountered this same large-size network problem. Therefore, in this research, we focus on network reduction through a Series/Parallel combined mechanism. Our suggested algorithm, named the Activity Network Reduction Algorithm (ANRA), can efficiently transfer a large-size network into an S/P Irreducible Network (SPIN). SPIN can enhance stochastic network analysis, as well as serve as the judgment of symmetry for the Graph Theory.

Keywords: Series/Parallel network, Stochastic network, Network reduction, Interdictive Graph, Complexity Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
8972 Analyzing The Effect of Variable Round Time for Clustering Approach in Wireless Sensor Networks

Authors: Vipin Pal, Girdhari Singh, R P Yadav

Abstract:

As wireless sensor networks are energy constraint networks so energy efficiency of sensor nodes is the main design issue. Clustering of nodes is an energy efficient approach. It prolongs the lifetime of wireless sensor networks by avoiding long distance communication. Clustering algorithms operate in rounds. Performance of clustering algorithm depends upon the round time. A large round time consumes more energy of cluster heads while a small round time causes frequent re-clustering. So existing clustering algorithms apply a trade off to round time and calculate it from the initial parameters of networks. But it is not appropriate to use initial parameters based round time value throughout the network lifetime because wireless sensor networks are dynamic in nature (nodes can be added to the network or some nodes go out of energy). In this paper a variable round time approach is proposed that calculates round time depending upon the number of active nodes remaining in the field. The proposed approach makes the clustering algorithm adaptive to network dynamics. For simulation the approach is implemented with LEACH in NS-2 and the results show that there is 6% increase in network lifetime, 7% increase in 50% node death time and 5% improvement over the data units gathered at the base station.

Keywords: Wireless Sensor Network, Clustering, Energy Efficiency, Round Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
8971 A Family of Minimal Residual Based Algorithm for Adaptive Filtering

Authors: Noor Atinah Ahmad

Abstract:

The Minimal Residual (MR) is modified for adaptive filtering application. Three forms of MR based algorithm are presented: i) the low complexity SPCG, ii) MREDSI, and iii) MREDSII. The low complexity is a reduced complexity version of a previously proposed SPCG algorithm. Approximations introduced reduce the algorithm to an LMS type algorithm, but, maintain the superior convergence of the SPCG algorithm. Both MREDSI and MREDSII are MR based methods with Euclidean direction of search. The choice of Euclidean directions is shown via simulation to give better misadjustment compared to their gradient search counterparts.

Keywords: Adaptive filtering, Adaptive least square, Minimalresidual method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
8970 A Real-Time Signal Processing Technique for MIDI Generation

Authors: Farshad Arvin, Shyamala Doraisamy

Abstract:

This paper presents a new hardware interface using a microcontroller which processes audio music signals to standard MIDI data. A technique for processing music signals by extracting note parameters from music signals is described. An algorithm to convert the voice samples for real-time processing without complex calculations is proposed. A high frequency microcontroller as the main processor is deployed to execute the outlined algorithm. The MIDI data generated is transmitted using the EIA-232 protocol. The analyses of data generated show the feasibility of using microcontrollers for real-time MIDI generation hardware interface.

Keywords: Signal processing, MIDI, Microcontroller, EIA-232.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
8969 A 7DOF Manipulator Control in an Unknown Environment based on an Exact Algorithm

Authors: Pavel K. Lopatin, Artyom S. Yegorov

Abstract:

An exact algorithm for a n-link manipulator movement amidst arbitrary unknown static obstacles is presented. The algorithm guarantees the reaching of a target configuration of the manipulator in a finite number of steps. The algorithm is reduced to a finite number of calls of a subroutine for planning a trajectory in the presence of known forbidden states. The polynomial approximation algorithm which is used as the subroutine is presented. The results of the exact algorithm implementation for the control of a seven link (7 degrees of freedom, 7DOF) manipulator are given.

Keywords: Manipulator, trajectory planning, unknown obstacles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
8968 Performance Comparison between Conventional and Flexible Box Erecting Machines Using Dispatching Rules

Authors: Min Kyu Kim, Eun Young Lee, Dong Woo Son, Yoon Seok Chang

Abstract:

In this paper, we introduce a flexible box erecting machine (BEM) that swiftly and automatically transforms cardboard into a three dimensional box. Recently, the parcel service and home-shopping industries have grown rapidly, and there is an increasing need for various box types to ship various products. However, workers cannot fold thousands of boxes manually in a day. As such, automatic BEMs are garnering greater attention. This study takes equipment operation into consideration as well as mechanical improvements in order to design a BEM that is able to outperform its conventional counterparts. We analyzed six dispatching rules – First In First Out (FIFO), Shortest Processing Time (SPT), Earliest Due Date (EDD), Setup Avoidance, EDD + SPT, and EDD + Setup Avoidance – to determine which one was most suitable for BEM operation. Consequently, SPT and Setup Avoidance were found to be the most critical rules, followed by EDD + Setup Avoidance, EDD + SPT, EDD, and FIFO. This hierarchy was valid for both our conventional BEM and our new flexible BEM from the viewpoint of processing time. We believe that this research can contribute to flexible BEM management, which has the potential to increase productivity and convenience.

Keywords: Automation, box erecting machine, dispatching rule, setup time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
8967 Multi-level Metadata Integration System: XML, RDF and RuleML

Authors: Messaouda Fareh, Omar Boussaid, Rachid Challal

Abstract:

Our work is part of the heterogeneous data integration, with the definition of a structural and semantic mediation model. Our aim is to propose architecture for the heterogeneous sources metadata mediation, represented by XML, RDF and RuleML models, providing to the user the metadata transparency. This, by including data structures, of natures fundamentally different, and allowing the decomposition of a query involving multiple sources, to queries specific to these sources, then recompose the result.

Keywords: Mediator, Metadata, Query, RDF, RuleML, XML, Xquery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
8966 Edit Distance Algorithm to Increase Storage Efficiency of Javanese Corpora

Authors: Aji P. Wibawa, Andrew Nafalski, Neil Murray, Wayan F. Mahmudy

Abstract:

Since the one-to-one word translator does not have the facility to translate pragmatic aspects of Javanese, the parallel text alignment model described uses a phrase pair combination. The algorithm aligns the parallel text automatically from the beginning to the end of each sentence. Even though the results of the phrase pair combination outperform the previous algorithm, it is still inefficient. Recording all possible combinations consume more space in the database and time consuming. The original algorithm is modified by applying the edit distance coefficient to improve the data-storage efficiency. As a result, the data-storage consumption is 90% reduced as well as its learning period (42s).

Keywords: edit distance coefficient, Javanese, parallel text alignment, phrase pair combination

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
8965 DCBOR: A Density Clustering Based on Outlier Removal

Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Data clustering is an important data exploration technique with many applications in data mining. We present an enhanced version of the well known single link clustering algorithm. We will refer to this algorithm as DCBOR. The proposed algorithm alleviates the chain effect by removing the outliers from the given dataset. So this algorithm provides outlier detection and data clustering simultaneously. This algorithm does not need to update the distance matrix, since the algorithm depends on merging the most k-nearest objects in one step and the cluster continues grow as long as possible under specified condition. So the algorithm consists of two phases; at the first phase, it removes the outliers from the input dataset. At the second phase, it performs the clustering process. This algorithm discovers clusters of different shapes, sizes, densities and requires only one input parameter; this parameter represents a threshold for outlier points. The value of the input parameter is ranging from 0 to 1. The algorithm supports the user in determining an appropriate value for it. We have tested this algorithm on different datasets contain outlier and connecting clusters by chain of density points, and the algorithm discovers the correct clusters. The results of our experiments demonstrate the effectiveness and the efficiency of DCBOR.

Keywords: Data Clustering, Clustering Algorithms, Handling Noise, Arbitrary Shape of Clusters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
8964 Genetic Algorithm Optimization of the Economical, Ecological and Self-Consumption Impact of the Energy Production of a Single Building

Authors: Ludovic Favre, Thibaut M. Schafer, Jean-Luc Robyr, Elena-Lavinia Niederhäuser

Abstract:

This paper presents an optimization method based on genetic algorithm for the energy management inside buildings developed in the frame of the project Smart Living Lab (SLL) in Fribourg (Switzerland). This algorithm optimizes the interaction between renewable energy production, storage systems and energy consumers. In comparison with standard algorithms, the innovative aspect of this project is the extension of the smart regulation over three simultaneous criteria: the energy self-consumption, the decrease of greenhouse gas emissions and operating costs. The genetic algorithm approach was chosen due to the large quantity of optimization variables and the non-linearity of the optimization function. The optimization process includes also real time data of the building as well as weather forecast and users habits. This information is used by a physical model of the building energy resources to predict the future energy production and needs, to select the best energetic strategy, to combine production or storage of energy in order to guarantee the demand of electrical and thermal energy. The principle of operation of the algorithm as well as typical output example of the algorithm is presented.

Keywords: Building’s energy, control system, energy management, modelling, genetic optimization algorithm, renewable energy, greenhouse gases, energy storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
8963 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks

Authors: Siddhartha Chauhan, Nitin Kumar Kotania

Abstract:

Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network.

Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.

Keywords: Buffer overflow problem, Mobile sink, Virtual grid, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
8962 Efficient Realization of an ADFE with a New Adaptive Algorithm

Authors: N. Praveen Kumar, Abhijit Mitra, C. Ardil

Abstract:

Decision feedback equalizers are commonly employed to reduce the error caused by intersymbol interference. Here, an adaptive decision feedback equalizer is presented with a new adaptation algorithm. The algorithm follows a block-based approach of normalized least mean square (NLMS) algorithm with set-membership filtering and achieves a significantly less computational complexity over its conventional NLMS counterpart with set-membership filtering. It is shown in the results that the proposed algorithm yields similar type of bit error rate performance over a reasonable signal to noise ratio in comparison with the latter one.

Keywords: Decision feedback equalizer, Adaptive algorithm, Block based computation, Set membership filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
8961 Exponential Particle Swarm Optimization Approach for Improving Data Clustering

Authors: Neveen I. Ghali, Nahed El-Dessouki, Mervat A. N., Lamiaa Bakrawi

Abstract:

In this paper we use exponential particle swarm optimization (EPSO) to cluster data. Then we compare between (EPSO) clustering algorithm which depends on exponential variation for the inertia weight and particle swarm optimization (PSO) clustering algorithm which depends on linear inertia weight. This comparison is evaluated on five data sets. The experimental results show that EPSO clustering algorithm increases the possibility to find the optimal positions as it decrease the number of failure. Also show that (EPSO) clustering algorithm has a smaller quantization error than (PSO) clustering algorithm, i.e. (EPSO) clustering algorithm more accurate than (PSO) clustering algorithm.

Keywords: Particle swarm optimization, data clustering, exponential PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
8960 Jobs Scheduling and Worker Assignment Problem to Minimize Makespan using Ant Colony Optimization Metaheuristic

Authors: Mian Tahir Aftab, Muhammad Umer, Riaz Ahmad

Abstract:

This article proposes an Ant Colony Optimization (ACO) metaheuristic to minimize total makespan for scheduling a set of jobs and assign workers for uniformly related parallel machines. An algorithm based on ACO has been developed and coded on a computer program Matlab®, to solve this problem. The paper explains various steps to apply Ant Colony approach to the problem of minimizing makespan for the worker assignment & jobs scheduling problem in a parallel machine model and is aimed at evaluating the strength of ACO as compared to other conventional approaches. One data set containing 100 problems (12 Jobs, 03 machines and 10 workers) which is available on internet, has been taken and solved through this ACO algorithm. The results of our ACO based algorithm has shown drastically improved results, especially, in terms of negligible computational effort of CPU, to reach the optimal solution. In our case, the time taken to solve all 100 problems is even lesser than the average time taken to solve one problem in the data set by other conventional approaches like GA algorithm and SPT-A/LMC heuristics.

Keywords: Ant Colony Optimization (ACO), Genetic algorithms (GA), Makespan, SPT-A/LMC heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3479
8959 Simultaneous HPAM/SDS Injection in Heterogeneous/Layered Models

Authors: M. H. Sedaghat, A. Zamani, S. Morshedi, R. Janamiri, M. Safdari, I. Mahdavi, A. Hosseini, A. Hatampour

Abstract:

Although lots of experiments have been done in enhanced oil recovery, the number of experiments which consider the effects of local and global heterogeneity on efficiency of enhanced oil recovery based on the polymer-surfactant flooding is low and rarely done. In this research, we have done numerous experiments of water flooding and polymer-surfactant flooding on a five spot glass micromodel in different conditions such as different positions of layers. In these experiments, five different micromodels with three different pore structures are designed. Three models with different layer orientation, one homogenous model and one heterogeneous model are designed. In order to import the effect of heterogeneity of porous media, three types of pore structures are distributed accidentally and with equal ratio throughout heterogeneous micromodel network according to random normal distribution. The results show that maximum EOR recovery factor will happen in a situation where the layers are orthogonal to the path of mainstream and the minimum EOR recovery factor will happen in a situation where the model is heterogeneous. This experiments show that in polymer-surfactant flooding, with increase of angles of layers the EOR recovery factor will increase and this recovery factor is strongly affected by local heterogeneity around the injection zone.

Keywords: Layered Reservoir, Micromodel, Local Heterogeneity, Polymer-Surfactant Flooding, Enhanced Oil Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
8958 Batch-Oriented Setting Time Optimisation in an Aerodynamic Feeding System

Authors: Jan Busch, Maurice Schmidt, Peter Nyhuis

Abstract:

The change of conditions for production companies in high-wage countries is characterized by the globalization of competition and the transition of a supplier´s to a buyer´s market. The companies need to face the challenges of reacting flexibly to these changes. Due to the significant and increasing degree of automation, assembly has become the most expensive production process. Regarding the reduction of production cost, assembly consequently offers a considerable rationalizing potential. Therefore, an aerodynamic feeding system has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. This system has been enabled to adjust itself by using a genetic algorithm. The longer this genetic algorithm is executed the better is the feeding quality. In this paper, the relation between the system´s setting time and the feeding quality is observed and a function which enables the user to achieve the minimum of the total feeding time is presented.

Keywords: Aerodynamic feeding system, batch size, optimisation, setting time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
8957 Fast and Accurate Reservoir Modeling: Genetic Algorithm versus DIRECT Method

Authors: Mohsen Ebrahimi, Milad M. Rabieh

Abstract:

In this paper, two very different optimization algorithms, Genetic and DIRECT algorithms, are used to history match a bottomhole pressure response for a reservoir with wellbore storage and skin with the best possible analytical model. No initial guesses are available for reservoir parameters. The results show that the matching process is much faster and more accurate for DIRECT method in comparison with Genetic algorithm. It is furthermore concluded that the DIRECT algorithm does not need any initial guesses, whereas Genetic algorithm needs to be tuned according to initial guesses.

Keywords: DIRECT algorithm, Genetic algorithm, Analytical modeling, History match

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
8956 New Hybrid Algorithm for Task Scheduling in Grid Computing to Decrease missed Task

Authors: Z. Pooranian, A. Harounabadi, M. Shojafar, N. Hedayat

Abstract:

The purpose of Grid computing is to utilize computational power of idle resources which are distributed in different areas. Given the grid dynamism and its decentralize resources, there is a need for an efficient scheduler for scheduling applications. Since task scheduling includes in the NP-hard problems various researches have focused on invented algorithms especially the genetic ones. But since genetic is an inherent algorithm which searches the problem space globally and does not have the efficiency required for local searching, therefore, its combination with local searching algorithms can compensate for this shortcomings. The aim of this paper is to combine the genetic algorithm and GELS (GAGELS) as a method to solve scheduling problem by which simultaneously pay attention to two factors of time and number of missed tasks. Results show that the proposed algorithm can decrease makespan while minimizing the number of missed tasks compared with the traditional methods.

Keywords: Grid Computing, Genetic Algorithm, Gravitational Emulation Local Search (GELS), missed task

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
8955 Optimal DG Allocation in Distribution Network

Authors: A. Safari, R. Jahani, H. A. Shayanfar, J. Olamaei

Abstract:

This paper shows the results obtained in the analysis of the impact of distributed generation (DG) on distribution losses and presents a new algorithm to the optimal allocation of distributed generation resources in distribution networks. The optimization is based on a Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO) aiming to optimal DG allocation in distribution network. Through this algorithm a significant improvement in the optimization goal is achieved. With a numerical example the superiority of the proposed algorithm is demonstrated in comparison with the simple genetic algorithm.

Keywords: Distributed Generation, Distribution Networks, Genetic Algorithm, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711
8954 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model

Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar

Abstract:

The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.

Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2820
8953 Optimized Delay Constrained QoS Routing

Authors: P. S. Prakash, S. Selvan

Abstract:

QoS Routing aims to find paths between senders and receivers satisfying the QoS requirements of the application which efficiently using the network resources and underlying routing algorithm to be able to find low-cost paths that satisfy given QoS constraints. The problem of finding least-cost routing is known to be NP-hard or complete and some algorithms have been proposed to find a near optimal solution. But these heuristics or algorithms either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we concentrate an algorithm that finds a near-optimal solution fast and we named this algorithm as optimized Delay Constrained Routing (ODCR), which uses an adaptive path weight function together with an additional constraint imposed on the path cost, to restrict search space and hence ODCR finds near optimal solution in much quicker time.

Keywords: QoS, Delay, Routing, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
8952 A Hybrid Approach for Color Image Quantization Using K-means and Firefly Algorithms

Authors: Parisut Jitpakdee, Pakinee Aimmanee, Bunyarit Uyyanonvara

Abstract:

Color Image quantization (CQ) is an important problem in computer graphics, image and processing. The aim of quantization is to reduce colors in an image with minimum distortion. Clustering is a widely used technique for color quantization; all colors in an image are grouped to small clusters. In this paper, we proposed a new hybrid approach for color quantization using firefly algorithm (FA) and K-means algorithm. Firefly algorithm is a swarmbased algorithm that can be used for solving optimization problems. The proposed method can overcome the drawbacks of both algorithms such as the local optima converge problem in K-means and the early converge of firefly algorithm. Experiments on three commonly used images and the comparison results shows that the proposed algorithm surpasses both the base-line technique k-means clustering and original firefly algorithm.

Keywords: Clustering, Color quantization, Firefly algorithm, Kmeans.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
8951 A Completed Adaptive De-mixing Algorithm on Stiefel Manifold for ICA

Authors: Jianwei Wu

Abstract:

Based on the one-bit-matching principle and by turning the de-mixing matrix into an orthogonal matrix via certain normalization, Ma et al proposed a one-bit-matching learning algorithm on the Stiefel manifold for independent component analysis [8]. But this algorithm is not adaptive. In this paper, an algorithm which can extract kurtosis and its sign of each independent source component directly from observation data is firstly introduced.With the algorithm , the one-bit-matching learning algorithm is revised, so that it can make the blind separation on the Stiefel manifold implemented completely in the adaptive mode in the framework of natural gradient.

Keywords: Independent component analysis, kurtosis, Stiefel manifold, super-gaussians or sub-gaussians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
8950 Enhanced Character Based Algorithm for Small Parsimony

Authors: Parvinder Singh Sandhu, Sumeet Kaur Sehra, Karmjit Kaur

Abstract:

Phylogenetic tree is a graphical representation of the evolutionary relationship among three or more genes or organisms. These trees show relatedness of data sets, species or genes divergence time and nature of their common ancestors. Quality of a phylogenetic tree requires parsimony criterion. Various approaches have been proposed for constructing most parsimonious trees. This paper is concerned about calculating and optimizing the changes of state that are needed called Small Parsimony Algorithms. This paper has proposed enhanced small parsimony algorithm to give better score based on number of evolutionary changes needed to produce the observed sequence changes tree and also give the ancestor of the given input.

Keywords: Phylogenetic Analysis, Small Parsimony, EnhancedFitch Algorithm, Enhanced Sakoff Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
8949 Parallel Branch and Bound Model Using Logarithmic Sampling (PBLS) for Symmetric Traveling Salesman Problem

Authors: Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti, Nadeem Daudpota

Abstract:

Very Large and/or computationally complex optimization problems sometimes require parallel or highperformance computing for achieving a reasonable time for computation. One of the most popular and most complicate problems of this family is “Traveling Salesman Problem". In this paper we have introduced a Branch & Bound based algorithm for the solution of such complicated problems. The main focus of the algorithm is to solve the “symmetric traveling salesman problem". We reviewed some of already available algorithms and felt that there is need of new algorithm which should give optimal solution or near to the optimal solution. On the basis of the use of logarithmic sampling, it was found that the proposed algorithm produced a relatively optimal solution for the problem and results excellent performance as compared with the traditional algorithms of this series.

Keywords: Parallel execution, symmetric traveling salesman problem, branch and bound algorithm, logarithmic sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2350
8948 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems

Authors: Sultan Noman Qasem

Abstract:

This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.

Keywords: Radial basis function network, Hybrid learning, Multi-objective optimization, Genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
8947 A Hybrid Feature Subset Selection Approach based on SVM and Binary ACO. Application to Industrial Diagnosis

Authors: O. Kadri, M. D. Mouss, L.H. Mouss, F. Merah

Abstract:

This paper proposes a novel hybrid algorithm for feature selection based on a binary ant colony and SVM. The final subset selection is attained through the elimination of the features that produce noise or, are strictly correlated with other already selected features. Our algorithm can improve classification accuracy with a small and appropriate feature subset. Proposed algorithm is easily implemented and because of use of a simple filter in that, its computational complexity is very low. The performance of the proposed algorithm is evaluated through a real Rotary Cement kiln dataset. The results show that our algorithm outperforms existing algorithms.

Keywords: Binary Ant Colony algorithm, Support VectorMachine, feature selection, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
8946 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm

Authors: Tahseen Al-Shaikhli, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin

Abstract:

A concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. Furthermore, the objectives are to control the coordination problem which mainly depends on offset selection, and to estimate the uniform delay based on the offset choice at each signalized intersection. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show that the derived model minimizes the total uniform delay to almost half compared to conventional models; the mathematical objective function is robust; the algorithm convergence time is fast.

Keywords: Area traffic control, differential evolution, offset variable, sinusoidal periodic function, traffic flow, uniform delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388